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Executive Summary 

The purpose of this project was to develop tools and techniques to improve the ability of computational 

scientists to investigate and correct problems (bugs) in their programs.  Specifically, the University of 

Maryland component of this project focused on the problems associated with the finite number of bits 

available in a computer to represent numeric values. In large scale scientific computation, numbers are 

frequently added to and multiplied with each other billions of times.   Thus even small errors due to the 

representation of numbers can accumulate into big errors.  However, using too many bits to represent a 

number results in additional computation, memory, and energy costs.  Thus it is critical to find the right 

size for numbers.   

This project focused on several aspects of this general problem.  First, we developed a tool to look for 

cancelations, the catastrophic loss of precision in numbers due to the addition of two numbers whose 

actual values are close to each other, but whose representation in a computer is identical or nearly so.   

Second, we developed a suite of tools to allow programmers to identify exactly how much precision is 

required for each operation in their program.  This tool allows programmers to both verify that enough 

precision is available, but more importantly find cases where extra precision could be eliminated to 

allow the program to use less memory, computer time, or energy.  These tools use advanced binary 

modification techniques to allow the analysis of actual optimized code.   The system, called Craft, has 

been applied to a number of benchmarks and real applications. 

This project was the primary support of one PhD student (Mike Lam) and partially supported several 

additional students, and provided partial support for PI Hollingsworth.  The funding has resulted in four 

papers, and the release of the open source tools Craft (http://sourceforge.net/projects/crafthpc/).  The 

Craft tool has been used by others including scientists at Lawrence Livermore National Labs, Los Alamos 

National Labs, and by a team in New Zealand. 

Detailed Project Accomplishments 

Both major accomplishments of this project (cancelations and arbitrary precision) use actual runs of a 

program to analyze floating point behavior.  To do this, our tools instrument a normal program, so that 

as side effect of its execution, we gather the information required for our analyses. 

To instrument programs, we use the DyninstAPI library (www.dyninst.org). DyninstAPI can instrument in 

both online and offline modes. In the online mode, the tool starts the target process, pauses it, inserts 

instrumentation in the target’s address space, and then resumes the process. In the offline mode, the 

tool opens the target executable, inserts instrumentation, and saves the resulting file back to disk. The 

resulting binary can be launched just like the original program. DyninstAPI inserts instrumentation using 

a trampoline-based approach, which replaces a section of executable code with a call to a trampoline, a 

newly-allocated area of code that contains the original (now relocated) instructions as well as the 

desired instrumentation code. Our tool augments floating-point instructions with calls to analysis 

routines in a dynamically linked shared library. 
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Cancelation Detector 

To detect cancelation problems, we instrument every floating-point addition and subtraction operation, 

augmenting it with code that retrieves the operand values at runtime. Our algorithm compares the 

binary exponents of the operands (exp1exp1 and exp2exp2) as well as the result (exprexpr). If the 

exponent of the result is smaller than the maximum of those of the two operands (i.e. 

expr<max(exp1,exp2)expr<max(exp1,exp2)), cancellation has occurred. We define the priority  as 

max(exp1,exp2)-exprmax(exp1,exp2)-expr, a measure of the severity of a cancellation. The analysis will 

ignore any cancellations under a given minimum threshold. Unless otherwise noted, we used a 

threshold of ten bits (approximately three decimal digits) for the results in this paper. If the analysis 

determines that the cancellation should be reported, it saves an entry to a log file. This entry contains 

information about the instruction, the operands, and the current execution stack. Obviously, the stack 

trace results will be more informative if the original executable was compiled with debug information, 

but this is not necessary. The analysis also maintains basic instruction execution counters for the 

instrumented instructions. 

Since many programs produce thousands or millions of cancellations, it is impractical (and unhelpful) to 

report the details of every single one. Instead, we use a sample-based approach. Unfortunately, the 

number of cancellations that an individual instruction may produce varies wildly. In the same run, some 

instructions may produce fewer than ten cancellations while others produce millions. Thus, a uniform 

sampling strategy will not work, and we have implemented a logarithmic sampling strategy. In our tool, 

the first ten cancellations for each instruction are reported, then every tenth cancellation of the next 

thousand, then every hundred thousandth cancellation thereafter. We found that this strategy produces 

an amount of output that is both useful and manageable. We emphasize that all cancellations are 

counted and that the sampling applies only to the logging of detailed information such as operand 

values and stack traces. 

In order to help programmers understand the cancelation data, we have also created a log viewer that 

provides an easy-to-use interface for exploring the results of an analysis run. This viewer shows all 

events detected during program execution with their associated messages and stack traces. It also 

aggregates count and cancellation results by instruction into a single table. 

The viewer also synthesizes various results to produce new statistics. Along with the raw execution and 

cancellation information, it also calculates the cancellation ratio for each instruction, which is defined as 

the number of cancellations divided by the number of executions. This gives an indication of how 

cancellation-prone a particular instruction is. The viewer also calculates the average priority (number of 

canceled bits) across all cancellations for each instruction. This gives an indication of how severe the 

cancellations induced by that instruction were. 

Cancelation Results 

To illustrate the way our tool works, consider a simple program that computers the following value: 

y=1−cos/ x
2
. This function is undefined at x=0 since this triggers a division by zero, but as it approaches 

that point the function value gets infinitely close to 1/2. In floating point, the subtraction operation in 
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the numerator results in cancellation around x=0 because cos0=1. This sort of example is well-known to 

numerical analysts, and there are many workarounds. Here it serves as an demonstration of our tool. 

