

Verification and Validation Benchmarks

William L. Oberkampf
wloberk@sandia.gov

Timothy G. Trucano
tgtruca@sandia.gov

Sandia National Laboratories
Albuquerque, New Mexico, USA

**Seventh Biennial Tri-Laboratory
Engineering Conference
Albuquerque, New Mexico
May 7-10, 2007**

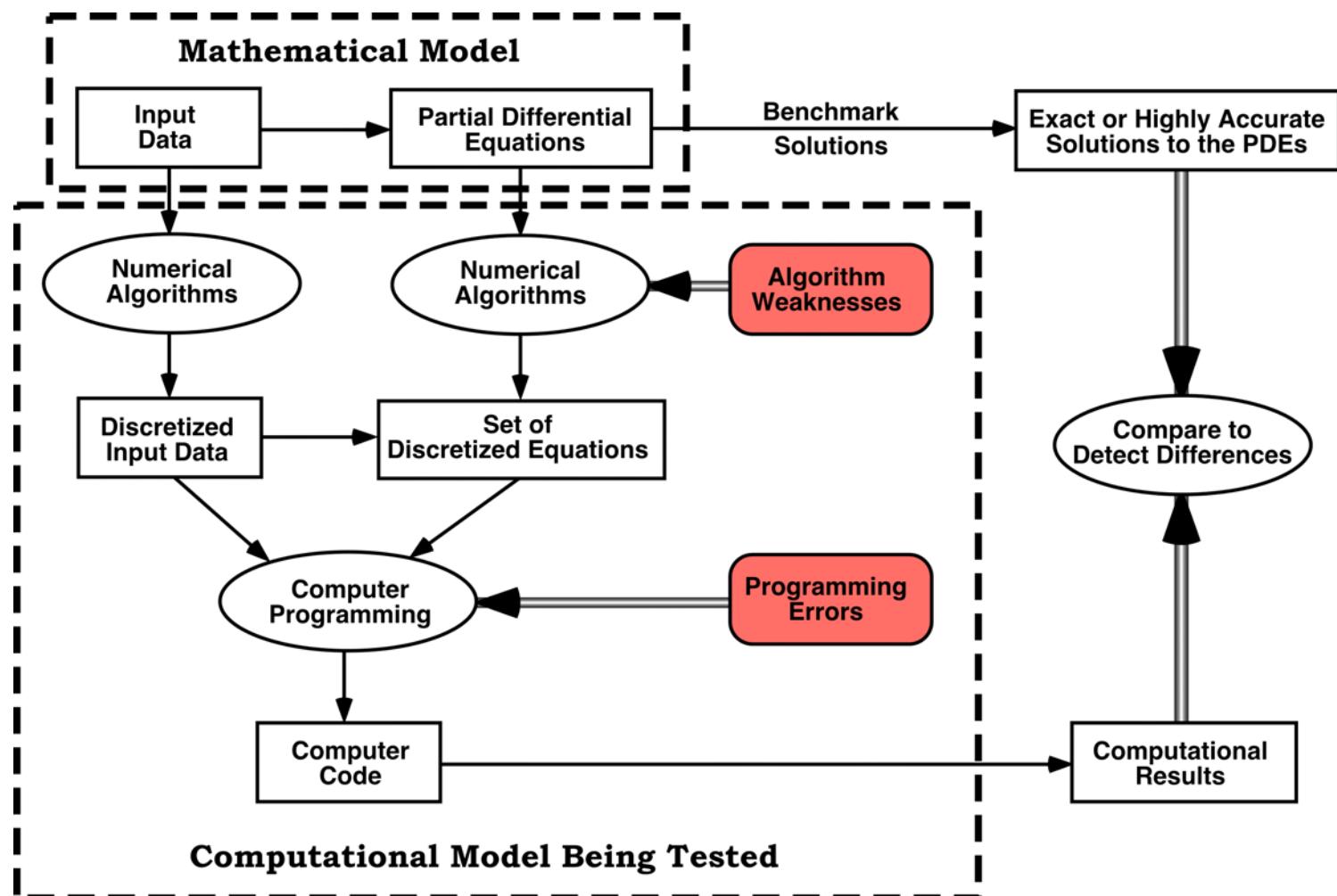
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Outline of the Presentation

