
LA-UR-14-25823
Approved for public release; distribution is unlimited.

Title: Improving Memory Error Handling Using Linux

Author(s): Carlton, Michael Andrew
Blanchard, Sean P.
Debardeleben, Nathan A.

Intended for: Report

Issued: 2014-07-25

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

	

LA-­‐UR:	

1	

Improving Memory Error Handling Using Linux

Michael Carlton1, Sean Blanchard2, and Nathan DeBardeleben2

1Undergraduate, University of Kentucky, Lexington, KY, USA
2Ultra-Scale Research Center (HPC-5), Los Alamos National Laboratory, Los

Alamos, NM, USA
michael.carlton@uky.edu, seanb@lanl.gov, and ndebard@lanl.gov

ABSTRACT

As supercomputers continue to get faster and more powerful in the future,
they will also have more nodes. If nothing is done, then the amount of memory in
supercomputer clusters will soon grow large enough that memory failures will be
unmanageable to deal with by manually replacing memory DIMMs. "Improving
Memory Error Handling Using Linux" is a process oriented method to solve this
problem by using the Linux kernel to disable (offline) faulty memory pages
containing bad addresses, preventing them from being used again by a process.
The process of offlining memory pages simplifies error handling and results in
reducing both hardware and manpower costs required to run Los Alamos National
Laboratory (LANL) clusters. This process will be necessary for the future of
supercomputing to allow the development of exascale computers. It will not be
feasible without memory error handling to manually replace the number of
DIMMs that will fail daily on a machine consisting of 32-128 petabytes of
memory. Testing reveals the process of offlining memory pages works and is
relatively simple to use. As more and more testing is conducted, the entire process
will be automated within the high-performance computing (HPC) monitoring
software, Zenoss, at LANL.

	

LA-­‐UR:	

2	

INTRODUCTION

 The amount of memory failures on a
machine depends on the total amount of
memory, type of memory, and exposure to
destructive environmental elements such as
cosmic rays. As the number of failures rises
with larger machines and higher capacities
of RAM, so will the amount of DIMMs that
need to be replaced. If only a small section
of a DIMM has failed, but is generating
errors frequently, it becomes wasteful to
replace the entire DIMM. To complicate
matters even more, the newest clusters and
the memory industry in general are moving
toward 3D memory placed directly on the
CPU [1].
 As a result of these problems, a new
method for handling errors as they occur
becomes necessary. While memory error
handling has been done in the past, it has
either been inadequate or largely untested.
This project aims to provide a complete
method for handling correctable memory
errors as they are reported by using a
technique called “fail in place.” We will
attempt to offline areas of memory that are
faulty instead of replacing the entire
memory DIMM and wasting the majority of
the chip that still functioned properly. Once
offlined, the Linux kernel will not be able to
assign the physical page containing the
faulty address to a process. This analysis
will present background information on the
process of offlining, the method for using it,
and the results.

	

Figure 1: Relationship between virtual and physical
memory and the offlining process1.

MATERIALS AND METHODS

 This project started with research
into how memory works and the existing
methods for memory error handling. A
graphic showing the difference between
virtual and physical address space and the
process described in this section is shown in
Figure 1. Research led to the discovery and
understanding of BadRAM, HWPOISON,
and MCELOG. Rick van Rein developed
BadRAM starting with kernel version 2.2 to
handle RAM with defective addresses, but
BadRAM was outdated and not maintained
[2]. HWPOISON was a patch first
developed for kernel version 2.6 by Andi
Kleen that allowed the kernel to recover
from memory errors and contain the
problem to prevent future errors [3].
HWPOISON was further improved by Andi
Kleen and turned into MCELOG. MCELOG
is a daemon that handles DIMM, socket,
cache, and page errors [4].