 

We wrote a simple program that evaluates this function at several points approaching x=0x=0 from both 

sides, and allowed our cancellation detector to analyze it. The tool reported all the cancellation events 

we expected. The output log included details about the instruction, the operands, and the number of 

binary digits canceled. Figure 1 shows a screenshot of the log viewer interface. The lower portion 

displays all events logged during execution. Each event is displayed in the list in the lower-left corner, 

along with summary information about the event. Clicking on an individual event reveals additional 

information in the lower-right corner and also loads the source code in the top window if the debug 

information and the source files are available. If possible, the tool also highlights the source line 

containing the selected instruction. The tab selector in the middle allows access to other information, 

such as a view of cancellations aggregated by instruction. 

 

Figure 1: Screen Shot of Cancelation Detection tool. 

This simple example confirmed our expectations and demonstrates how our tool works. The highlighted 

message reveals a 51-bit cancellation in the subtraction operation on line 19 of catastrophic.c. The two 

operands involved were two XMM registers with values that were both very close to 1.0 (the first was 

exact and the second diverged around the 16th decimal digit). Selecting the other events reveals similar 

details for those cancellations. Being able to examine cancellation at this level of detail is valuable in 

analyzing the numerical stability of a floating-point program. In this case, it alerts us that the results of 

the subtraction operation on line 19 may cause a cancellation of many digits. Since the resulting value is 
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later used on the same line to scale another value, we may deduce that this code needs to be rewritten 

to avoid the loss of significant digits. 

Arbitrary Precision 

Our initial work on precision reduction focused on finding places where double precision floating point 

operations could be replaced by single precision. We introduced a comprehensive system for analyzing 

an application's precision requirements. Given a representative data set and a verification routine, this 

system builds multiple mixed-precision configurations of the application and evaluates them, choosing 

the one that promises the greatest benefit in terms of speedup and easing of memory bandwidth 

pressure. Figure 2 shows an overview of this system. A key system component is our framework for 

automatic binary-level mixed-precision configuration of floating-point programs.  

 

Figure 2: Overall Structure of Craft Tool. 

Our tool uses a program’s natural structure to find the coarsest granularity at which each part of the 

program can be replaced by single precision while still passing a user-provided verification routine. Our 

technique modifies the 64 bits that hold the double-precision representation to simulate single 

precision, storing a magic constant in the extra bits to indicate the presence of a modified number. 

This approach does not fully realize the benefits of using single precision format but allows us to identify 

when single precision preserves sufficient accuracy. The source code can then be transformed to realize 

the full benefits for situations that we identify as safe.  
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The key to the ability of our tool to find the largest possible regions of code that can be replaced by 

single precision is our search system that automatically generates new configurations based on 

information learned from running from prior executions. We developed a simple automatic search 

system that attempts to replace as much of the program as possible using a breadth-first search through 

the entire program's configuration space. There are 2
n
 total possible configurations to test, where n is 

the number of floating-point instructions in the program. Since evaluating each test configuration 

requires a full program run, exhaustively testing every configuration is not feasible. 

To evaluate our tool, we initially ran it on the NAS parallel benchmark suite.  The results of that test are 

summarized in Figure 3.  The second column shows the number of candidate floating point instructions 

that could be replaced, the third column shows the number of configurations tired, and the final two 

columns, the percent of static (instruction in the program) and dynamic  (fraction of instructions actually 

executed) that our tool concluded could be replaced with single precision.   The configurations tested is 

almost always much smaller than the candidate operations indicating that our search heuristic was 

working well.  The percent of dynamic operations replaced (which corresponds to reduction in runtime 

of the program) shows that for many of the benchmarks, a large fraction of the operations could be 

performed in single precision.  

Benchmark 
(name.CLASS) 

Candidate 
Operands 

Configurations Tested Operands Replaced 

  % Static           % Dynamic 

bt.A 2,342 300 98.3 97.0 

cg.A 287 68 96.2 71.3 

ep.A 236 59 96.2 37.9 

ft.A 466 108 94.2 46.2 

lu.A 1,742 104 98.5 99.9 

mg.A 597 153 95.6 83.4 

sp.A 1,525 1,094 94.5 88.9 

 

Figure 3: Results for Single Precision Replacement Analysis for NAS Benchmarks. 

The final aspect of this project was to extend the Craft tool to support detecting exactly how many bits 

of floating point precision a given instruction requires.  This was done by adding an additional 

parameter, bits, to the configuration description for each floating point instruction.  The bits parameter 

is used with a new variation on the instrumentation code that inserts code to truncate the result of each 

instruction to the number of bits in the confirmation file.   Thus our tools can consider how each 

instruction would behave if it had a specific number of bits to represent the number. 
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This extension to the tool greatly expands the theoretical search space (to up 64
n
 where n is the number 

of floating point instructions in the program).  However, in practice, our tool is able to prune the vast 

majority of these configurations and achieve acceptable performance. 

  
(a) bt.A (b) rhodo 

Figure 4: Distribution of required number of bits of precision for two programs. 

In addition to providing information about specific instructions that could be replaced in the program, 

the arbitrary precision code allows us to visualize the distribution of the number of bits required in the 

program as a whole.   This visualization provides quite insight into the variation in precision of different 

parts of the program.  Figure 4, shows this distribution for two program (BY and rhodo).  The red line in 

the center shows the number of bits of precision provided by the IEEE single precision representation.  

The results show that BT is mostly able to be run in single precision (but just barely).  While rhoto 

requires almost all the bits of double precision to compute it results (with a small number of instructions 

requiring almost no precision). 

Conclusions 

This project has made tangible progress towards the goals of providing automated tools to help 

programmers with identifying correctness problems related to floating point precision and to provide 

information on how programmers can tune the level of precision to improve runtime, memory 

utilization, and power.  
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