

Dynamic Detonation Failure in Charges of High Explosive

Jeffrey W. Banks

Sandia National Laboratory

Ashwani Kapila and Donald Schwendeman
Rensselaer Polytechnic Institute

ICDERS
Poitiers, July 25, 2007

Collaborators

William Henshaw

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

John Bdzip

Detonation Physics Group
Los Alamos National Laboratory

Overview

Compressible Multi-Material Flows:

Introduction

- Motivation/Goals

Mathematical Model

- Governing equations (Multi-material reactive Euler equations)
- Model reaction systems

Numerical Technique

- High-resolution Godunov method
- Adaptive mesh refinement (AMR) for sharp features
- Treatment of material interfaces
- Treatment of stiff reaction sources

Numerical Examples

- Algorithmic verification via simple rate stick
- Detonation dynamics for expanding geometry (“dead zones” and desensitization)
- Detonation dynamics for converging geometry

Summary

Questions

Introduction

Motivation:

- Attractive features of shock capturing methods
 - AMR
 - Smooth mapped geometries on logically rectangular structured meshes
 - Non-linearly stable high resolution numerical methods (e.g. TVD)
 - Direct discretization of integral conservation laws
- Shock capturing methods traditionally have difficulty with material interfaces
 - Numerical oscillations (particularly in the pressure)
 - Tightly coupled to stiff reaction sources causes unphysical results

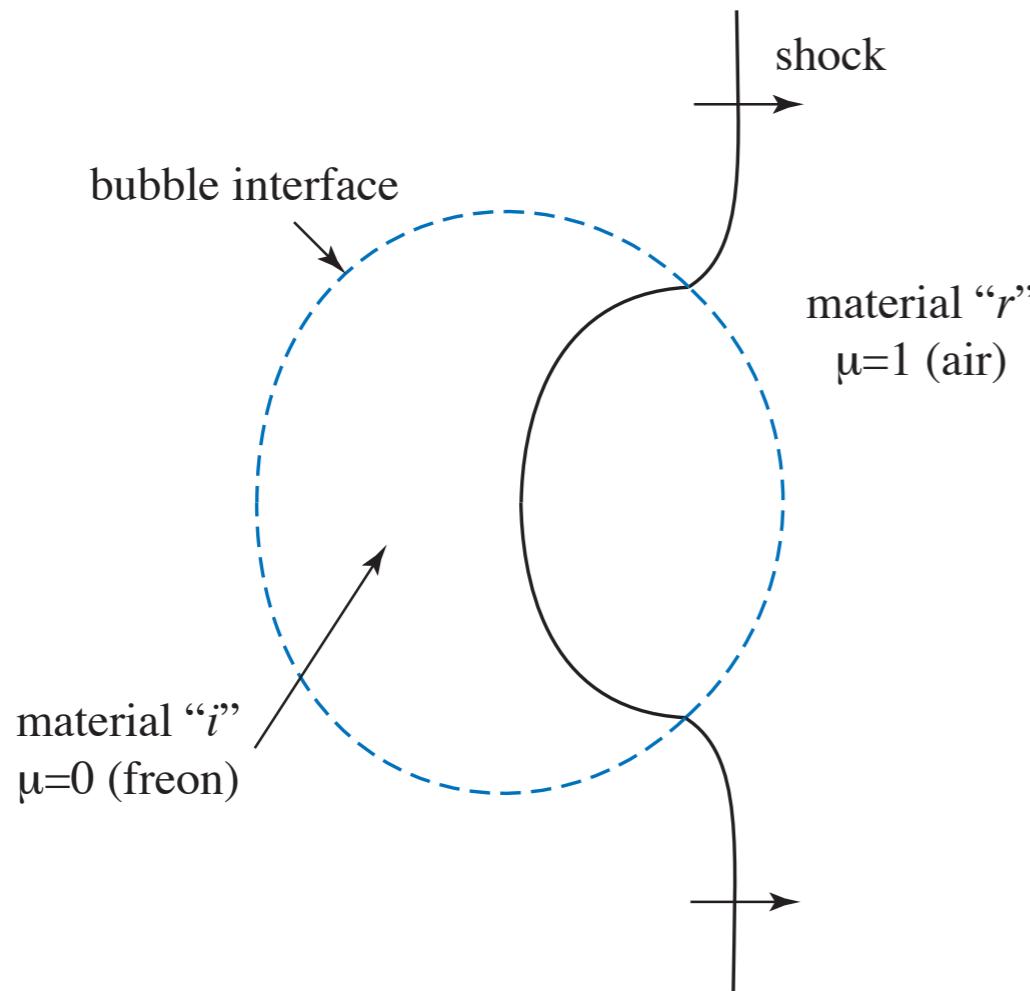
Goals:

- Develop a multi-material numerical capability that allows an accurate treatment of interfaces within a shock-capturing, overlapping grid, AMR framework
- Verify this method for reacting flows via a simple reacting rate stick and shock polar analysis
- Study detonation dynamics for diverging geometries (dead zone formation)
 - Standard ignition-and-growth (I&G) model
 - Extended I&G model to include shock desensitization
- Study detonation dynamics for converging geometries