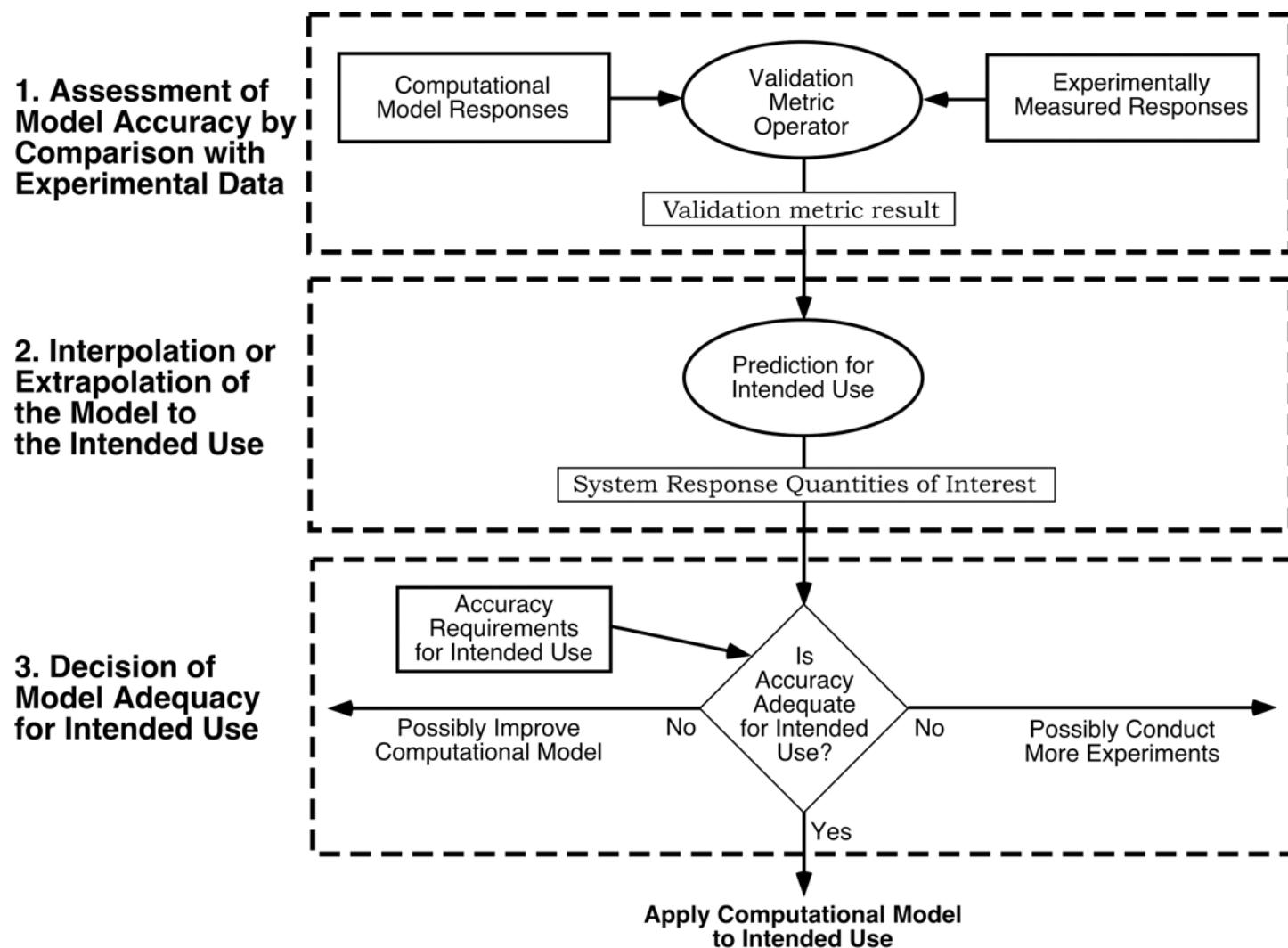
- **Background**
- **Review of Verification and Validation Processes**
- **Recommendations for Verification Benchmarks**
- **Recommendations for Validation Benchmarks**
- **Closing Remarks**

