

Removing Undesired Periodic Data from Random Vibration Data

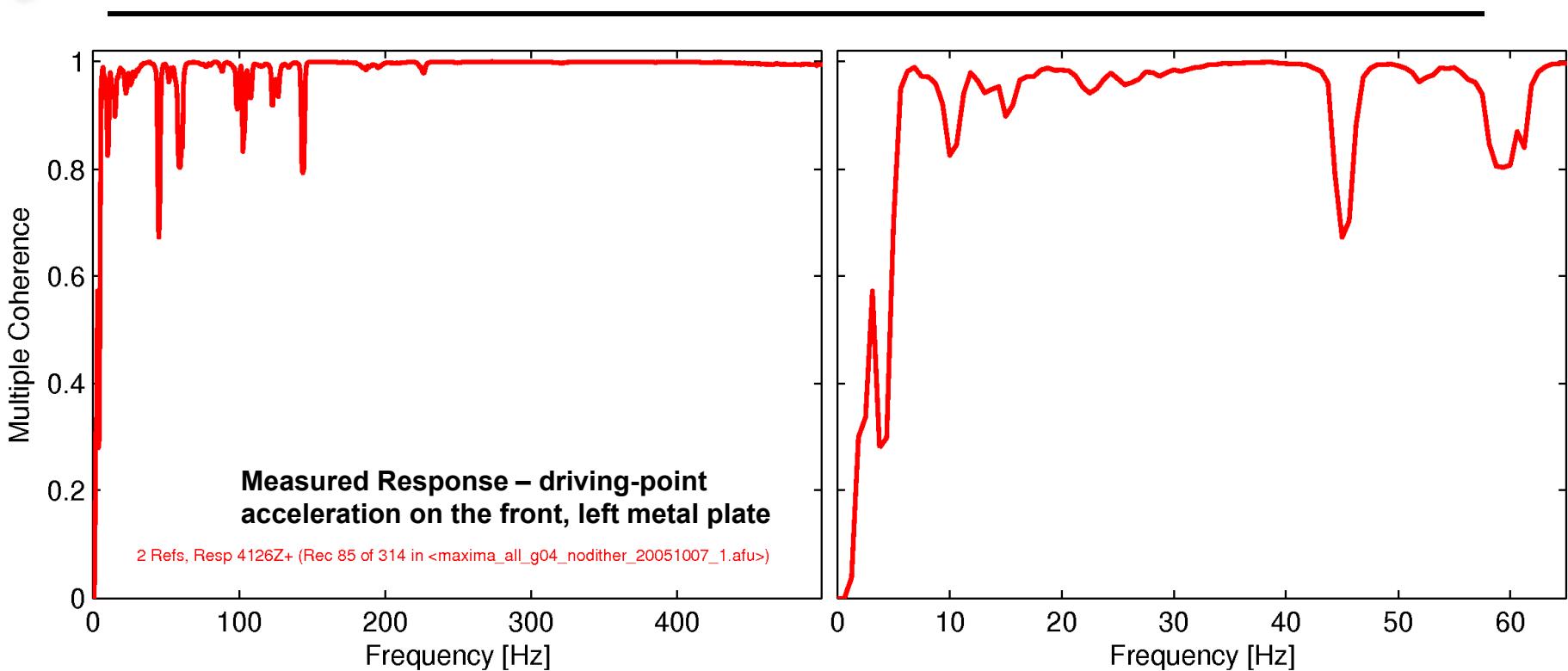
Curt Nelson and Tom Carne *Sandia National Laboratories* *Albuquerque, NM*

Introduction and Motivation

Vehicle Modal Testing

- Replaced wheels/tires with square metal plates
- Softly support vehicle by putting air spring under each metal plate
- Use shaker to apply continuous, random, force excitations to the metal plates
- Measure resulting acceleration responses on the plates and various locations in and on the vehicle