Compressible Multi-Material Flows

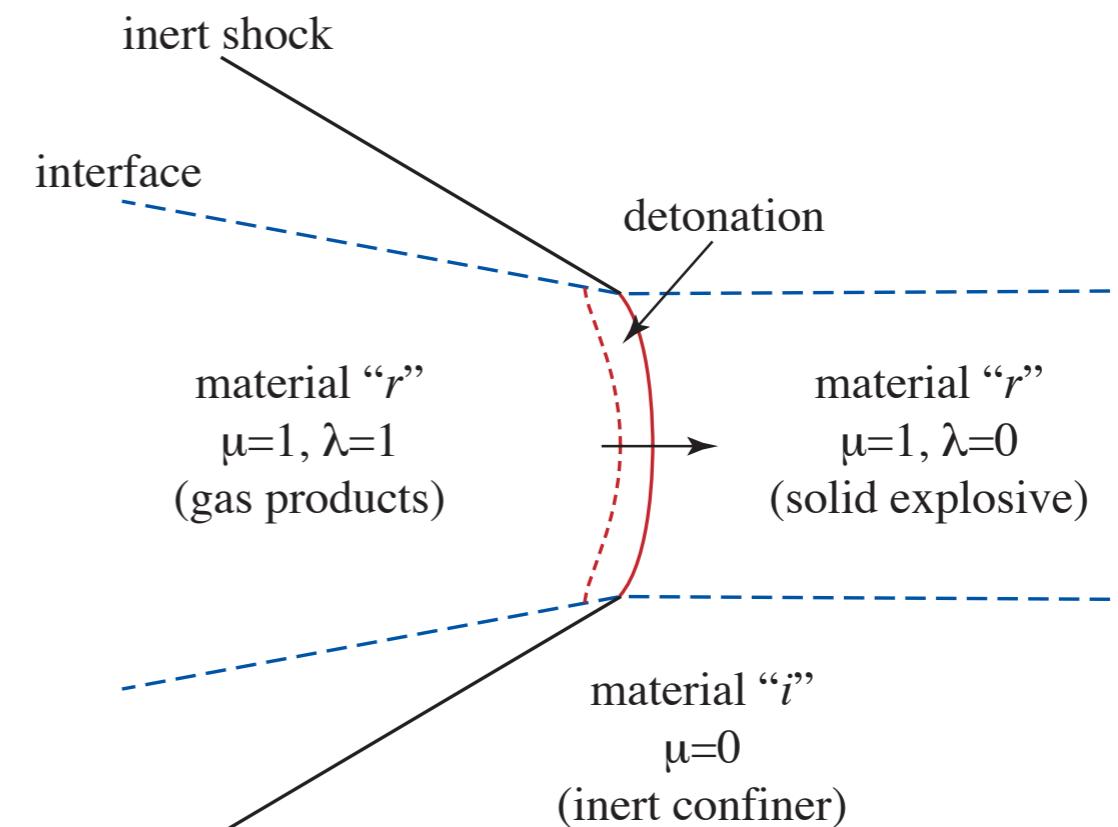
Non-reactive case:

e.g. shock-bubble interaction



Reactive case:

e.g. explosive rate stick



Mixture state variables:

ρ	density
(u_1, u_2)	velocity
p	pressure
e	internal energy

Species variables:

μ	mass fraction of material r
λ	mass fraction of gas products

Governing Equations

Multi-material reactive Euler equations (2-D):

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho E \\ \rho \mu \\ \rho \lambda \\ \rho \phi \end{pmatrix} + \frac{\partial}{\partial x_1} \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u(\rho E + p) \\ \rho u \mu \\ \rho u \lambda \\ \rho u \phi \end{pmatrix} + \frac{\partial}{\partial x_2} \begin{pmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ v(\rho E + p) \\ \rho v \mu \\ \rho v \lambda \\ \rho v \phi \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \rho \mathcal{R} \\ \rho \mathcal{S} \end{pmatrix}$$

where

$$E = e(\rho, p, \mu, \lambda) + \frac{1}{2}(u_1^2 + u_2^2), \quad R = \text{reaction rate}, \quad S = \text{desensitization rate}$$

Mixture EOS:

Mechanical:

$$e_k = \frac{p_k v_k}{\omega_k} - \mathcal{F}_k \left(\frac{v_k}{v_{k,0}} \right) + Q_k$$

Thermal:

$$p_k = \frac{\omega_k}{v_k} \left[C_{v,k} T_k + \mathcal{Z}_k \left(\frac{v_k}{v_{k,0}} \right) \right] \quad k = s, g, i$$

Mixture rules:

$$e = \mu [(1 - \lambda)e_s + \lambda e_g] + (1 - \mu)e_i$$

$$v = \mu [(1 - \lambda)v_s + \lambda v_g] + (1 - \mu)v_i$$

Closure assumptions:

$$p = p_s = p_g = p_i$$

$$T = T_s = T_g = T_i$$

Reaction/EOS Models: Case I

Pressure-dependent rate law:

$$\mathcal{R} = \sigma(1 - \lambda)^\nu(p - p_{\text{ign}})^n$$

where

σ = prefactor

ν = depletion exponent

p_{ign} = ignition pressure

n = pressure exponent

Mixture ideal-gas EOS:

$$\mathcal{F}_k = \mathcal{Z}_k = 0$$

which gives

$$e = pv \left\{ \frac{\mu [(1 - \lambda)C_{v,s} + \lambda C_{v,g}] + (1 - \mu)C_{v,i}}{\mu [(1 - \lambda)C_{v,s}\omega_s + \lambda C_{v,g}\omega_g] + (1 - \mu)C_{v,i}\omega_i} \right\} + \mu(1 - \lambda)\Delta Q$$

where

ΔQ = heat release

$$\left. \begin{array}{l} C_{v,k} = \text{specific heat} \\ \omega_k = \gamma_k - 1 \end{array} \right\} \quad k = s, g, i$$

No desensitization model:

Reaction/EOS Model: Case II

Ignition-and-growth rate law (Lee & Tarver, 1980's):

$$\mathcal{R} = \mathcal{R}_I + \mathcal{R}_{G_1} + \mathcal{R}_{G_2}$$

where

$$\begin{aligned} \mathcal{R}_I &= \begin{cases} 0 & \text{if } \rho/\rho_0 < 1 + a(\phi) \\ I(1 - \lambda)^b(\rho/\rho_0 - 1 - a(\phi))^x & \text{if } \rho/\rho_0 \geq 1 + a(\phi) \text{ and } \lambda \leq \lambda_{I,\max} \end{cases} & \text{(hot spot ignition)} \\ \mathcal{R}_{G_1} &= \begin{cases} G_1(1 - \lambda)^c \lambda^d p^y & \text{if } \lambda_{G_1,\min}(\phi) < \lambda \leq \lambda_{G_1,\max} \\ 0 & \text{if } \lambda > \lambda_{G_1,\max} \end{cases} & \text{(rapid growth)} \\ \mathcal{R}_{G_2} &= \begin{cases} 0 & \text{if } \lambda < \lambda_{G_2,\min} \\ G_2(1 - \lambda)^e \lambda^g p^z & \text{if } \lambda \geq \lambda_{G_2,\min} \end{cases} & \text{(slow growth)} \end{aligned}$$