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 Copyright © 2007 en:User:Dysprosia [5]

	

LA-­‐UR:	

3	

 After research on the existing
methods for memory error handling was
conducted, a custom Linux kernel was
compiled and ran in a QEMU virtual
machine with the options enabled for
memory page offlining. However, BadRAM
and MCELOG could not be tested because
the virtual machine did not allow interaction
with the memory hardware.
 Since the virtual machine could not
work, testing began on a Linux computer
and then transitioned to a Linux test server.
After a detailed analysis of BadRAM,
HWPOISON, and MCELOG, it was decided
that none of them would be suitable for this
problem. MCELOG was the most promising
method for solving the memory error
problem, but it was lacking key features
such as trigger scripts and page offlining
capabilities. These features were already
supposed to be implemented in the code, but
after extensive studying and testing, it was
found that was not the case. However,
experimentation with MCELOG led to the
discovery of how the Linux kernel
implemented page offlining. Using this
knowledge, it became possible to offline the
physical pages containing faulty memory
addresses:

1) Determine via syslog or other reporting
service that there is a faulty address:
cluster:Jun 22 10:36:53 ml105 kernel: :
EDAC MC0: CE - no information
available: Can't discover the memory
rank for ch addr 0x5cf858c0

2) Extract the address from the log entry:
0x5cf858c0

3) As root, send the kernel the bad address
to have the page offlined:

echo 0x5cf858c0 >
/sys/devices/system/memory/soft_offlin
e_page

4) Check the syslog to make sure the page
was actually offlined:
get_any_page: 0x5cf85 free buddy page

Alternative features to page offlining

are built into the Linux kernel. The kernel
can be booted using command line options
to turn off whole sections of memory at
once. However, offlining the pages is much
easier because it can be done as errors occur
and doesn’t require the restart of the node.
Restarting the node resets the kernel page
tables, requiring the previously offlined
pages to be offlined again.

RESULTS

	

Figure 2: The scaling of uncorrectable memory error rates
with estimated future capacities2

Following the process described
above, some initial tests were conducted on
the test server. However, the test server had
no bad memory, so an account was created
on the HPC login system and access was
granted to the “burn box.” The “burn box” is
the place where new hardware is tested
before being placed in a production system
at the lab. The technicians placed a node
with what was thought to be faulty DIMMs

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2	
 Graph courtesy of Nathan DeBardeleben	

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

0
10
20
30
40
50
60
70
80

32PB 64PB 96PB 128PB
System Memory Capacity

U
nc

or
re

ct
ed

 E
rro

r R
at

e
(R

el
at

ive
 to

 C
ie

lo
)

●

●

●

●

●

●

8Gbit / High FIT
8Gbit / Low FIT

16Gbit / High FIT
16Gbit / Low FIT

32Gbit / High FIT
32Gbit / Low FIT

	

LA-­‐UR:	

4	

in the burn box for testing. However, it was
soon discovered that although the memory
chips had been indicating there was an error,
when the node was turned off and moved,
the error corrected itself.
 Even though the process was not
able to be tested on actual faulty hardware, it
indicated that page offlining works and is
simple enough to implement in a script. It
was discovered that the process of offlining
a page will not change the total amount of
memory seen using a command such as
“free,” but it turns off that area of memory
in the kernel page-tables. This can be
checked by trying to offline the same
address twice in a row.

As a result, a script was written to
automate the offlining process given a set of
system memory error messages. Initial
testing with the script indicates that it works
as well. At this point, a meeting was
conducted with the HPC system admins
(operators) to determine if this process could
be implemented in the HPC monitoring
software, Zenoss. It was determined that the
offlining process could be done through
Zenoss and it is currently being worked on
by the operators and being tested on their
system.

As can be seen in Figure 2, as
memory size continues to increase, so will
the number of uncorrectable errors. Since
current data is not available on the costs
savings effect resulting from having to
replace fewer DIMMs as a result of this
project, a cost savings estimate can be
determined. To estimate accurately, the lab’s
current DIMM replacement costs will be
compared to an estimation of exascale
memory replacement costs. These

estimations are shown in Figures 3 and 4
and the notes following.