Typical Coherence Data

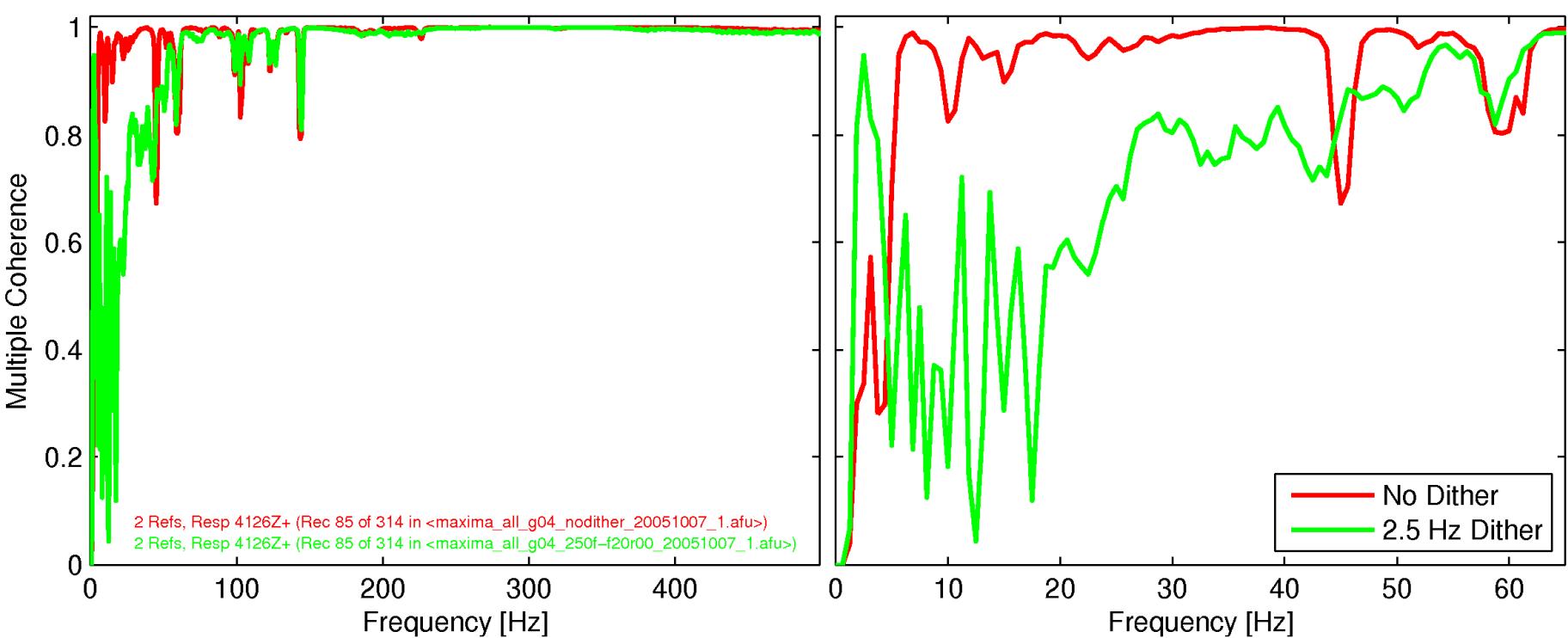


- **Excitation Force – continuous random force of 17.8 N (4 lb) RMS to both front metal plates**
- **Looks OK, but there is a problem...**

Introduction and Motivation

- For small force levels used:
 - shocks act as rigid members
 - sometimes “break free” for portions of the excitation
 - poor FRF results
 - dependent on force level
 - not repeatable
- “Dither” to ensure that shocks are always broken free
 - extra shaker under vehicle that provides single-freq, sinusoidal forcing
 - choose dither freq to minimize required dither force
 - dither freq is well below first elastic mode of the vehicle

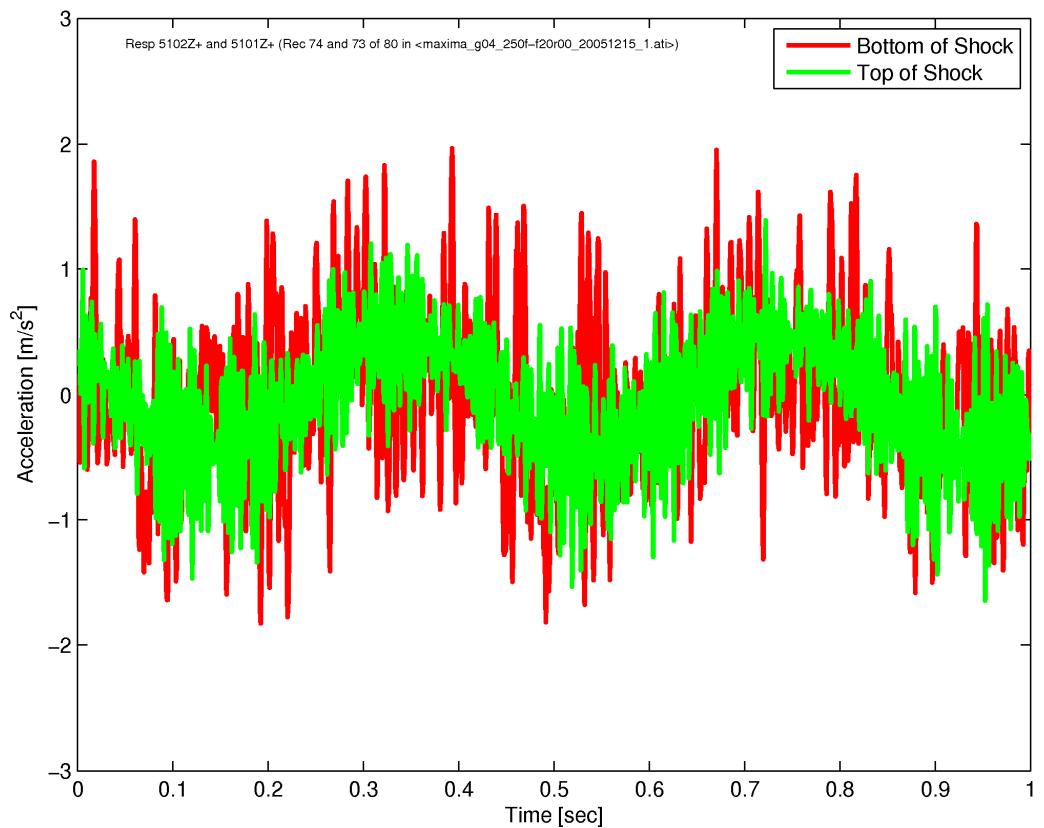
Coherence With and Without Dither



- Same measurement as before
- Dither – 2.5 Hz, 89.0 N (20 lb) RMS under front of vehicle
- Looks like expected at high freq, but something's wrong below 50 Hz

Motion of Shocks

- **Accel at the top and bottom of shocks**
 - Shock absorber is broken free as its **top** and **bottom** do not move identically
 - Random motion of shock (due to shaker on plate) is combined with periodic motion due to dithering