Mixture JWL EOS:

$$\left. \begin{aligned} F_k(V) &= A_j \left(\frac{V}{\omega_k} - \frac{1}{R_{1,k}} \right) \exp(-R_{1,k}V) + B_j \left(\frac{V}{\omega_k} - \frac{1}{R_{2,k}} \right) \exp(-R_{2,k}V) \\ Z_k(V) &= A_j \left(\frac{V}{\omega_k} \right) \exp(-R_{1,k}V) + B_j \left(\frac{V}{\omega_k} \right) \exp(-R_{2,k}V) \end{aligned} \right\} k = i, s \text{ or } g$$

Desensitization model:

$$\mathcal{S} = A_r p(1 - \phi)(\phi + e_r)$$

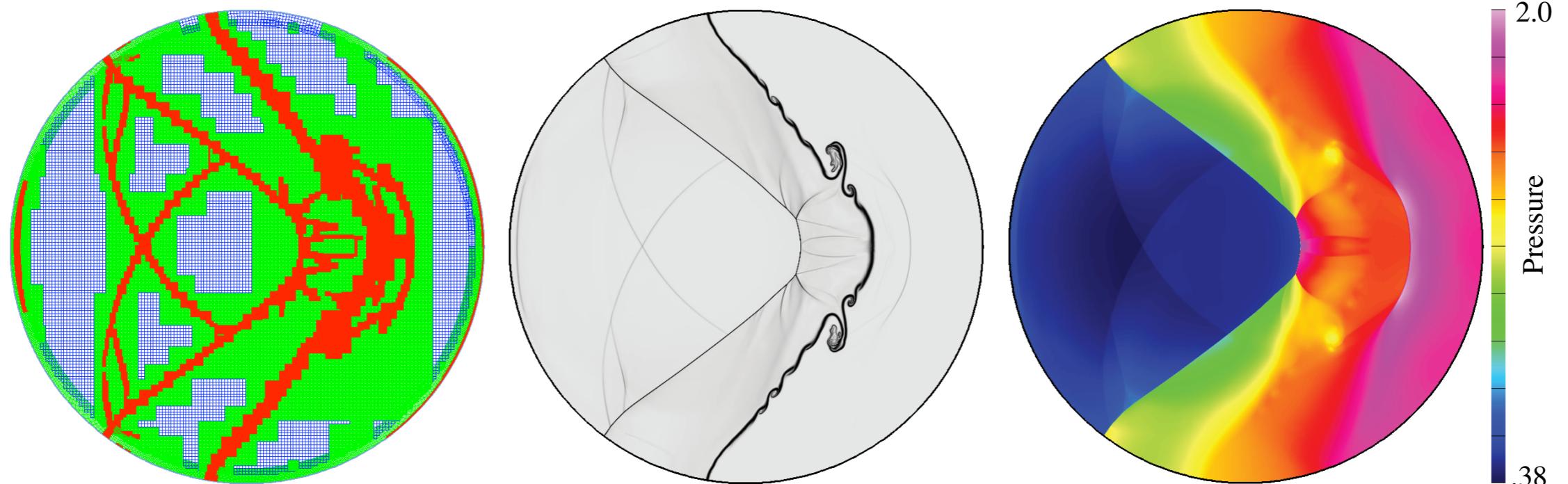
- Parameters for reactive material fit to experimental data (e.g. PBX-9502)
- Parameters for inert material chosen to mock “strong” or “weak” confinement

Numerical Method

Summary:

- Godunov-type, shock-capturing scheme on a domain discretized using composite overlapping grids (overset grids).
- Riemann problems handled using Roe approximate Riemann solvers (extended to handle the equation of state for the mixture).
- Reaction source term is handled with a Runge-Kutta error-control scheme.
- AMR is used to locally increase grid resolution near shocks, detonations and the material interface.
- An energy correction term is added (at the level of the truncation error) to suppress numerical errors in the pressure near the material interface.

Sample AMR grid and solution:



Basic time-stepping algorithm:

```
ReactiveEulerSolver( $\mathcal{G}$ ,  $t_{\text{final}}$ )
{
     $t := 0$ ;  $n := 0$ ;
     $u^n := \text{applyInitialCondition}(\mathcal{G})$ ;
    while  $t < t_{\text{final}}$ 
        if  $(n \bmod n_{\text{regrid}} == 0)$  // rebuild the AMR grid
             $e := \text{estimateError}(\mathcal{G}, u^n)$ ;
             $\mathcal{G}^* := \text{regrid}(\mathcal{G}, e)$ ;
             $u^* := \text{interpolateToNewGrid}(u^n, \mathcal{G}, \mathcal{G}^*)$ ;
             $\mathcal{G} := \mathcal{G}^*$ ;  $u^n := u^*$ ;
        end
         $\Delta t := \text{computeTimeStep}(\mathcal{G}, u^n)$ ;
         $u^{n+1} := \text{advanceSolution}(\mathcal{G}, u^n, \Delta t)$ ; // reactive Euler time step
         $\text{interpolate}(\mathcal{G}, u^{n+1})$ ;
         $\text{applyBoundaryConditions}(\mathcal{G}, u^{n+1}, t + \Delta t)$ ;
         $t := t + \Delta t$ ;  $n := n + 1$ ;
    end
}
```

Adaptive mesh refinement (AMR):

