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ABSTRACT 

As supercomputers continue to get faster and more powerful in the future, 
they will also have more nodes. If nothing is done, then the amount of memory in 
supercomputer clusters will soon grow large enough that memory failures will be 
unmanageable to deal with by manually replacing memory DIMMs. "Improving 
Memory Error Handling Using Linux" is a process oriented method to solve this 
problem by using the Linux kernel to disable (offline) faulty memory pages 
containing bad addresses, preventing them from being used again by a process. 
The process of offlining memory pages simplifies error handling and results in 
reducing both hardware and manpower costs required to run Los Alamos National 
Laboratory (LANL) clusters. This process will be necessary for the future of 
supercomputing to allow the development of exascale computers. It will not be 
feasible without memory error handling to manually replace the number of 
DIMMs that will fail daily on a machine consisting of 32-128 petabytes of 
memory. Testing reveals the process of offlining memory pages works and is 
relatively simple to use. As more and more testing is conducted, the entire process 
will be automated within the high-performance computing (HPC) monitoring 
software, Zenoss, at LANL.  
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INTRODUCTION 

 The amount of memory failures on a 
machine depends on the total amount of 
memory, type of memory, and exposure to 
destructive environmental elements such as 
cosmic rays. As the number of failures rises 
with larger machines and higher capacities 
of RAM, so will the amount of DIMMs that 
need to be replaced. If only a small section 
of a DIMM has failed, but is generating 
errors frequently, it becomes wasteful to 
replace the entire DIMM. To complicate 
matters even more, the newest clusters and 
the memory industry in general are moving 
toward 3D memory placed directly on the 
CPU [1]. 
 As a result of these problems, a new 
method for handling errors as they occur 
becomes necessary. While memory error 
handling has been done in the past, it has 
either been inadequate or largely untested. 
This project aims to provide a complete 
method for handling correctable memory 
errors as they are reported by using a 
technique called “fail in place.” We will 
attempt to offline areas of memory that are 
faulty instead of replacing the entire 
memory DIMM and wasting the majority of 
the chip that still functioned properly. Once 
offlined, the Linux kernel will not be able to 
assign the physical page containing the 
faulty address to a process. This analysis 
will present background information on the 
process of offlining, the method for using it, 
and the results. 

	
  
Figure 1: Relationship between virtual and physical 
memory and the offlining process1. 

MATERIALS AND METHODS 

 This project started with research 
into how memory works and the existing 
methods for memory error handling. A 
graphic showing the difference between 
virtual and physical address space and the 
process described in this section is shown in 
Figure 1. Research led to the discovery and 
understanding of BadRAM, HWPOISON, 
and MCELOG. Rick van Rein developed 
BadRAM starting with kernel version 2.2 to 
handle RAM with defective addresses, but 
BadRAM was outdated and not maintained 
[2]. HWPOISON was a patch first 
developed for kernel version 2.6 by Andi 
Kleen that allowed the kernel to recover 
from memory errors and contain the 
problem to prevent future errors [3]. 
HWPOISON was further improved by Andi 
Kleen and turned into MCELOG. MCELOG 
is a daemon that handles DIMM, socket, 
cache, and page errors [4]. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Copyright © 2007 en:User:Dysprosia [5] 
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 After research on the existing 
methods for memory error handling was 
conducted, a custom Linux kernel was 
compiled and ran in a QEMU virtual 
machine with the options enabled for 
memory page offlining. However, BadRAM 
and MCELOG could not be tested because 
the virtual machine did not allow interaction 
with the memory hardware. 
 Since the virtual machine could not  
work, testing began on a Linux computer 
and then transitioned to a Linux test server. 
After a detailed analysis of BadRAM, 
HWPOISON, and MCELOG, it was decided 
that none of them would be suitable for this 
problem. MCELOG was the most promising 
method for solving the memory error 
problem, but it was lacking key features 
such as trigger scripts and page offlining 
capabilities. These features were already 
supposed to be implemented in the code, but 
after extensive studying and testing, it was 
found that was not the case. However, 
experimentation with MCELOG led to the 
discovery of how the Linux kernel 
implemented page offlining. Using this 
knowledge, it became possible to offline the 
physical pages containing faulty memory 
addresses: 
 

1) Determine via syslog or other reporting 
service that there is a faulty address: 
cluster:Jun 22 10:36:53 ml105 kernel: : 
EDAC MC0: CE - no information 
available: Can't discover the memory 
rank for ch addr 0x5cf858c0 

2) Extract the address from the log entry: 
0x5cf858c0 

3) As root, send the kernel the bad address 
to have the page offlined: 

# echo 0x5cf858c0 > 
/sys/devices/system/memory/soft_offlin
e_page 

4) Check the syslog to make sure the page 
was actually offlined: 
get_any_page: 0x5cf85 free buddy page 
 
Alternative features to page offlining 

are built into the Linux kernel. The kernel 
can be booted using command line options 
to turn off whole sections of memory at 
once. However, offlining the pages is much 
easier because it can be done as errors occur 
and doesn’t require the restart of the node. 
Restarting the node resets the kernel page 
tables, requiring the previously offlined 
pages to be offlined again. 
 