Status of Verification and Validation Benchmarks

- NAFEMS has roughly 30 formal benchmarks:
 - Almost all are verification benchmarks
 - Primarily in solid mechanics, some in CFD
- Commercial software benchmarks:
 - Almost all are verification benchmarks in solid mechanics
 - Goal of their benchmarks is to demonstrate “engineering accuracy” of the codes, **not** precise error assessment
- Validation databases:
 - NPARC Alliance in the U.S.
 - ERCOFTAC and QNET-CFD in Europe
 - Most of the benchmarks are for “industrial applications” i.e., relatively complex flows
- Nuclear weapons laboratories:
 - JOWOG activities involving LANL, LLNL, and AWE
 - SNL, LANL, and LLNL beginning database for engineering issues


Review of Verification Processes

- **Definition used by AIAA, ASME and ASC program:**
 - **Verification:** The process of determining that a model implementation accurately represents the developer's conceptual description of the model and the solution to the model.
- **Code Verification:** Verification activities directed toward:
 - Finding and removing mistakes in the source code
 - Finding and removing errors in numerical algorithms
 - Improved software reliability using software quality engineering practices
- **Solution Verification:** Verification activities directed toward:
 - Assuring the correctness of input and output data for the problem of interest
 - Estimating the numerical solution error (discretization error and iterative solution error)



Method to Detect Sources of Errors in Code Verification

Three Aspects of Validation

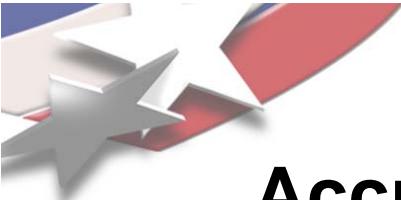
Benchmarks for Verification and Validation

- We recommend development of strong sense benchmarks (SSBs) for both verification and validation
- SSBs would be developed according to disciplines, e.g., fluid dynamics, solid dynamics, structural dynamics, etc
- The goal of SSBs is focused on **accuracy assessment** of results from candidate codes, not speed, robustness, etc.
- Characteristics for the construction of SSBs are similar for verification and validation, but notable differences exist
- SSBs should attempt to attain the status analogous to **international measurement standards**
 - This will be more easily attainable for verification than validation
- We recommend that comparison results of candidate codes with SSBs **not** be included in the SSB

Recommendations for Verification Benchmarks

- Recommended characteristics for SSBs in verification:
 - Purpose and scope of the benchmark should be clearly stated
 - Mathematical description of the benchmark should be precisely stated
 - Accuracy of the benchmark should be rigorously assessed
 - Benchmark should be carefully and formally documented
- Accuracy requirements are distinctly different for the four different types of SSBs in verification:
 - Type 1: Manufactured solutions to closely related PDEs
 - Type 2: Analytical solutions to PDEs
 - Type 3: Numerical solutions to ODEs that are analytically obtained from PDEs
 - Type 4: Numerical solutions to PDEs

Purpose and Scope of the Benchmark


- **Elements of the purpose and scope that should be included:**
 - Describe the general class of physical processes being modeled in the benchmark
 - State all of the initial conditions, boundary conditions, and any auxiliary conditions
 - Give examples of engineering applications that the benchmark is relevant to
 - State type of benchmark, i.e., 1, 2, 3, or 4
 - List what numerical algorithms, numerical accuracy issues, or software quality issues are being tested

Mathematical Description of the Benchmark

- Mathematical description should include:
 - All assumptions used to formulate the PDEs
 - The PDEs, ODEs, or integral equations being solved, including all sub-models
 - All initial conditions, boundary conditions, and auxiliary conditions as they apply to the differential or integral equations being solved
 - All system response quantities (SRQs) that are produced by the benchmark for comparison with a candidate code
 - If any quantities are uncertain, then a precise mathematical characterization of the uncertain quantity should be given
- Note that **none** of the mathematical description should be stated in discrete form
- There should be **no ambiguity**, or matter of opinion, remaining in the interpretation of the benchmark

Accuracy Assessment of the Benchmark

- A detailed and rigorous pedigree of the accuracy should be provided for each SRQ produced by the benchmark
- Accuracy of SRQs typically depend on:
 - Spatial coordinate
 - Temporal value
 - Parameters in the PDEs
- The difficulty of accuracy assessment greatly depends on the type of benchmark, i.e., 1, 2, 3, or 4
- The most common cause of failures of existing benchmarks is inadequate accuracy assessment