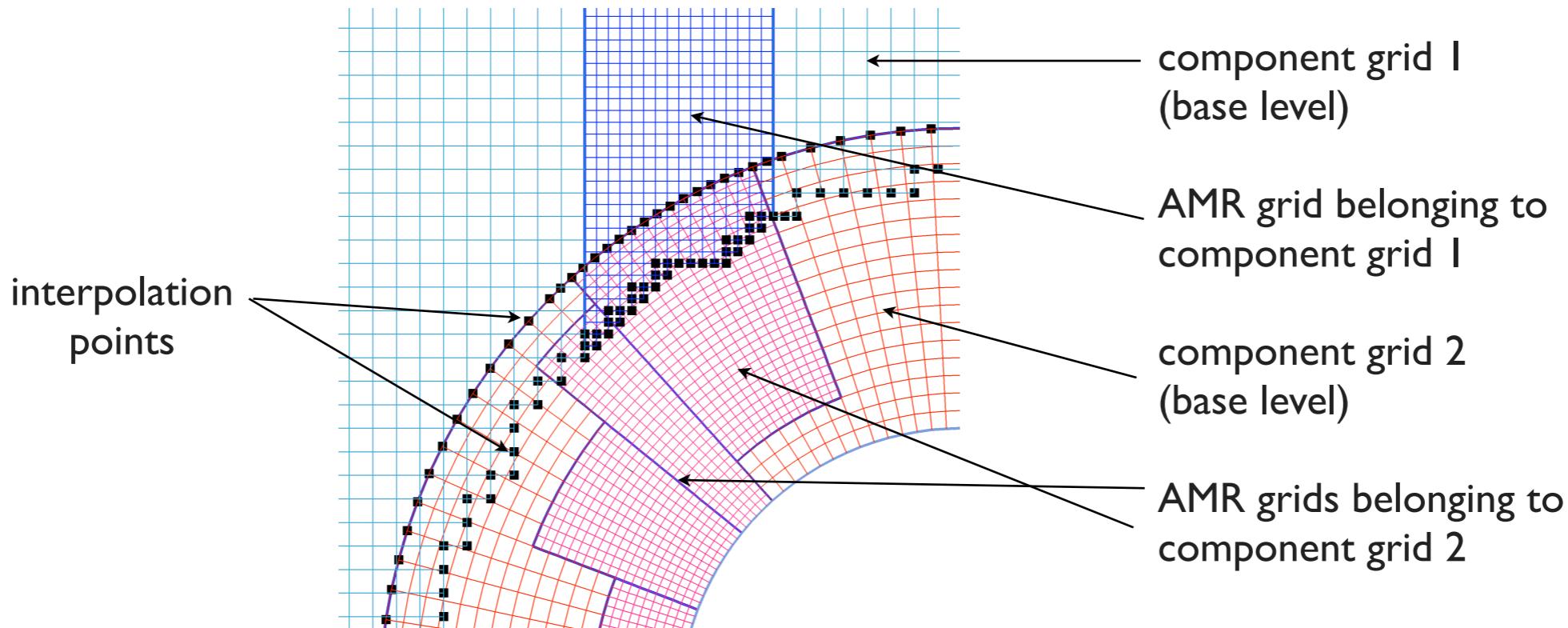
For each component grid at a fixed time...

- compute error estimate $e_{i,j}$ based on second differences of the components of the solution and on the reaction rate

$$e_{i,j} = \sum_{k=1}^m s_k \left(|\Delta_r^2 U_{i,j}^{(k)}| + |\Delta_s^2 U_{i,j}^{(k)}| \right) + s_R |\tau_{i,j}|$$

- smooth $e_{i,j}$ and interpolate to the overlap (if any) from neighboring component grids
- build refined (child) grid patches that cover all cells with $e_{i,j} > \text{tol}$
- interpolate solution from the coarse (parent) grid or copy solution from old child grids, if they exist

Sample refinement near grid overlap:



Component grid time step:

Overlapping grid...

$$\mathcal{G} = \{\mathbf{G}_g\}, \quad g = 1, \dots, \mathcal{N} \quad \text{Includes base grids + AMR grids}$$

Mapping...

$$\mathbf{x} = \mathbf{G}_g(\mathbf{r}, t), \quad \mathbf{x} = \text{physical space}, \quad \mathbf{r} \in [0, 1]^2 = \text{computational space}$$

Mapped equations...

$$\frac{\partial}{\partial t} \mathbf{u} + \frac{1}{J} \frac{\partial}{\partial x_1} \hat{\mathbf{f}}_1(\mathbf{u}) + \frac{1}{J} \frac{\partial}{\partial x_2} \hat{\mathbf{f}}_2(\mathbf{u}) = \mathbf{h}(\mathbf{u})$$

where

$$\hat{\mathbf{f}}_1 = a_{2,2} \mathbf{f}_1(\mathbf{u}) - a_{1,2} \mathbf{f}_2(\mathbf{u}), \quad \hat{\mathbf{f}}_2 = a_{1,1} \mathbf{f}_2(\mathbf{u}) - a_{2,1} \mathbf{f}_1(\mathbf{u}), \quad (\text{mapped fluxes})$$

and

$$a_{i,j} = \frac{\partial x_i}{\partial r_j}, \quad J = \left| \frac{\partial(x_1, x_2)}{\partial(r_1, r_2)} \right| \quad (\text{metrics and jacobian are given by } \mathbf{G}_g)$$

Fractional-step scheme...

$$U_{\mathbf{i}}^{n+1} = \mathcal{S}_h(\Delta t/2) \mathcal{S}_f(\Delta t) \mathcal{S}_h(\Delta t/2) U_{\mathbf{i}}^n, \quad U_{\mathbf{i}}^n = \text{cell average of } \mathbf{u} \text{ at } \mathbf{r}_{\mathbf{i}}, t_n$$

