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1. General view on generalization of FE to polygonal and
polyhedral meshes

I Classical FEM construction on simplicial meshes:
approximation space V = P →d.o.f. (values at the vertices,
average fluxes, etc.)

I Extension of FEM to polygonal/polyhedral meshes, while
retaining the same d.o.f., ⇒ number of d.o.f. grows.

I Dimension of the discr. approx. space grows beyond
polynomial space P. Need to extend the approximation space.

I Adding new (polynomial) functions raises unisolvency
questions.

Main tools:

I Consistency: “correct” behaviour when polynomials are
involved. Appropriate choice of d.o.f.

I Stability: “roughly correct” behavior for non-polynomials.



2. Focus

We will focus on reaction-diffusion equation:

4u + u = 0

and the wave equation
utt = −4u.

Need:

I specify d.o.f. and the approximation spaces.

I build stiffness matrix: UTAV ≈
∫
E ∇u · ∇v .

I build mass matrix: UTMV ≈
∫
E uv .



3. Approximation space

The approximation space V is built in orthogonal form:

V = Pk ⊕∗ B∗, ∗ = A,M.

I The polynomial space Pk is selected according to the desired
accuracy of the scheme.

I The extension space B (not constructed explicitly) is added to
satisfy the unisolvency between the continuous and the
discrete approximation space.

Orthogonal projection operators simplify the construction and the
analysis:

I π∇ for the stiffness matrix,
∫
E ∇u ·∇p =

∫
E ∇(π∇u) ·∇p, and

I π0 for the mass matrix,
∫
E up =

∫
E (π0)p.



4. Consistency and d.o.f.

Consistency condition: for any P ↔ p ∈ Pk and for any
V ↔ v ∈ V

PTAEV =

∫
E
∇p · ∇v = −

∫
E

(4p)v +
∑
fi∈∂E

∫
fi

(∇p · n)v .

E – element, fi – face of the element in 3D, edge in 2D.

I Choosing d.o.f. to be the moments allows to compute
PTAV = RT

P V without knowing the exact shape of v inside
the element:

Boundary moments:
∫
fi

(∇p · n)u,

Internal moments:
∫
E (4p)u.

I Alternatively, if all functions in V satisfy appropriate
quadrature then one can use other d.o.f. (e.g. values at the
vertices).



5. Consistency conditions using projection operators

Construction based on the projection operator
(L. Beiro da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini,
A. Russo: Basic principles of Virtual Element Methods, Math. Models
Methods Appl. Sci. 23)

I For all monomials mα ∈ Pk → Dα – d.o.f. representation.

I For each monomial build the coefficients vector Bα

DT
α AEV = RT

α V ⇔ DTAE = BT .

Possible due to the choice of the d.o.f., R = [Rα], D = [Dα].

I Build the orthogonal projector π∇ = D(R̃TD)−1R̃T .
R̃ ≈ R with the modified 1st column.

I Write the stiffness matrix as consistency and the stability
terms

AE = D(DTD)−1RT + (I − π∇)T extra(I − π∇).



6.a Alternative construction/view

I Complete the basis (Dp is the old D, new D is invertible):

D =
[
Dp Dc

]
, Dp = [Dα], Dc = [Dβ]

Dα – d.o.f. for monomials mα; mα – basis in Pk ;
Dβ – d.o.f. for basis rα; rβ – basis in B.

I Ex. Stiffness matrix:

AE = D−T ÃED−1, Ã =

[
Ã11 0

0 Ã22

]

Ã11 – products of monomials with monomials (computable);
Ã22 – products within B (not computable).



6.b Alternative construction/view

AE = D−T ÃED−1, Ã =

[
Ã11 0

0 Ã22

]
, D =

[
Dp Dc

]
.

I Consistency condition is satisfied through a proper choice of
Dc (depends on the operator A or M: Dc,A,Dc,B):

0 = DT
p ADc = RTDc ⇔ span{Dc} ∈ ker{RT}.

I span{Dc}/D1 is defined uniquely (D1 – d.o.f. for a constant).

I Choice of Dc,A is directly related to the projector π∇. If
columns of Dc,A are ortho-normal, then

π∇ = I − Dc,ADT
c,A.



7. Mass matrix

I Consistency condition can be enforced only for lower degree
polynomials (internal moments only):

PTMEV =

∫
E

pv , P ↔ p ∈ Pk−2.

I Completion of the basis

D =
[
DPk

DBA
]

=
[
DPk−2

DP̃k−1,P̃k
DBM

]
,

P̃k – homogeneous polynomials of degree k .
I Mass matrix:

ME = D−T M̃ED−1, M̃E =

 M̃11 M̃12 0

M̃21 M̃22 M̃23

0 M̃32 M̃33


M̃11, M̃12 = M̃21

T and M̃22 – computable,
M̃23 = M̃32

T and M̃33 – not computable.



8. Mass matrix (continued)

Mass matrix: ME = D−T M̃ED−1,

M̃E =

 M̃11 M̃12 0

M̃21 M̃22 M̃23

0 M̃32 M̃33

 , D =
[
DPk

DBA
]

I Consistency condition:

0 = DT
Pk−2

MDBM = RTDBM .

span{DBM}/ span{DP̃k−1,P̃k
} is defined uniquely.

