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The vacuum section conducts power from the 
insulator stack to the load

• The four MITLs are coupled in parallel at the post-hole convolute

• The electric field on the MITL cathodes exceeds the threshold for 
emission of electrons, all the way out to the vacuum flares
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Electron flow into the convolute from the 
MITLs is the seed for late-time current losses

• 3-D PIC simulations of the convolute do
not explain the late-time current loss on Z

• Experiments show that the loss is in
the convolute ― we believe this is due
to dense plasmas formed at anode
surfaces by electron deposition

• It is very difficult to scale this to ZR

• However, the root cause of the problem is electrons flowing into the 
convolute from the MITLs – there is no emission in the convolute itself

• Assumption: Losses on ZR will not be excessive, if we modify the
MITLs to limit the flow to be some fraction (f ≤ 1) of that on Z today
– Fraction depends on voltage scaling of surface heating
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The ZR MITL profiles

• Limit the flow into the convolute to be no higher than on Z today, while 
operating at ~40% higher voltage and ~30% higher current
– Open up the gap by 20% for r > 20 cm. 1 cm gap for r < 13.6 cm.

• To improve diagnostic access, raise the load by 16 inches
– Increases the slope and length of the MITLs

• Both changes increase the inductance of the ZR MITLs
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The ZR post-hole convolute closely follows 
the existing Z design

• Posts at r = 7.62 cm, with same diameters

• Same convolute hole shape

• Vertically stretched to match the steeper MITLs and thicker cathodes
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We can study the MITLs with 2-D simulations

• Full 3-D convolute simulations show that:
– No electrons flowing back into the MITLs from the convolute 

(except after stagnation)
– The electron flow in the MITLs is essentially azimuthally symmetric, 

even slightly upstream of the convolute

• 2-D geometry allows high-resolution MITL simulations,
extending out to very large radius (to the stack if necessary)
– 1-D transmission lines attached at inner and outer radius
– Inner boundary is ~2.5 cm inside the MITL/convolute boundary
– Electron flow through the MITL/convolute boundary closely 

approximates actual flow into the convolute in the full 3-D system
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The 2-D MITL simulations are done in 
spherical coordinates

• Model MITL cathode cone exactly, without any stair-stepping

• Anode is stair-stepped, but this is not critical
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At high current, the strongly insulated 
electron flow is unstable 

• Amplitude is related to |dZ0/dr|:
– Negligible at large radius, r > ~0.35 m: thin, laminar electron sheath
– Large-scale vortices in constant d = 1 cm gap section

r
g60Z0 ≅

Uniform gap

Z A-level MITL
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The electron flow agrees very well with
1-D theory, except at small radius

• For laminar sheath with Ie << I, 

• Vortices enhance the flow into the convolute by a factor of ~3 – 4

2

22

2
0c

2

e d
r

I
V

ZI2
VI ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∝≈

V = 2.3 MV, I = 5 MA
Z A-level MITL



TDP: PPPS2007: 06/07    10

Extending out to large radius and resolving 
the thin electron sheath is challenging

• Sheath thickness (g << d):

• Z A-level at peak current,
V ~ 2.3 MV, I ~ 5 MA

• Because of the electron vortices, do not need to resolve the very thin 
sheath at the inner radius to get the correct flow into the convolute

• Extend outer radius to well beyond where the vortices form
Baseline setup:
– Outer cylindrical radius ρmax ~ 60 cm (rmax = ρmax/cosθ0)
– Cell size at the cathode rΔθ ~ 0.2 mm at ρ = 20 cm

• A few benchmark runs done with smaller Δθ and larger ρmax

– Baseline setup is adequate 
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The full ZR MITL simulations use accurate 
external circuit and load models

• 2-D PIC region for each MITL, shown in red

• 1-D transmission lines in black
– Outer lines extend out to r ~ 3 m
– Convolute line parameters obtained from 3D simulations
– Optional, time-varying convolute Zloss element
– Either a Z-pinch or ICE load

Mixer Source ~
Rsrc
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B-conv B-MITL
B-MITL+stack
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D-MITL+stack
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X2-conv
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MITL
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We use Z20 shot data for the open-circuit 
waveform used to drive the ZR simulations 

• Use Z540 Voc and Z-pinch load parameters for Z simulations

• For ZR, use Voc from Z20 shot 1237, and scale up the load mass

• Comparison of load current with fixed Zloss = 0.25 Ω
– Z data time shifted to line up implosion time

Ipeak

ZR 25.0

Z 18.8
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We use time-varying Zloss to model additional 
convolute current losses (1)

• Vacuum electron loss at a simple magnetic null is well described by:

where Iau and Iad are the upstream and downstream anode currents, V 
is the voltage, and Zloss is a constant, depending only on geometry*

• This functional form of current loss is used in circuit codes 
– Simulations of Z typically use a fixed Zloss = 0.25 Ω

• The 2-D MITL simulations have vacuum electron loss, which already 
matches the early loss on Z quite well

• Use additional time-dependent Zloss to fit the late-time current loss:
– Initially very large, so it has no effect
– Smoothly ramps down as the MITLs become strongly insulated

* C. W. Mendel, et al., Phys. Plasmas 13, 043105 (2006)
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We use time-varying Zloss to model additional 
convolute current losses (2)