RESULTS 

	
  
Figure 2: The scaling of uncorrectable memory error rates 
with estimated future capacities2 

Following the process described 
above, some initial tests were conducted on 
the test server. However, the test server had 
no bad memory, so an account was created 
on the HPC login system and access was 
granted to the “burn box.” The “burn box” is 
the place where new hardware is tested 
before being placed in a production system 
at the lab. The technicians placed a node 
with what was thought to be faulty DIMMs 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  Graph courtesy of Nathan DeBardeleben	
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in the burn box for testing. However, it was 
soon discovered that although the memory 
chips had been indicating there was an error, 
when the node was turned off and moved, 
the error corrected itself.  
 Even though the process was not 
able to be tested on actual faulty hardware, it 
indicated that page offlining works and is 
simple enough to implement in a script. It 
was discovered that the process of offlining 
a page will not change the total amount of 
memory seen using a command such as 
“free,” but it turns off that area of memory 
in the kernel page-tables. This can be 
checked by trying to offline the same 
address twice in a row. 

As a result, a script was written to 
automate the offlining process given a set of 
system memory error messages. Initial 
testing with the script indicates that it works 
as well. At this point, a meeting was 
conducted with the HPC system admins 
(operators) to determine if this process could 
be implemented in the HPC monitoring 
software, Zenoss. It was determined that the 
offlining process could be done through 
Zenoss and it is currently being worked on 
by the operators and being tested on their 
system. 

As can be seen in Figure 2, as 
memory size continues to increase, so will 
the number of uncorrectable errors. Since 
current data is not available on the costs 
savings effect resulting from having to 
replace fewer DIMMs as a result of this 
project, a cost savings estimate can be 
determined. To estimate accurately, the lab’s 
current DIMM replacement costs will be 
compared to an estimation of exascale 
memory replacement costs. These 

estimations are shown in Figures 3 and 4 
and the notes following. 
 

	
  
Figure 3: Comparison between the current data on DIMM 
replacements and exascale estimations* 

	
  
Figure 4: Same comparison to exascale as Figure 3, except 
showing estimated cost instead** 

*Current replacement data for 2013 on five clusters with a 
total of 43,840 DIMMs (0.03% replacement rate/year); Lab 
total data for 2013 on eight clusters. Projected data for 32-
128 PB of memory with 62,500-500,000 DIMMs (256-512 
GB/DIMM) at a 0.007-0.622% replacement rate/year (9-
76/month)3 
**Costs estimated at 2 hours/DIMM replacement4 
 

CONCLUSIONS 

Comparing current replacement costs 
to replacement costs that would be required 
under exascale computing shows a 
prohibitive cost growth. At approximately 
two hours per replacement, the replacement 
process is neither cheap nor efficient. Based 
on these costs, a memory error handling 
process of offlining pages will be necessary 
to implement and utilize regularly in order 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  Data courtesy of Bob Villa and Sean Blanchard 
4 Data courtesy of Bob Villa and Cindy Martin	
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for exascale computers to become a reality 
at LANL. The lab cannot afford to pay 1-2 
full-time technicians to solely replace 
memory DIMMs in the future based on the 
estimations for exascale DIMM failures. 

	
  
Figure 5: Graphic illustrating the high-frequency of 
DRAM errors that can occur in relatively few DRAM 
locations5 

There are a few drawbacks to using 
the memory offlining process. The address 
must be sent to the kernel as a root user. 
Offlining only works for correctable 
memory errors and does not work on errors 
that are in kernel space. Also, a DIMM can 
only have so many pages offlined before it 
will have to be replaced. However, the 
benefits of using the offlining process in 
cost and time savings far outweigh the  
drawbacks. 

The successful implementation and 
automation of this process will allow the lab 
to save significant money by having to 
replace fewer DIMMs through offlining 
only the faulty pages instead. The high 
frequency of errors from just a few memory 
locations (as seen in Figure 5) shows a need 
for the solution found by this project. The 
process of offlining memory pages could be 
applied to any Linux cluster and should 
allow high-performance computing to get 
one step closer to exascale. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  Graph courtesy of Nathan DeBardeleben 

Next year LANL is installing the 
Trinity machine with some 3D memory 
stacked on the CPU. Replacing memory on 
the Trinity machine cannot be done easily 
and will require a “fail in place” technique. 
Overall, using the “fail in place” technique 
described in this analysis works and should 
be able to greatly reduce memory 
replacement costs as supercomputers scale 
to have increased memory size and failures 
in the future. 
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