I Unisolvency condition: D is invertible.
Can be enforced by making DBM ⊥ DP̃k−1,P̃k

.



9.a Numerical experiment

4u+u = 0, Dirichlet b.c., solution: u(x , y) = e−2πxy sin(2πxy).
mesh mesh

Table 0 : Nodal MFD Method using P2 polynomials

2D Diffusion Equation

Exact solution
u(x, y) = e−2πy sin(2πx);

Permeability:
PermRotatedTensor= {α = 0o,Kxx = 1,Kyy = 1}

Scaling Factor u = 1.000000

Mesh parameters
Meshes from Quad-101-320x320

n NP NF NV #dofs hmax

0 400 840 441 1681 1.1441 10−1

1 1600 3280 1681 6561 5.7478 10−2

2 6400 12960 6561 25921 2.8773 10−2

3 25600 51520 25921 103041 1.4391 10−2

4 102400 205440 103041 410881 7.1960 10−3

1

V = P2 ⊕ B
dim{P2} = 6

dim{V} = 9

- 0th moment
- 1st moment

NE Ndof hmax EH1 EL2
400 1681 1.1× 10−1 1.3× 10−2 8.7× 10−4

1500 6561 5.7× 10−2 3.2× 10−3 1.1× 10−4

6400 25921 2.9× 10−2 8.0× 10−4 1.6× 10−5

25600 103041 1.5× 10−2 2.0× 10−4 2.7× 10−6

102400 410881 7.2× 10−3 5.0× 10−5 5.7× 10−7



9.b Numerical experiment

4u+u = 0, Dirichlet b.c., solution: u(x , y) = e−2πxy sin(2πxy).
mesh mesh

Table 0 : Nodal MFD Method using P3 polynomials

2D Diffusion Equation

Exact solution
u(x, y) = e−2πy sin(2πx);

Permeability:
PermRotatedTensor= {α = 0o,Kxx = 1,Kyy = 1}

Scaling Factor u = 1.000000

Mesh parameters
Meshes from Dual-of-Tria-201-160x160

n NP NF NV #dofs hmax

0 441 1400 960 5083 1.0708 10−1

1 1681 5200 3520 18963 5.4215 10−2

2 6561 20000 13440 73123 2.7194 10−2

3 25921 78400 52480 287043 1.3608 10−2

1

V = P3 ⊕ B
dim{P3} = 10

dim{V} = 21

- 0th moment
- 1st moment
- 2nd moment

NE Ndof hmax EH1 EL2
441 5083 1.1× 10−1 6.4× 10−4 3.3× 10−5

1681 18963 5.4× 10−2 9.0× 10−5 2.4× 10−6

6561 73123 2.7× 10−2 1.2× 10−5 1.6× 10−7

25921 287043 1.4× 10−2 1.6× 10−6 1.1× 10−8



10. What can we do with the family?

On structured meshes for wave equation:

I match the speed of particular waves or asymptotically (long waves).

I increase the order of the discretization – super-convergence.

Super-convergence for second-order vertex-based discretizations of
acoustic wave equation (Gyrya, Lipnikov):

I on rectangular meshes (one parameter in AE , 6 parameters
in ME ) – 4th order one parameter family of schemes

I on square meshes – 4th order scheme that is anisotropic up
to 6th order.

I on cuboid meshes (10 parameters in AE , 28 parameters in
ME ) 4th order schemes.

For second-order edge-based discretization of Maxwell equation
(Gyrya, McGregor, Bokil, Gibson):

I on square meshes (no parameters in AE , 3 parameters in
ME ) – 4th order scheme.



11. Tools

On structured meshes:

I Von-Neumann dispersion relation with reduction to local
problem.

I Error cancelation for polynomial waves: spatial with temporal
discretizations .



12. Von Neumann based analysis

Von Neumann-type analysis: u = e i(κ·x−κcht), κ = |κ|.

Uk+1 − 2Uk + Uk−1

4t2
= c2WAUk , W = D−1MD−1 ≈M−1.

I Need reduced-form dispersion relation (in terms of the
elemental matrices) ME and AE .



13. Reduced-form dispersion relation

x1

2 3

4

x x
x

2(1− cos(chκ4t))

4t2
= c2(U∗WEU)(U∗AEU),

where

U =


u(x1)
u(x2)
u(x3)
u(x4)

 =


e iκ·x1

e iκ·x2

e iκ·x3

e iκ·x4


Asymptotic approach (4x ,4y ∼ h):

ch = c + O(κh)d , maximize d .



14. Numerical experiment

I The dispersion curves for various angles θ between the planar
wave and the mesh axis for the Courant number ν = 0.75.



15. Conclusions & possible extensions

I Construction of the MFD/VE family of discretizations for
stiffness and mass matrices based on completion of basis.

I The completion of basis respects the orthogonality condition.

I The completion of basis is different for mass and stiffness
matrices and is not unique.

I The freedoms in the construction of the discretizations can be
used to improve scheme properties (at least on structured
meshes).

I The improved schemes are highly efficient: fourth order
accuracy with second order complexity. No solution of global
system is required.



Thank you!