Documentation of the Benchmark

- Documentation should include all of the information discussed earlier
- In addition, sufficient information should be provided to:
 - Allow reproduction of the benchmark results by others
 - Identify any possible weaknesses in the accuracy of the benchmark results
- Also, information should be provided concerning:
 - Computer hardware used
 - Operating system version used
 - Compiler version used
 - Arithmetic precision used
 - Computer run time for each solution obtained

Comparing Candidate Code Results with Verification Benchmark Results

- Our recommendations are for **formal comparisons** of candidate codes with benchmarks
- Possible uses for results of formal comparisons:
 - Potential customers of commercial software
 - Governmental regulatory organizations assessing CSE software
 - Accident investigation committees examining CSE software
- Formal comparisons should contain much of the same information as the benchmark, particularly accuracy assessment of the candidate code:
 - For type 1 and 2 benchmarks, observed order of accuracy of the candidate
 - For type 3 and 4 benchmarks, difference in candidate and benchmark results as a function of mesh and temporal resolution
- We believe that comparison results of candidate codes with benchmarks should **not** be included in the benchmark

Recommendations for Validation Benchmarks

- Recommended characteristics for SSBs in validation:
 - Purpose and scope of the benchmark should be clearly stated
 - Description of the benchmark, experimental techniques, and facility used
 - Uncertainty quantification of the benchmark measurements
 - Benchmark should be carefully and formally documented
- Validation benchmarks must be more than a high quality traditional experiment
- The validation experiment is focused on the non-traditional customer: **the model builder and the CSE analysts**
- Validation experiments are much more feasible in the lower tiers of the validation hierarchy, than in the higher tiers

Purpose and Scope of the Benchmark

- Elements of the purpose and scope that should be included:
- Describe the primary types of physics, or coupled physics, that the benchmark is intended to test in the CSE model
- Describe the quantitative and qualitative SRQs measured in the experiment
- Give examples of engineering applications that the benchmark could be related to at higher tiers in the validation hierarchy

Description of the Benchmark, Experimental Techniques, and Facility

- Description of the benchmark should include:
 - Geometry of the actual hardware used in the experiment
 - Geometry of any supplementary experiments conducted
 - Experimental techniques used to measure all input quantities needed by the CSE analyst
 - Experimental procedures and operational characteristics of the facility being used
- Measurements of all **input** quantities needed by the CSE analyst, e.g.:
 - Initial conditions and boundary conditions
 - Material or surface properties
 - Imperfections in the test geometry or experimental facility
- Description of and measurement technique for all SRQs, e.g.:
 - Diagnostic techniques
 - Signal conditioning techniques

Uncertainty Quantification of the Benchmark Measurements

- Describe the procedures used for:
 - Calibration of instruments, diagnostics, and facility operating conditions
 - Estimating the experimental uncertainty on all quantities, both CSE input quantities and SRQs
- Describe if an input quantity is either a controlled or uncontrolled quantity in the experiment
- If it is an uncontrolled quantity, then provide measurement of each experimental realization, if possible
- Provide estimates of both bias error and random error on CSE input quantities and SRQs and characterize as either:
 - Intervals
 - Imprecise probability distributions
 - Precise probability distribution

Comparing Code Results with Validation Benchmark Results

- Comparing code results and validation benchmark measurements **do not** result, inherently, in pass/fail outcomes
- Information that should be included in comparisons:
 - Code verification evidence
 - Solution verification results
 - Computation of SRQs, preferably nondeterministic SRQs which result from propagating uncontrolled inputs to SRQs
 - Computation of validation metrics
 - Calibration of any model input quantities that were not measured in the experiment
 - Global sensitivity analysis to determine the most important model input quantities

Closing Remarks

- The most difficult implementation issues in construction of an SSB database in V&V will be:
 - Recognition by funding sources of the value added by the database
 - Open versus restricted use of the database
 - National and international competition
- We anticipate that the construction of an SSB database will be slow, difficult, and costly
- If CSE is to attain credibility for high-consequence decision making, then SSB **must be** constructed