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Larry De Chant; ljdecha@sandia.gov (1515)

Modeling Pressure Fluctuation in Laminar/Turbulent Transitional
Flow

 Lam./Turb. transition Pressure fluctuations (magnitude/PSD/spectra):

*  Much larger (1-2 orders of magnitude) large than F.D. turbulence flutucations
» Full spectral range 0<w<<kHz
» Power spectral density (PSD) not well modeled using F.D. turbulence PSD.

» Data (literature) is available for high speed flow: Fujii (2006) hypersonic cones,
Howe and Langanelli (1977) hypersonic cones (sharp and blunt).

* How do we model transitional PSD?

Some (integral) models are known, e.g. Lauchle 1980: Lighthill-based acoustic
source analysis, intermittency inducing velocity fluctuations (source) with
empirical indicator (intermittency) closure.

Alternative: phenomenological differential equation (convection reaction
diffusion model), extended from Fowler and Howell (2003) combined with
current first principle F.D. turb. PSD model (DeChant).
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“First Principle Based Models”

— First principle: starting from conservation/transport equations (Reynolds stress
transport equation, see Launder et. al. 1975), to estimate velocity deviation
amplitude “A”:

A +u A + vAy =rlu—u(A)]+(DA,),
() ) (1) (V)

-1/7 -1/2
Ao (Cf—turb - Cf—lam) = (0027 (Mj — 0664[Mj )
4 14

w w

— The reaction source term (III), represents the nonlinear bifurcation between
laminar drag and turbulent drag at transition. At transition, the laminar drag
is insufficient to balance convective accelerations, while the turbulent drag
is overly strong, resulting in local nonlinear “slugging” with attendant

turbulent spots.
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—  Source term 1s
nonlinear/bifurcated
polynomial, solution A=A(u)
and u=u(A)

r{u —w(A)] = A*(u—0.089) — 0.002.4* — 0.0005 4

—  Convection-diffusion-reaction A
equation Anpliade A"

(4 +u, A + vAy) =

v

A A
= A’ (u—0.089)-0.0024" —0.00054+¢£((4+1)4, )x A A
c b
A=1
—  Known (Murray 1993) to have
“slug” solution...these are
turbulent spots LI
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— Rate of appearance of slugs is intermittency: Indeed we can show that amplitude
equation is approximate non-linear wave equation:

A +24,+A +A (4 +A)e+u’d’ =0

— Envelope of perturbations is intermittency expression:
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Intermittency
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Intermittency we can measure
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Want pressure fluctuation field; solve pressure ' '
Poisson: Vip= ) (avj ou'
"Lox \ dy

Need velocity fluctuation field; decompose
momentum into mean and fluctuating

u, +uu, +vu, +p' . =—u'),

! ! ! | I
u' tuu+uy' +vu' =0

_dG . e
u—dyA(f) ;v G(y)dég

Relate fluctuations to amplitude “A” expression

u'o< {1 — cose ucg) exp(— %s&ﬂf exp(—%)}
ol Lur (L oo £ [ t-]
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—  Velocity fluctuation u’ in transitional flow we can measure:
1.20 —

0.80 —
o Streamwise Velocity Fluctuation

o Measurements; Grek et. al. 1989

Theoretical Model
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— Solve pressure Poisson using Fourier Sine transform:

(1-)

d’P
1+ @*)’

2 K 2
= 0P =—A(x) [ yexp(-y) cos(@)dy = ~—exp(-x)
X T 0 T

— Solution and approximate convolution inversion give wall
pressure

P'(x.0) = ', (5,0)— p'y (1,0) = —— — exp(—x)
(1+x)

— Compute spectrum, i.e. PSD:

o = @

[exp(—%x) —exp(—x)]sin(@x)dx o<

pp.trans

O gy 3
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Lam.-Turb. Transition Pressure Fluctuations
First-Principles-Based PSD Model
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* (Can estimate velocity fluctuation field — RHS for fluctuating pressure Poisson equation —
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Transitional Pressure Fluctuation Magnitude we can measure:

10log_10[(PSD)(U)/(q"2w)]
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-52

Transition PSD; Dimensionless Freq.=1

Theory
[ ) Measurement Gedney and Leehey (1991)
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Derivation of pressure fluctuation Probability Density Functions (PDF’s)

Derive PDF operator expressions consistent with pressure fluctuation models.
Apply methods of Pope (2000), Pope and Ching (19930:
Define fine-grain-PDF, apply Dirac-delta calculus, eliminate terms via conservation equations:

Fine-grain PDF:
1,(p'.§)=6(P'(5)-p")

O°F, 3 (F <d2P'>J+ o |, <[dP'j2>
o> op'\ "\d&* /) op”| "\l d¢

PDF governing equation: (Gaussian approximation...yields Gaussian solution):

Averaged derivatives

oF

1 1 1
+—L=C(p°-2p")exp(—= p"” _ e 2 \Ei(l—p?
P (p"-2p")exp( 5P ) — F, =C exp( i )+ C, exp( P VEi(1,—p™)
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Derivation of pressure fluctuation Probability Density Functions (PDF’s)

—  Non-Gaussian equation and solution

0.4 2
d’F dF
28—+ (1-28) L~ 2p'&* + p—4p'$HF, =0
dp dp

Fp = C[p[WJ}Whitta ker W|:%(4i;_ lj’ %( 44:;2_ lja p2:|

Preliminary; we can derive physically-
based PDF models...