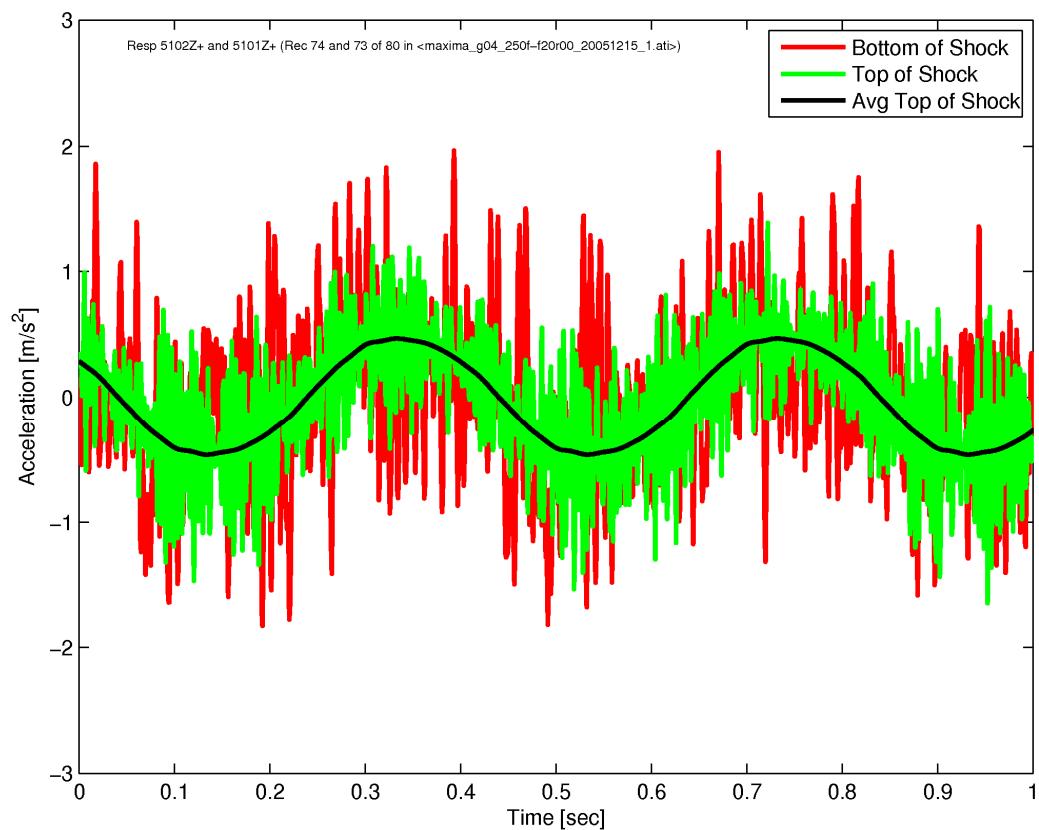


Shock nearest the plate on which random force is applied

- **top** of shock is attached to body
- **bottom** of shock is attached to wheel spindle and metal plate

Motion of Shocks

- Look at average periodic motion of the shock
 - Top looks like 2.5 Hz sine (just like the applied dither force)



Shock nearest the plate on which random force is applied

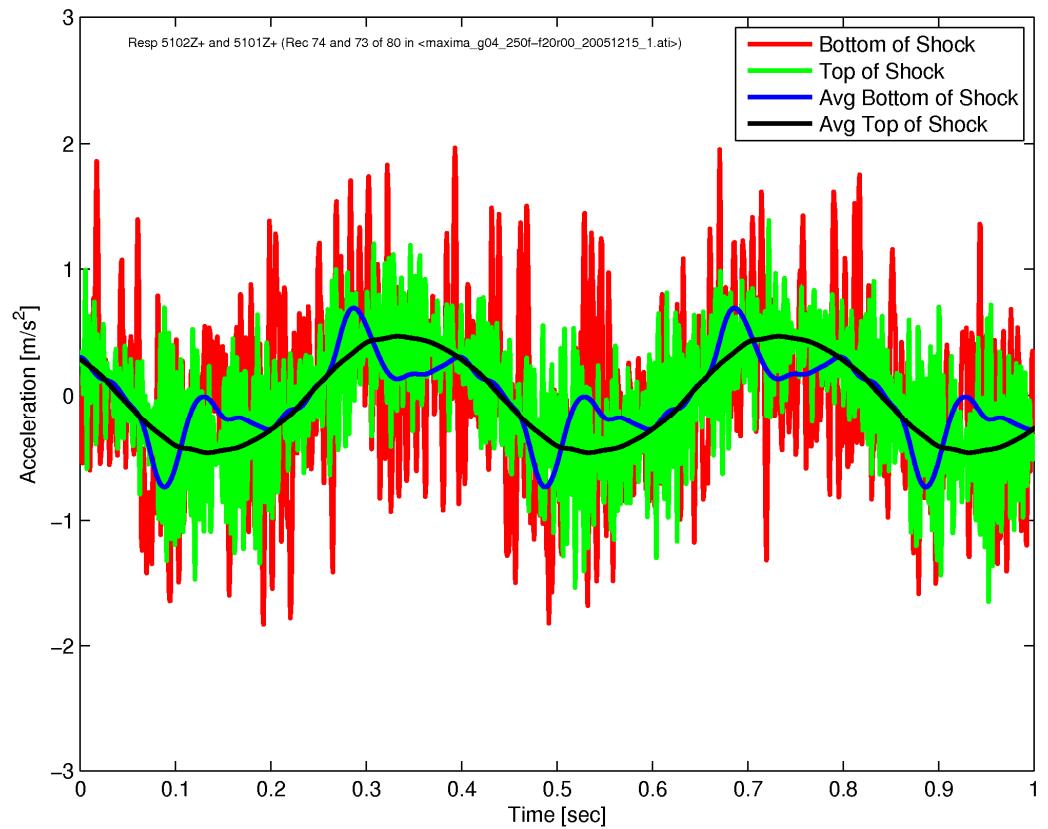
- top of shock is attached to body
- bottom of shock is attached to wheel spindle and metal plate

Motion of Shocks

- Look at average periodic motion of the shock
 - Top looks like 2.5 Hz sine
 - **Bottom** is periodic, but has lots of higher harmonics

Shock is not linear

- Harmonics due to dithering cause drop in coherence
- Effect extends up into freq range of interest even though dither is at low freq



Shock nearest the plate on which random force is applied

- **top** of shock is attached to body
- **bottom** of shock is attached to wheel spindle and metal plate

What Should We Do?