	

Figure 3: Comparison between the current data on DIMM
replacements and exascale estimations*

	

Figure 4: Same comparison to exascale as Figure 3, except
showing estimated cost instead**

*Current replacement data for 2013 on five clusters with a
total of 43,840 DIMMs (0.03% replacement rate/year); Lab
total data for 2013 on eight clusters. Projected data for 32-
128 PB of memory with 62,500-500,000 DIMMs (256-512
GB/DIMM) at a 0.007-0.622% replacement rate/year (9-
76/month)3
**Costs estimated at 2 hours/DIMM replacement4

CONCLUSIONS

Comparing current replacement costs
to replacement costs that would be required
under exascale computing shows a
prohibitive cost growth. At approximately
two hours per replacement, the replacement
process is neither cheap nor efficient. Based
on these costs, a memory error handling
process of offlining pages will be necessary
to implement and utilize regularly in order

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3	
 Data courtesy of Bob Villa and Sean Blanchard
4 Data courtesy of Bob Villa and Cindy Martin	

	

LA-­‐UR:	

5	

for exascale computers to become a reality
at LANL. The lab cannot afford to pay 1-2
full-time technicians to solely replace
memory DIMMs in the future based on the
estimations for exascale DIMM failures.

	

Figure 5: Graphic illustrating the high-frequency of
DRAM errors that can occur in relatively few DRAM
locations5

There are a few drawbacks to using
the memory offlining process. The address
must be sent to the kernel as a root user.
Offlining only works for correctable
memory errors and does not work on errors
that are in kernel space. Also, a DIMM can
only have so many pages offlined before it
will have to be replaced. However, the
benefits of using the offlining process in
cost and time savings far outweigh the
drawbacks.

The successful implementation and
automation of this process will allow the lab
to save significant money by having to
replace fewer DIMMs through offlining
only the faulty pages instead. The high
frequency of errors from just a few memory
locations (as seen in Figure 5) shows a need
for the solution found by this project. The
process of offlining memory pages could be
applied to any Linux cluster and should
allow high-performance computing to get
one step closer to exascale.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

5	
 Graph courtesy of Nathan DeBardeleben

Next year LANL is installing the
Trinity machine with some 3D memory
stacked on the CPU. Replacing memory on
the Trinity machine cannot be done easily
and will require a “fail in place” technique.
Overall, using the “fail in place” technique
described in this analysis works and should
be able to greatly reduce memory
replacement costs as supercomputers scale
to have increased memory size and failures
in the future.

ACKNOWLEDGEMENTS

This project was funded by the Department
of Energy Office of Science through the
SULI undergraduate internship program.
Special thanks to Andrew Montoya, Bob
Villa, Cindy Martin, Gabriel De La Cruz,
Conor Robinson, Scott Wambold, Qiang
Guan, Noah Evans, Andree Jacobson, Carol
Hogsett, Carolyn Connor, Josephine Olivas,
Brenda Montoya, and Scott Robbins for
their contributions to this project and the
logistics of getting it successfully
completed.

REFERENCES

[1] Experts At The Table: Commercial potential
and production challenges for 3D NAND
memory technology. Home Page:
http://semimd.com/blog/tag/3d-nand/
[2] BadRAM: Linux kernel support for broken
RAM modules. Home Page:
http://rick.vanrein.org/linux/badram/index.html
[3] HWPOISON. Home Page:
http://lwn.net/Articles/348886/
[4] A. Kleen. mcelog:memory error handling in
user space. From Linux Kongress Sept. 2010.
http://halobates.de/lk10-mcelog.pdf
[5] Copyright © 2007 en:User:Dysprosia.
Modified under BSD license from:
http://upload.wikimedia.org/wikipedia/commons
/3/32/
Virtual_address_space_and_physical_address_s
pace_relationship.svg