L L~ R I
w0 -es 0.0 2> >0 Fully-developed turbulence PDF’s are

largely Gaussian
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Derivation of pressure fluctuation PDF’s for Laminar-Turbulent Transitional Flows

—  Derive PDF operator models can extend to laminar-turbulent transition
—  Wall pressure model provides PDF equation closure:

P(5,0) = —— —exp(-x) = xexp(~z,)
(1+x)

—  PDF evolution equation; x>>1 Gaussian

J0’F  OF
p—r+—L= C(p'3—2p')eXp(—lp'2 )(1+£+---0(1)2]
op' op' 2 X X
—  Forx<<1:
9’ F . 1 :
p—L L :(0(1))p'exp(—lp'2) F,'= Ei(L_(CO +p )Zj ¢ =2/5
apv2 apv 2 2
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Derivation of pressure fluctuation PDF’s for Laminar-Turbulent Transitional Flows
X<<1; near incipient transition location; PDF is non-Gaussian, e.g.

k
Cauchy Distribution or Pareto Distribution Floc 1 F= k[ Pin
P 1+ p” oplp
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Summary

Have a first-principle based laminar-
transition pressure fluctuation
model...highly approximate...but closed-
form.

Preliminary results suggest successful...

Next steps

Test analysis against additional data, i.e.
canonical flat plate/literature, DNS
simulations (Pino Martin, Princeton),
dedicated data (Schneider, Purdue), Flight
test data structural response

Apply models to integrated RV
aero/structural model

~16 ~

Edge Reynolds Number (Re,)

Ballistic Reentry Vehicle
Maneuvering Reentry Vehicle
LORN Transition Criterion

30 kft l | "

.60 kit

Turbulent

Laminar

| 140 kft

1190 kit

Edge Mach Number

Sandia
National
Laboratories



	Pressure Spectra Models for Laminar/Turbulent Transitional Boundary Layer Reentry Flows��Lawrence J. De Chant�Aerosciences Department 01515�Sandia National Laboratories�Albuquerque, NM 87185-0825�ljdecha@sandia.gov
	Pressure Spectra Models for Transitional B. L. Flows �Larry De Chant; ljdecha@sandia.gov (1515)
	Pressure Spectra Models for Transitional B. L. Flows �Larry De Chant; ljdecha@sandia.gov (1515)
	� Pressure Spectra Models for Transitional B. L. Flows �Larry De Chant; ljdecha@sandia.gov (1515)
	� Pressure Spectra Models for Transitional B. L. Flows �Larry De Chant; ljdecha@sandia.gov (1515)
	� Pressure Spectra Models for Transitional B. L. Flows �Larry De Chant; ljdecha@sandia.gov (1515)
	Pressure Spectra Models for Transitional B. L. Flows �Larry De Chant; ljdecha@sandia.gov (1515)
	� Pressure Spectra Models for Transitional B. L. Flows �Larry De Chant; ljdecha@sandia.gov (1515)
	Pressure Spectra Models for Transitional B. L. Flows �Larry De Chant; ljdecha@sandia.gov (1515)
	Lam.-Turb. Transition Pressure Fluctuations� First-Principles-Based PSD Model�Larry De Chant; ljdecha@sandia.gov (1515)
	� Pressure Spectra Models for Transitional B. L. Flows �Larry De Chant; ljdecha@sandia.gov (1515)
	Pressure Spectra Models for Transitional B. L. Flows � PDF Theoretical results � Larry De Chant; ljdecha@sandia.gov (1515)
	Pressure Spectra Models for Transitional B. L. Flows � PDF Theoretical results � Larry De Chant; ljdecha@sandia.gov (1515)
	Pressure Spectra Models for Transitional B. L. Flows � PDF Theoretical results � Larry De Chant; ljdecha@sandia.gov (1515)
	Pressure Spectra Models for Transitional B. L. Flows � PDF Theoretical results � Larry De Chant; ljdecha@sandia.gov (1515)
	Pressure Spectra Models for Transitional B. L. Flows �Larry De Chant; ljdecha@sandia.gov (1515)