Convective term update: $U_i^* = \mathcal{S}_f(\Delta t) U_i$

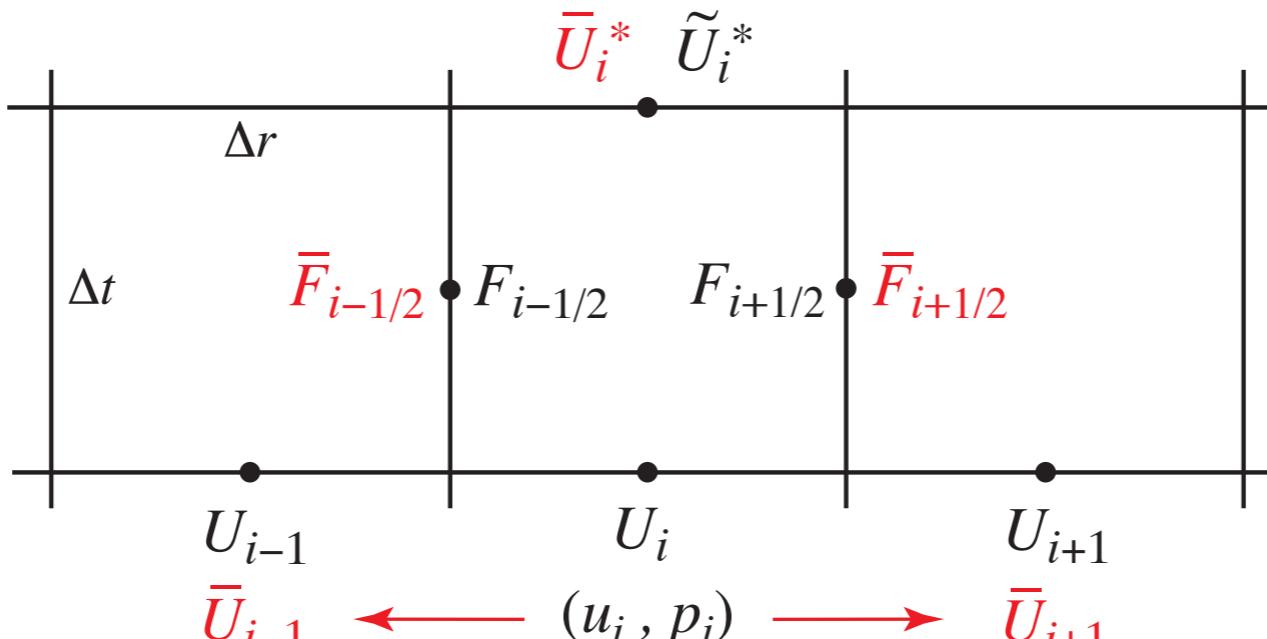
Godunov schemes (e.g. 1D)...

$$\tilde{U}_i^* = U_i - \frac{\Delta t}{J\Delta r} (F_{i+1/2} - F_{i-1/2})$$

(standard Godunov)

$$\bar{U}_i^* = U_i - \frac{\Delta t}{J\Delta r} (\bar{F}_{i+1/2} - \bar{F}_{i-1/2})$$

(adjusted for uniform pressure-velocity flow)



Energy correction...

$$\Delta E_i^* = \tilde{\rho}_i e(\tilde{\rho}_i, \tilde{p}_i + \Delta p_i, \tilde{\mu}_i, \tilde{\lambda}_i) - \tilde{\rho}_i \tilde{e}_i, \quad \Delta p_i = p_i - \bar{p}_i$$

Update...

$$U_i^* = \tilde{U}_i^* + \Delta G_i^*, \quad \text{where} \quad \Delta G_i^* = [0, 0, \Delta E_i^*, 0, 0]^T$$

Energy-corrected scheme: test cases

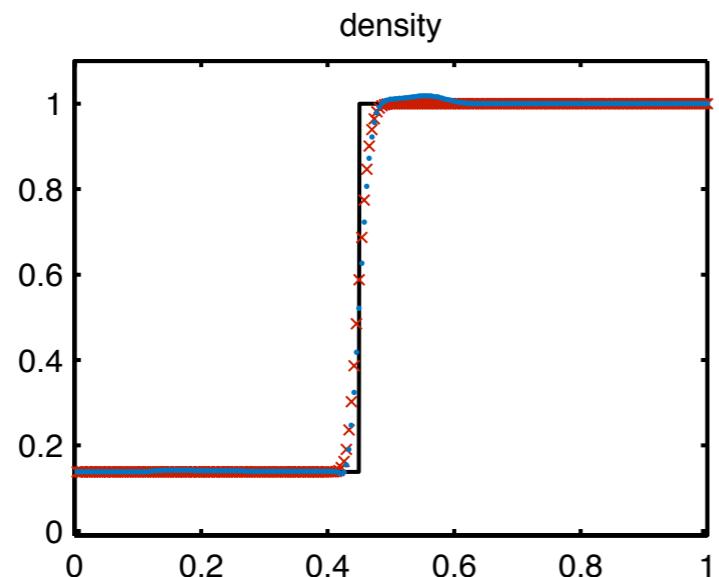
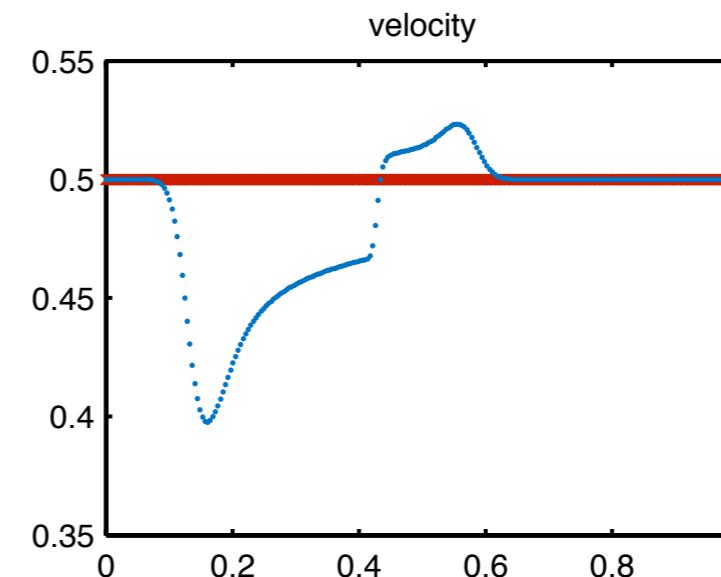
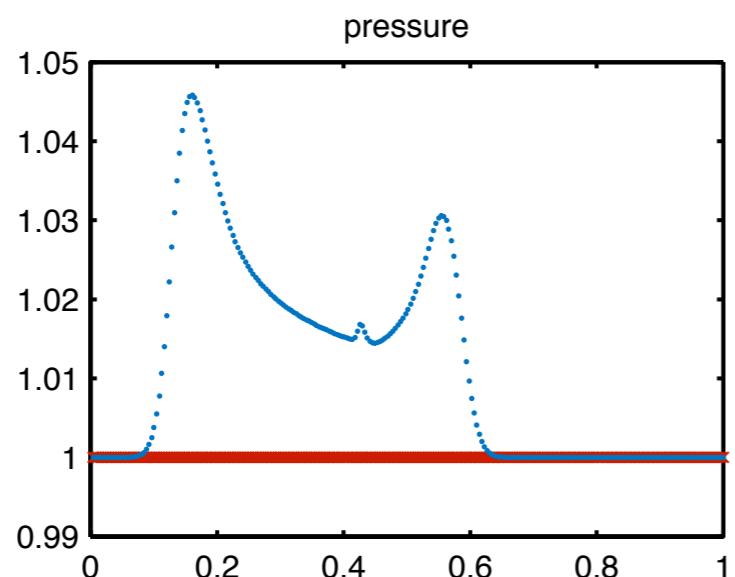
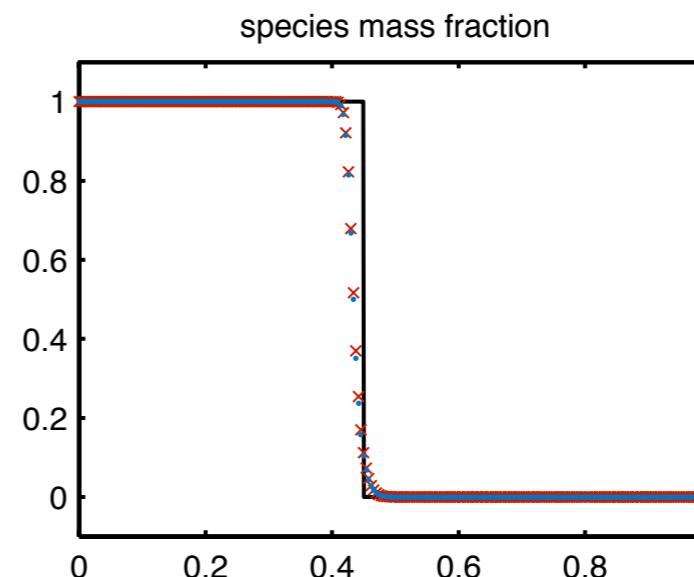
1D Riemann problem...