- Remove periodic dither responses from measured data to improve FRFs/coherences
- This is a problem if we only have averaged spectral data
 - Can't just throw out freq lines at dither harmonics
 - saved data had resolution of 0.625 Hz
 - harmonics of 2.5 Hz dither occur every 4 lines
- Solution is to save time-history data instead of averaged FRF data
 - Can later post-process the data
 - calculate averaged spectral results
 - change freq resolutions/windowing
 - investigate glitches/overranges
 - remove periodic noise present in the data
 - investigate nonstationary or nonlinear behavior

Lobbying for Saving More Data

- Computers have vastly-increased capabilities in processing power, RAM memory, and hard disk storage space
- Advocate always recording time-history data
 - Modal testers are conditioned to acquire averaged spectral data
 - Never question why
 - Brandt, et. al. (*Sound and Vibration*, Apr.2006)
 - Only saving averaged spectral data and discarding time data is a remnant held over from the past when computers were extremely limited compared to what is available today

Lobbying for Saving More Data

- For these tests the time-history data file size was 20 times larger than the averaged spectral data
 - 48.6 Mbytes for time-history data
 - 2.4 Mbytes for averaged spectral data (FRF, autospectra, coherence)
- Extra storage cost is minimal compared to the advantages of having the raw data
 - days/months to plan, set up, and perform test
 - one-of-a-kind test or hardware

80 channels at 1280 Hz for 192 sec
(245,760 samples/chan)

averaged into segments of 2048 samples
(801 freq lines 0-500 Hz, 0.625 Hz resolution)

Lobbying for Saving More Data

- For these tests the time-history data file size was 20 times larger than the averaged spectral data
 - 48.6 Mbytes for time-history data
 - 2.4 Mbytes for averaged spectral data (FRF, autospectra, coherence)

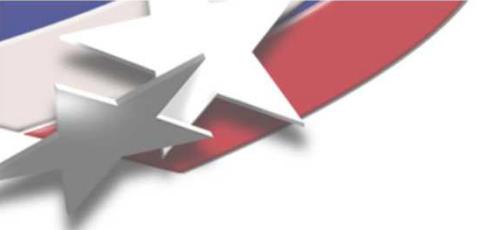
80 channels at 1280 Hz for 192 sec (245,760 samples/chan)

averaged into segments of 2048 samples (801 freq lines 0-500 Hz, 0.625 Hz resolution)
- Extra storage cost is minimal compared to the advantages of having the raw data
 - days/months to plan, set up, and perform test
 - one-of-a-kind test or hardware

These hard drives can store > 5000 / 8000 time-history data files

Removing Periodic Noise

- All this increased computer power is also what makes this technique possible
 - Removing periodic noise from random data has been done before – adaptive filtering, etc.
 - We don't need to be quite so clever since we have lots of power available
 - Directly fit sinusoids to the data
 - very simple to understand
 - Technique can be implemented in only a few lines of computer code
 - Can process large data sets very quickly
 - 80 channels with 245,760 samples/channel in less than 1 minute on my laptop



Mathematical Development

- Fit continuous function $y(t)$ with N harmonics of a sinusoid with fundamental frequency (ω)

$$y \approx c_0 + c_1 \sin(\omega t + \theta_1) + c_2 \sin(2\omega t + \theta_2) + \cdots + c_N \sin(N\omega t + \theta_N)$$

- Can also be written as

$$y \approx c_0 + [a_1 \cos(\omega t) + b_1 \sin(\omega t)] + [a_2 \cos(2\omega t) + b_2 \sin(2\omega t)] + \cdots + [a_N \cos(N\omega t) + b_N \sin(N\omega t)]$$

- Second equation is preferable for optimization as all $(2N + 1)$ coefficients have similar sensitivities



Mathematical Development

- For sampled data, write equation in matrix form

$$\{y\} = \begin{Bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{nPts} \end{Bmatrix} \approx \begin{bmatrix} 1 & \cos(\omega t_1) & \cdots & \cos(N\omega t_1) & \sin(\omega t_1) & \cdots & \sin(N\omega t_1) \\ 1 & \cos(\omega t_2) & \cdots & \cos(N\omega t_2) & \sin(\omega t_2) & \cdots & \sin(N\omega t_2) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \cos(\omega t_{nPts}) & \cdots & \cos(N\omega t_{nPts}) & \sin(\omega t_{nPts}) & \cdots & \sin(N\omega t_{nPts}) \end{bmatrix} \begin{Bmatrix} c_0 \\ a_1 \\ \vdots \\ a_N \\ b_1 \\ \vdots \\ b_N \end{Bmatrix}$$

- For time-history with $nPts$ samples
 - y is $nPts \times 1$ column vector
 - coefficients are $(2N + 1) \times 1$ column vector
 - sinusoidal harmonics are $nPts \times (2N + 1)$ matrix
 - time values (t_i) come from data sampling freq.
 - if fundamental freq (ω) is known, the harmonics matrix and its pseudo-inverse can be calculated

Mathematical Development

The $(2N + 1)$ coefficients can now be calculated in a least-squares sense by

pseudo-inverse only needs to be calculated once, then it can be used for all data records

$$\left\{ \begin{array}{l} c_0 \\ a_1 \\ \vdots \\ a_N \\ b_1 \\ \vdots \\ b_N \end{array} \right\} = \left[\begin{array}{ccccccc} 1 & \cos(\omega t_1) & \cdots & \cos(N\omega t_1) & \sin(\omega t_1) & \cdots & \sin(N\omega t_1) \\ 1 & \cos(\omega t_2) & \cdots & \cos(N\omega t_2) & \sin(\omega t_2) & \cdots & \sin(N\omega t_2) \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 1 & \cos(\omega t_{nPts}) & \cdots & \cos(N\omega t_{nPts}) & \sin(\omega t_{nPts}) & \cdots & \sin(N\omega t_{nPts}) \end{array} \right]^+ \left\{ \begin{array}{l} y_1 \\ y_2 \\ \vdots \\ y_{nPts} \end{array} \right\}$$

Mathematical Development

- The best fit to y using the N harmonics is

$$\{y_{\text{periodic}}\} = \begin{bmatrix} 1 & \cos(\omega t_1) & \cdots & \cos(N\omega t_1) & \sin(\omega t_1) & \cdots & \sin(N\omega t_1) \\ 1 & \cos(\omega t_2) & \cdots & \cos(N\omega t_2) & \sin(\omega t_2) & \cdots & \sin(N\omega t_2) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \cos(\omega t_{n_{\text{Pts}}}) & \cdots & \cos(N\omega t_{n_{\text{Pts}}}) & \sin(\omega t_{n_{\text{Pts}}}) & \cdots & \sin(N\omega t_{n_{\text{Pts}}}) \end{bmatrix} \begin{Bmatrix} c_0 \\ a_1 \\ \vdots \\ a_N \\ b_1 \\ \vdots \\ b_N \end{Bmatrix}$$