• Additional Z-loss turned on at t ~ 125 ns, when Iload ~ 3 MA
– Better fit to peak load current
– Reduces convolute voltage, and electron flow into the convolute

• For ZR, we turn on Zloss at the same load current
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The net electron charge flowing into the 
convolute is slightly higher on ZR

• Z-data time-shifted to align implosion time (timp = 253.2 ns)

• Net charge flowing into the convolute is ~4% higher on ZR
– ~12% higher on D-level
– Lower on C-level than Z today



TDP: PPPS2007: 06/07    16

The 3-D convolute simulations

• Must be done in cylindrical coordinates
– Simulate 1/(2Npost) fraction of full azimuth: Npost = 12, φmax = π/12

• Slanted surface model* used wherever possible in the convolute and 
MITLs to avoid stair-steps, providing “flat” surfaces for: 
– Electron emission and flow dynamics at the cathode
– Electron energy deposition at the anode

• Slanted surface model does not work well when under-resolving 
strongly insulated electron flow -- must establish flow upstream:
– Bend MITLs to radial lines just upstream of the convolute
– Upstream MITL gaps are adjusted to get the same flow into the 

convolute as the 2-D spherical-coordinate MITL simulations

• For the Z convolute, A/B MITLs are purely radial

*  T. D. Pointon, J. Comput. Phys., 96, 143 (2006)
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We use IDL to automatically build the 
convolute geometry from a DXF file

• Principal user input:
– Geometry of the outer MITLs
– Δr and Δz at key locations

• IDL procedures automatically build:
– The QS block-covering of the 

geometry
– Non-uniform grids matching 

user Δr,Δz values
– The conductor geometry
– A set of non-overlapping 

regions for each level 
(diagnostics, emission tagging)

• Independent zoning of overlapping 
regions in non-overlapping blocks 
is essential for this geometry
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We bend the MITLs to horizontal just 
upstream of the convolute

• Smooth bend on the cathode by decreasing Δz and increasing Δr

• Have a single corner on the cathode: conformal → very shallow slant

• Smaller Δz at horizontal cathode also improves electron flow
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There are numerous magnetic nulls
in the convolute

• Nulls in the Z convolute: ZR has similar nulls

• Contours of |B| over the range 0 – 2 T highlight the nulls (Bmax ~ 50 T)
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Particle setup for the convolute simulations

• Dynamic electron sub-cycling to 
handle high magnetic fields:*
multiple particle pushes per field 
timestep where ωcΔt > π/3

• Electron energy deposition at the 
anode and surface heating --
including slanted surfaces

• Electrons tagged with an index of 
their creation location
– Particle plots illustrate where 

electrons come from
– Particle flux into anode surfaces 

can be filtered by creation index

*  T. D. Pointon, et al., Phys. Plasmas, 8, 4534 (2001).
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Electron flow into the convolute agrees well 
with the 2-D MITL simulations

• 2-D simulations run with Zloss model disabled
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Particle statistics confirm that there is very 
little emission in the convolute itself

• Figures show the fraction of charge in the system by emission location

• The convolute is the first region to start emitting, but once the MITLs
turn on, fraction of charge emitted in the convolute is < 5%

• Anode deposition heating is due almost entirely to MITL electrons

ZR Z
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The most rapid electron deposition heating 
occurs on the bottom and middle anodes

• Bottom anode region is not a magnetic null, just a region of weaker 
magnetic field: heating cuts off when the D-level MITL insulates

• The middle anode magnetic null region is of greater concern
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Elsewhere, the deposition heating is higher on 
ZR in some regions, lower at others

• Heating of the inner MITL is much more intense on ZR
– This could be an issue, since the A-K gap is only 6 mm

• Heating of the posts is substantially lower on ZR
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The conduction current significantly heats the 
top anode and inner MITL

• Simple model for linearly ramped 
field: B(t) = B0(t/t0):*

• For stainless steel: ΔT ~ 0.12B2

• Data for Z: Joule heating is 
dominant for r < ~7 cm

• On ZR this radius increases
• Magnetic field is very high where 

Joule heating is strong
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*  H. Knoepfel, “Pulsed High Magnetic Fields”, London UK: North Holland       
Publishing Co., 1970, p. 81.
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Summary

• High-resolution 2-D MITL simulations provide reliable estimates of the 
electron flow current into the convolute from the MITLs
– Net charge is ~4% higher on ZR than Z
– D-level flow is ~12% higher

• We now have 3-D convolute simulations with electron flow into the 
convolute in good agreement with the 2-D MITL simulations

• The convolute simulations allow us to compare electron deposition 
heating of the anode surfaces in the convolute
– Middle anode ring is the magnetic null region that heats the fastest
– Significantly greater heating of the inner MITL and top anode on ZR
– Heating of the posts is lower on ZR
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Future plans

• We are still analyzing the wealth of data from the 3-D simulations
– With the creation location index tag, we can compute the 

contribution of electrons from each MITL to the heating at any 
region in the convolute

• Currently, computation of Joule heating is a post-processing step. We 
will build this into the code so that we have the total temperature rise at 
each surface cell during the run

• Modify the code to create dense surface plasmas
– We already have an energy-conserving particle pusher that allows 

us to go to much higher plasma density
– We are in the process of adding a plasma emission model driven 

by the surface temperature exceeding a threshold value
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