$$(\rho_L, u_L, p_L, \mu_L) = (0.138, 0.5, 1.0, 1.0)$$

for $x < 0.4$ at $t = 0$ (helium on the left)

$$(\rho_R, u_R, p_R, \mu_R) = (1.0, 0.5, 1.0, 0.0)$$

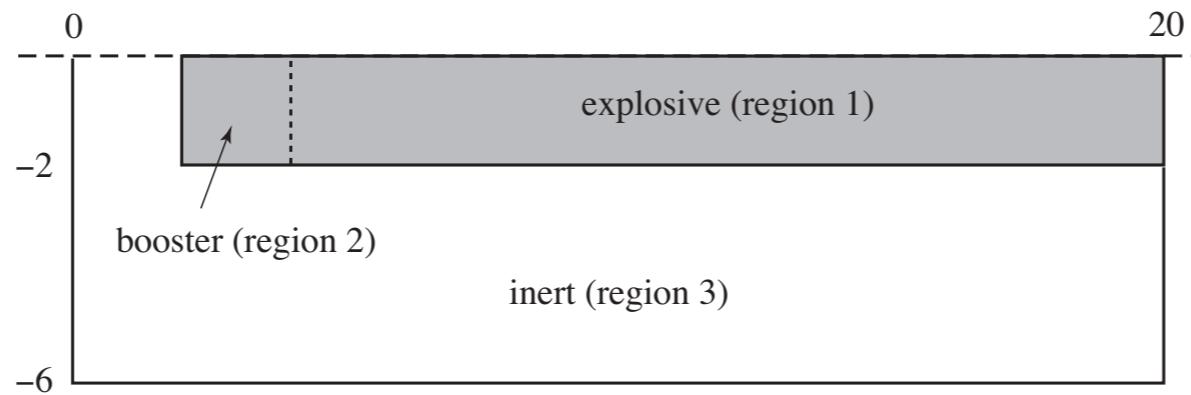
for $x \geq 0.4$ at $t = 0$ (air on the right)



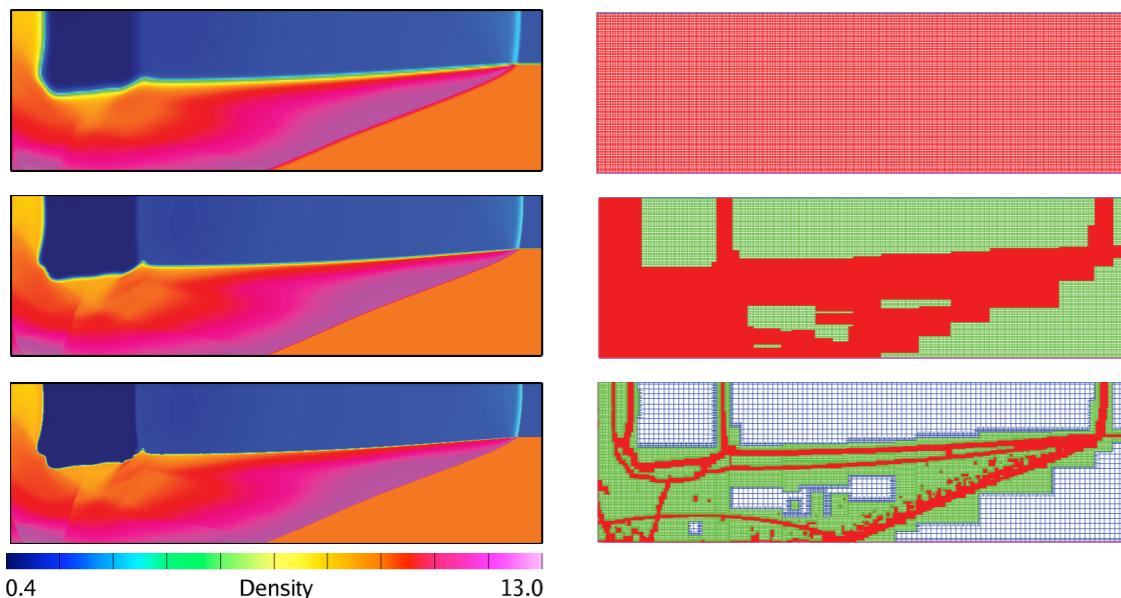
Solution at $t=0.1$: black = exact, blue = Godunov w/out correction, red = Godunov w/ correction