- The time-history with the harmonics removed is

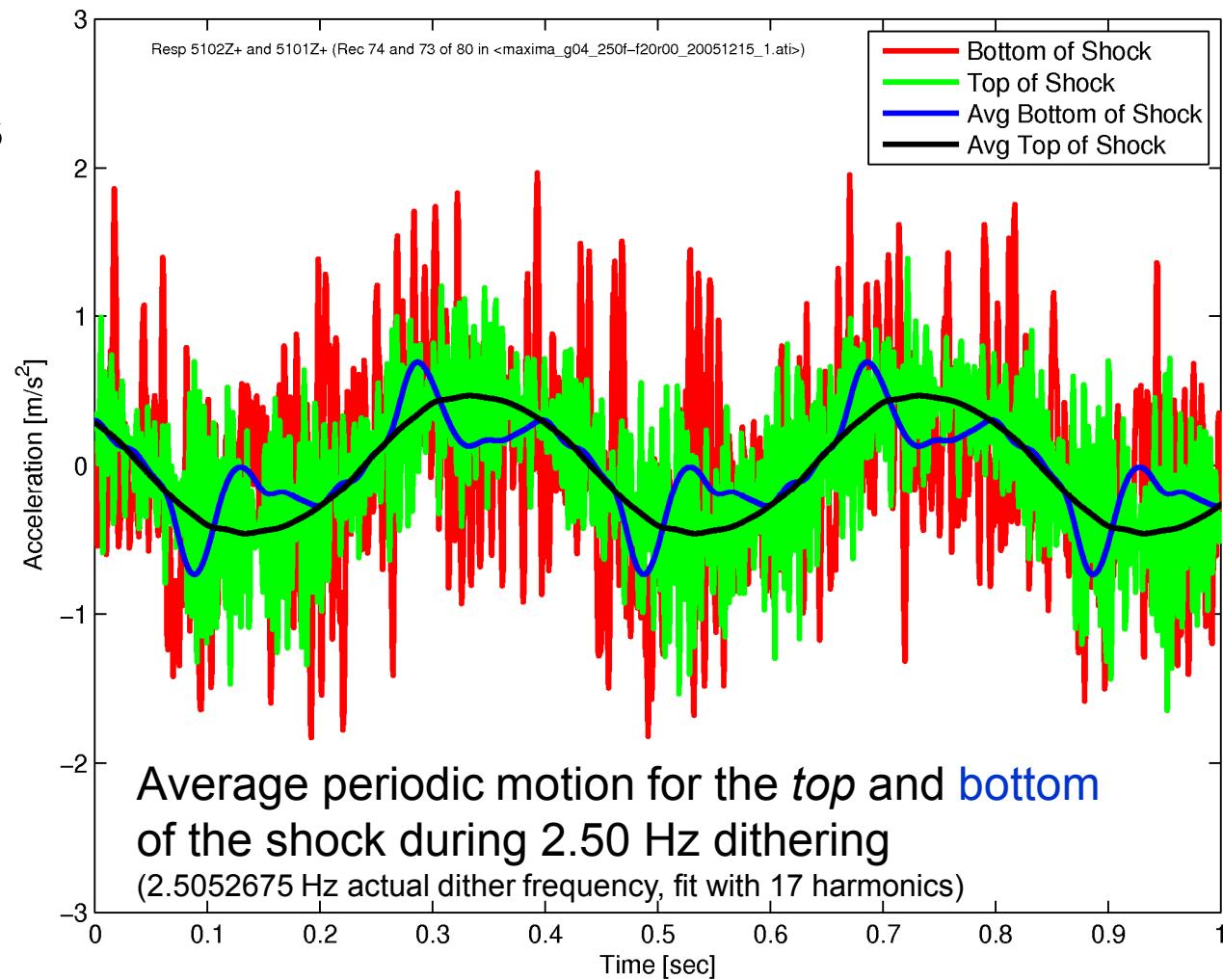
$$\{y_{\text{random}}\} = \{y\} - \{y_{\text{periodic}}\}$$

Implementation of Technique

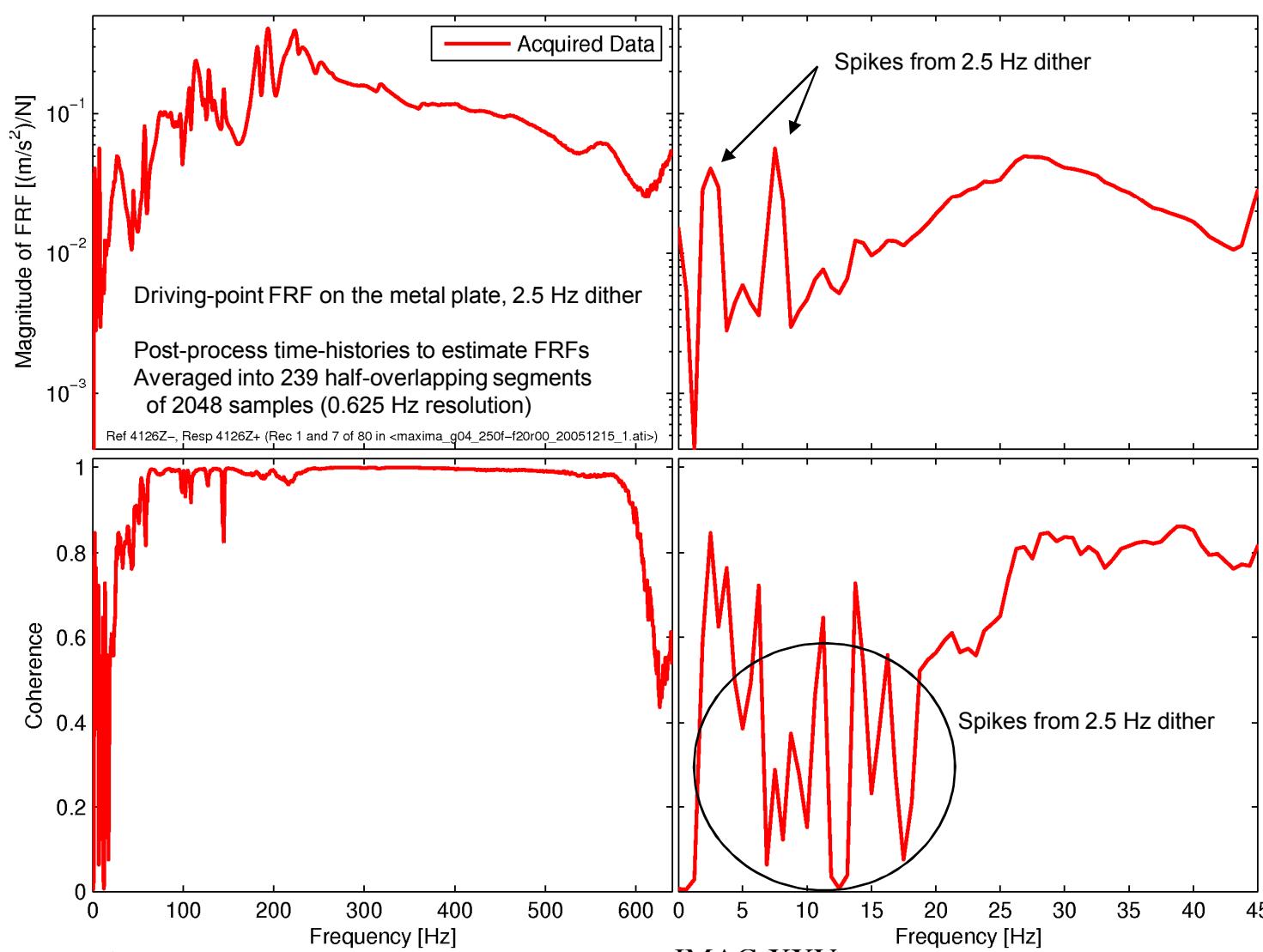
- Technique has been implemented in MATLAB
 - requires less than 30 lines of MATLAB code
 - complete code listing is included in the paper
- Must measure and save data as **CONTINUOUS** time-history records
 - do **NOT** use option to automatically discard records when an overrange is detected
- Automated optimization finds fundamental freq.
 - user must supply initial guess
 - need extremely accurate fundamental frequency
 - after T seconds, phase error $\Delta\theta = 360^\circ T \Delta f$ degrees
- Can select how many harmonics (N) to use in fit

Example of Technique

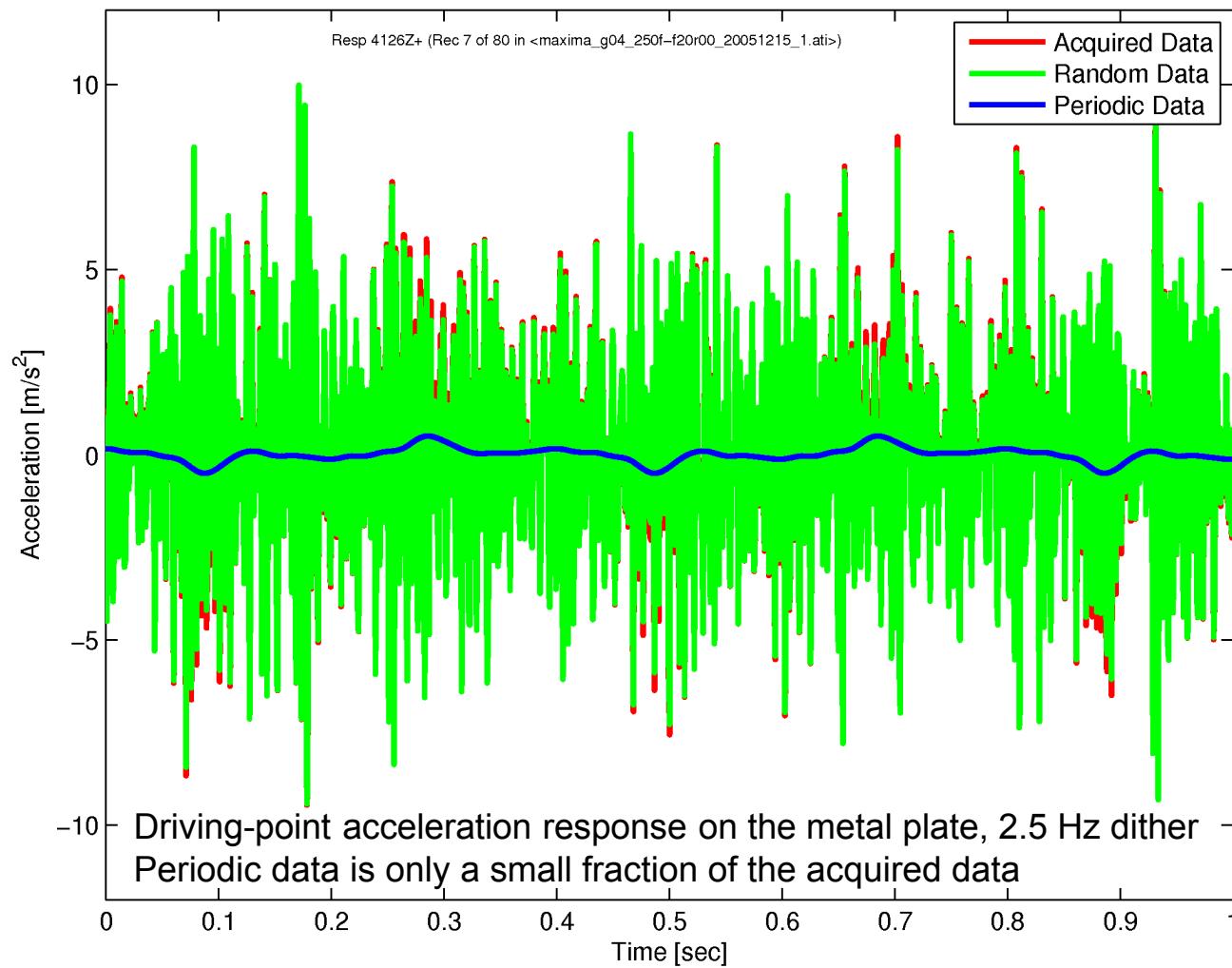
- Have already shown results from the technique



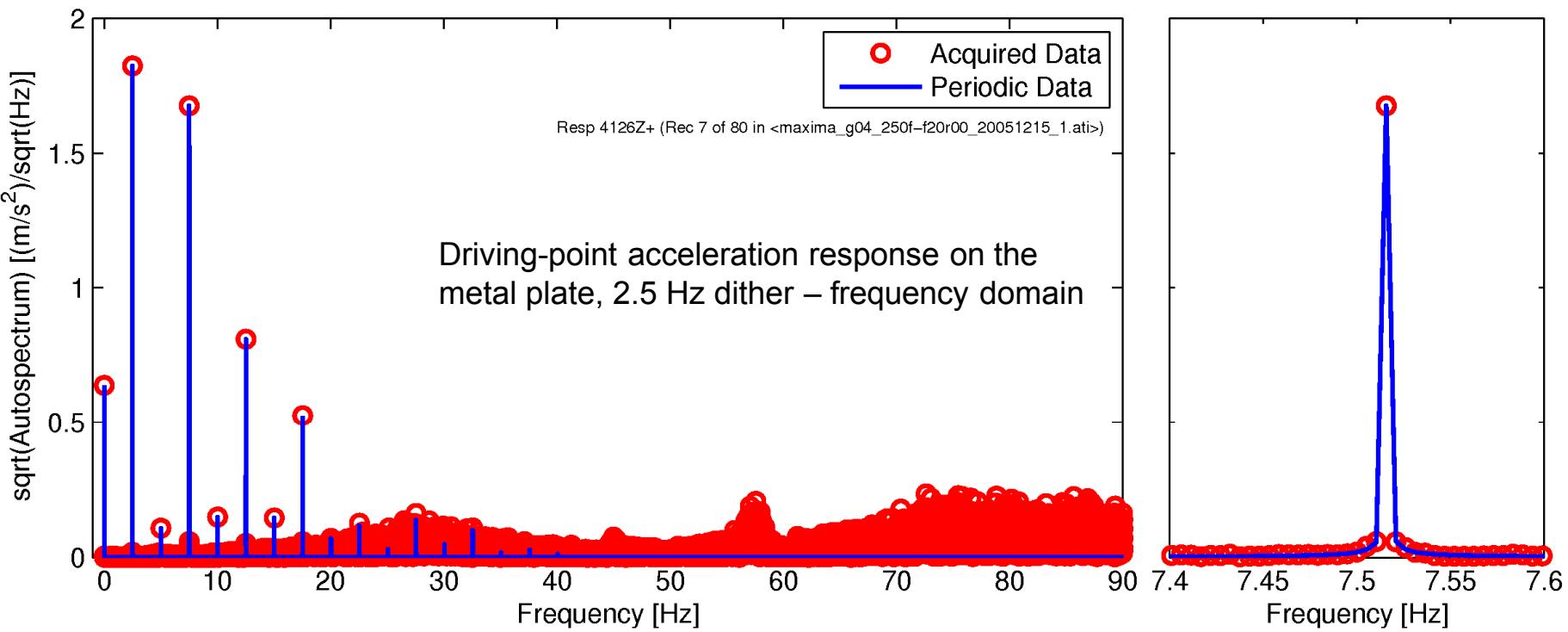
Example — Dither Removal



Example — Dither Removal

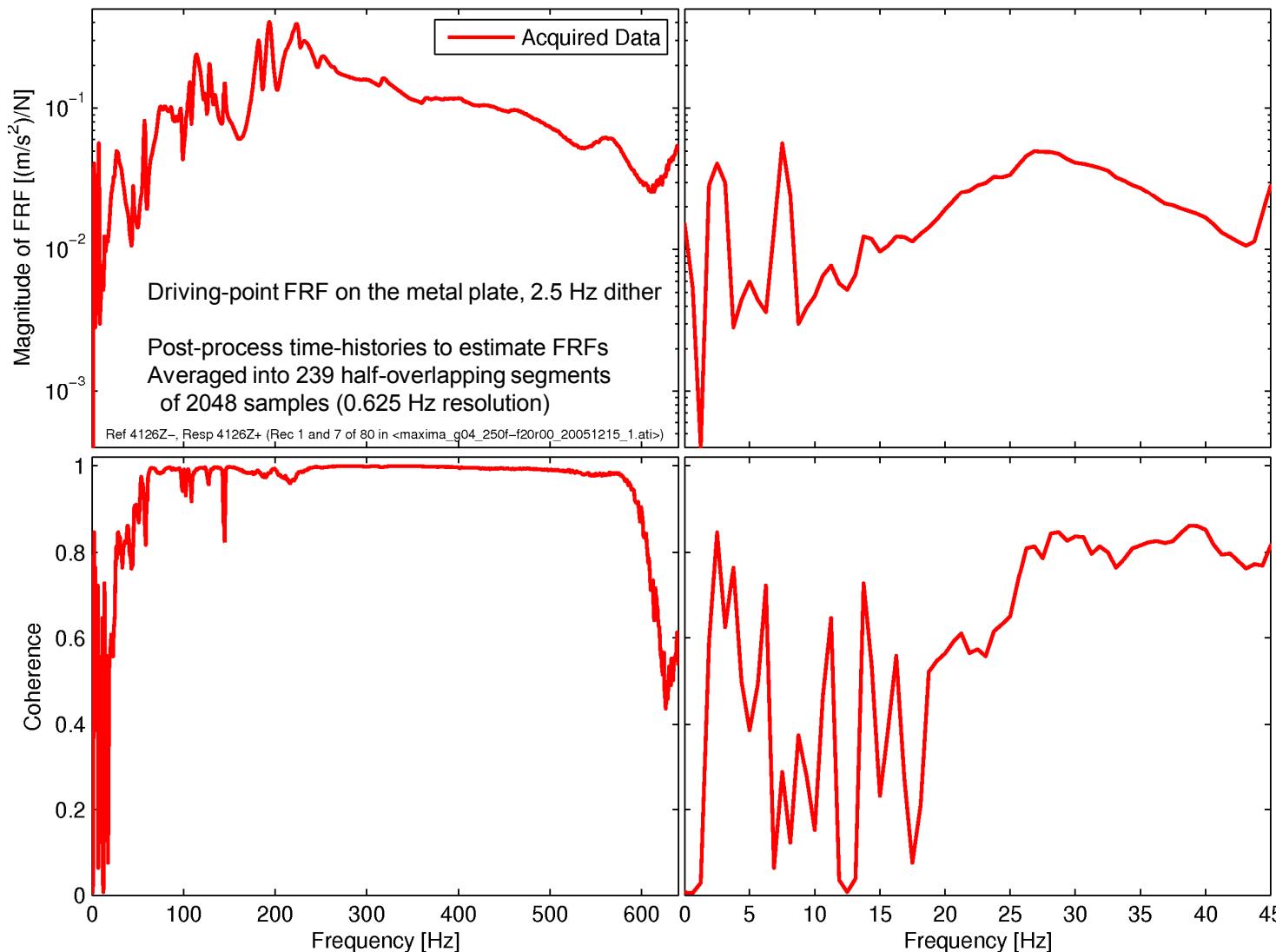


Example — Dither Removal

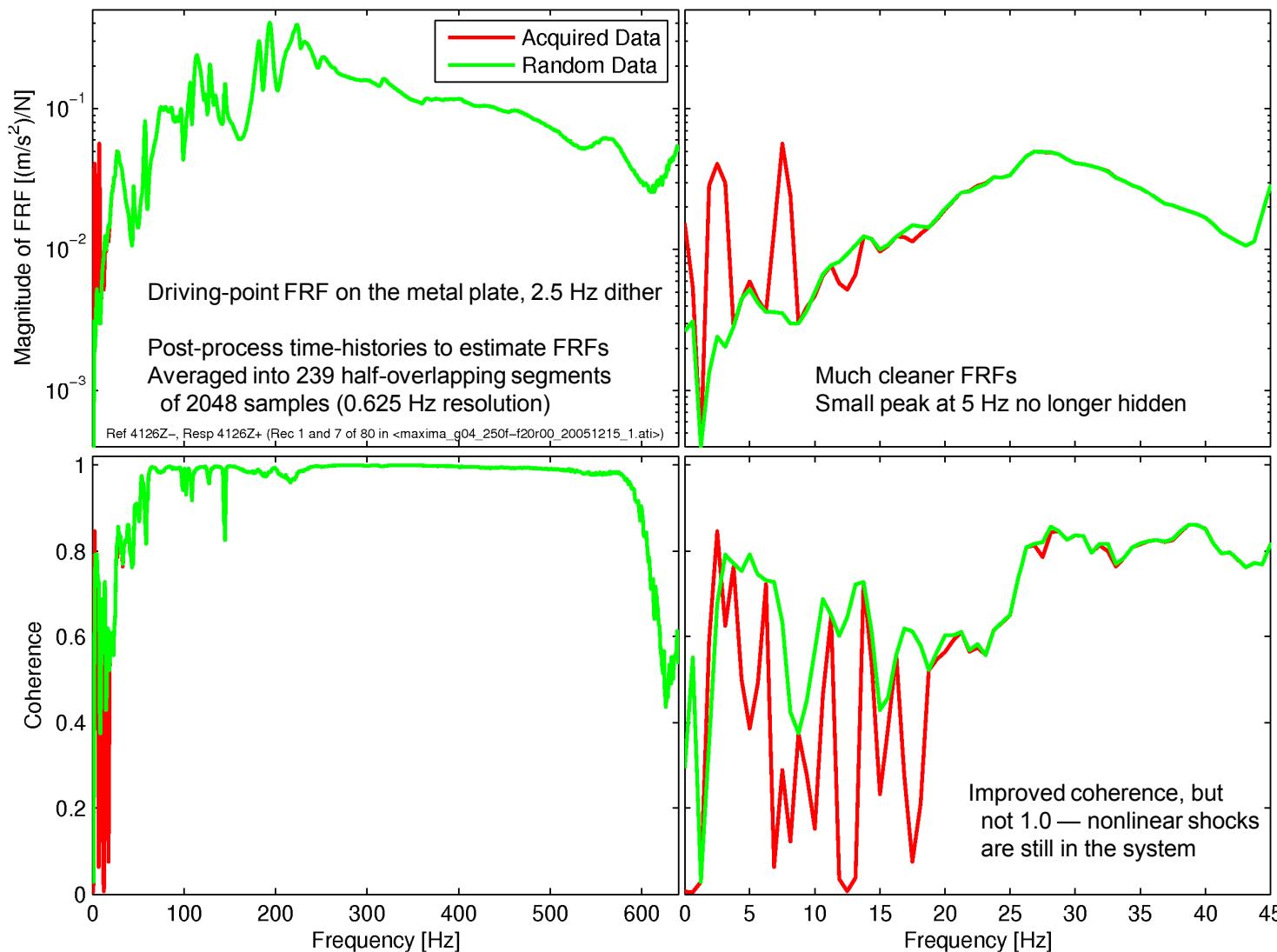


Processed time-history as a single, 245,760-sample record (0.00521 Hz resolution)
Dither harmonics visually dominate the acquired freq-domain data (especially the odd harmonics)...
...but only account for 0.5% of mean-squared acceleration

Example — Dither Removal



Example — Dither Removal



Conclusions

- Have developed/demonstrated a simple technique for identifying a stationary, periodic signal in what is otherwise random data
 - The periodic data can be removed from the acquired data, resulting in random data that can be post-processed in the usual fashion
 - The acquired data must be saved as *continuous* time-history data, not averaged frequency-domain data
- Advocate always recording time-history data



Extra Information

- Have also used technique to remove 60 Hz powerline noise
 - Power frequency is not very constant
- Why not just filter?
 - Filtering gets rid of a range of frequencies
 - can't just “pluck out” a single frequency in the midst of data you want to keep
 - filter rolls off – does not give a sharp cutoff
 - Filtering doesn't give a truly stationary signal
 - has some slight cycle-to-cycle variation
 - initial transient at start of signal