Simple reacting flow test case:

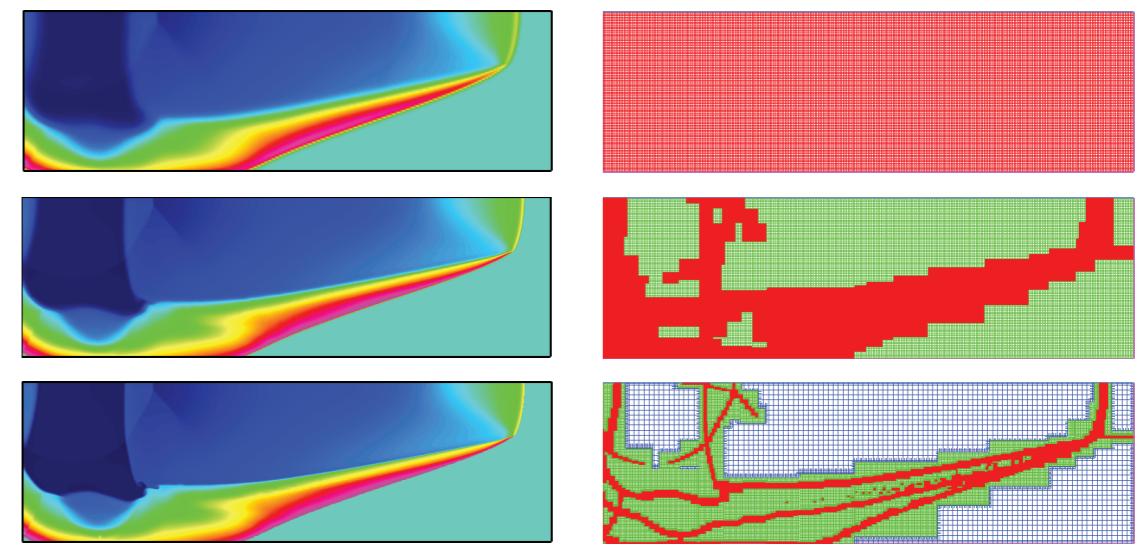
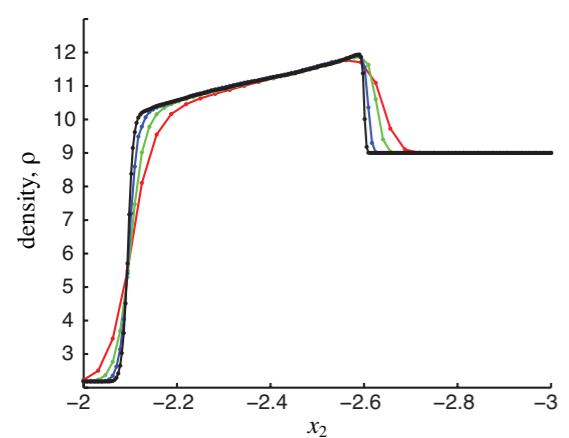
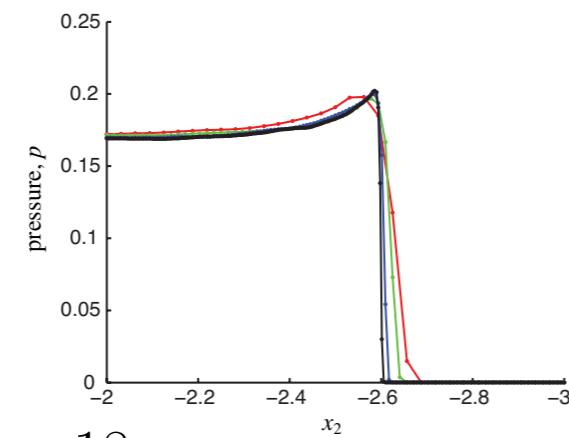
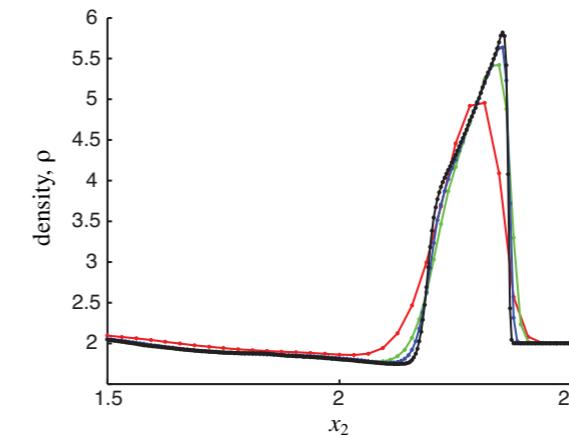
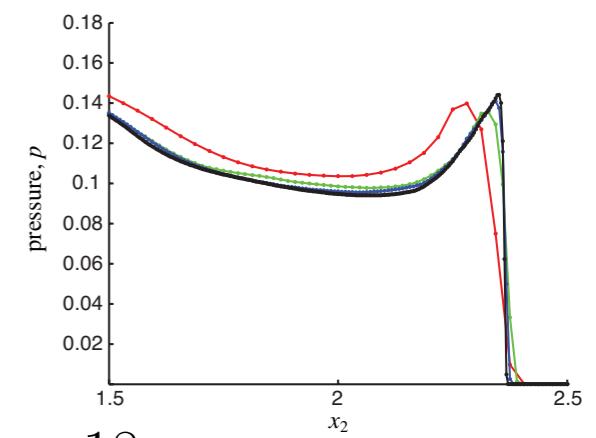
Simple rate stick with ideal gas EOS and pressure dependent rate law:



Strong Confinement



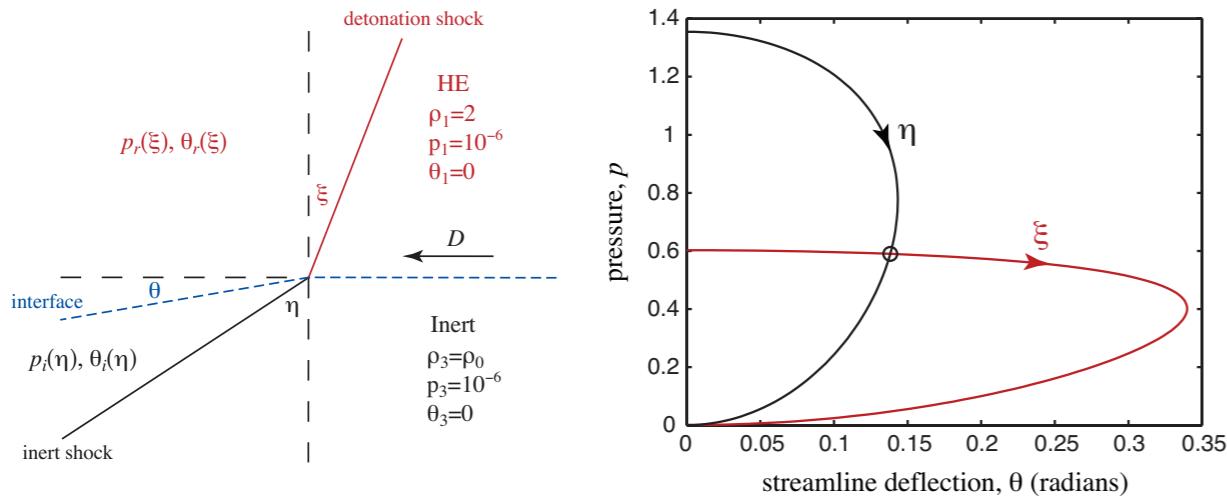
Weak Confinement



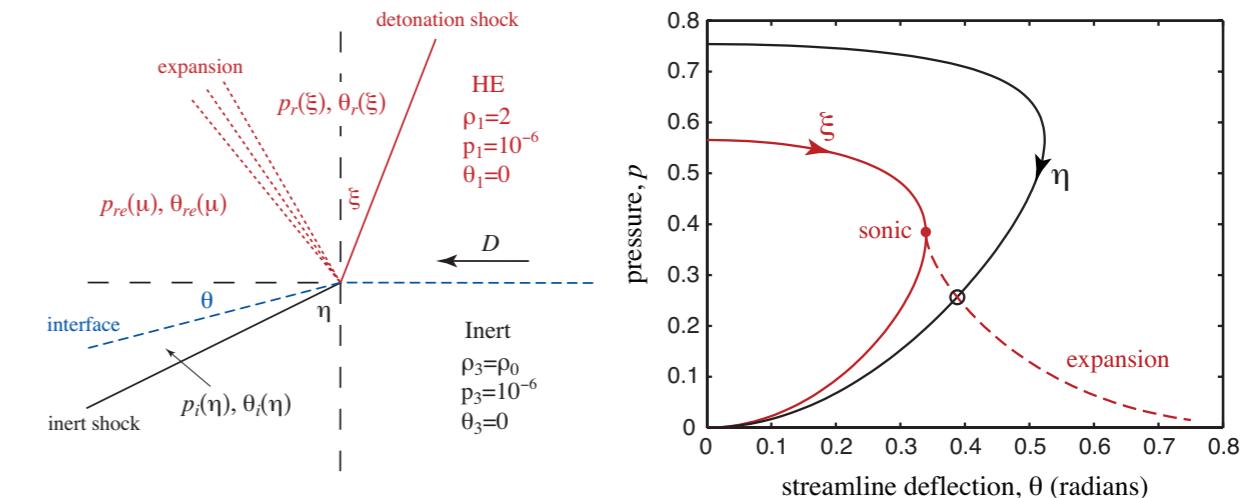
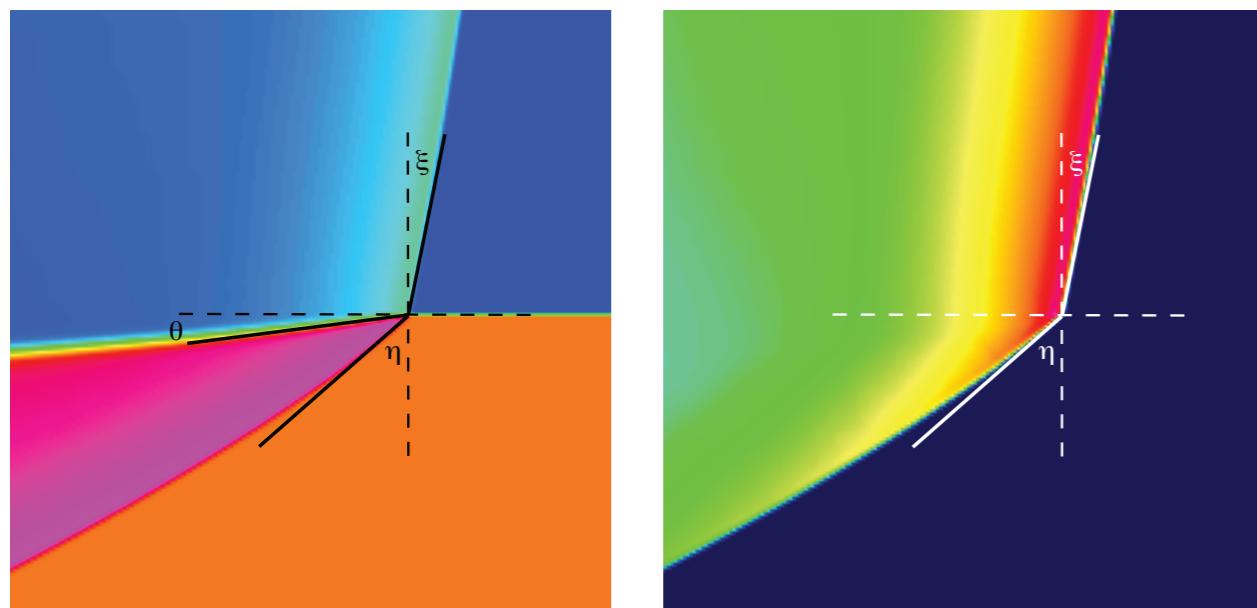
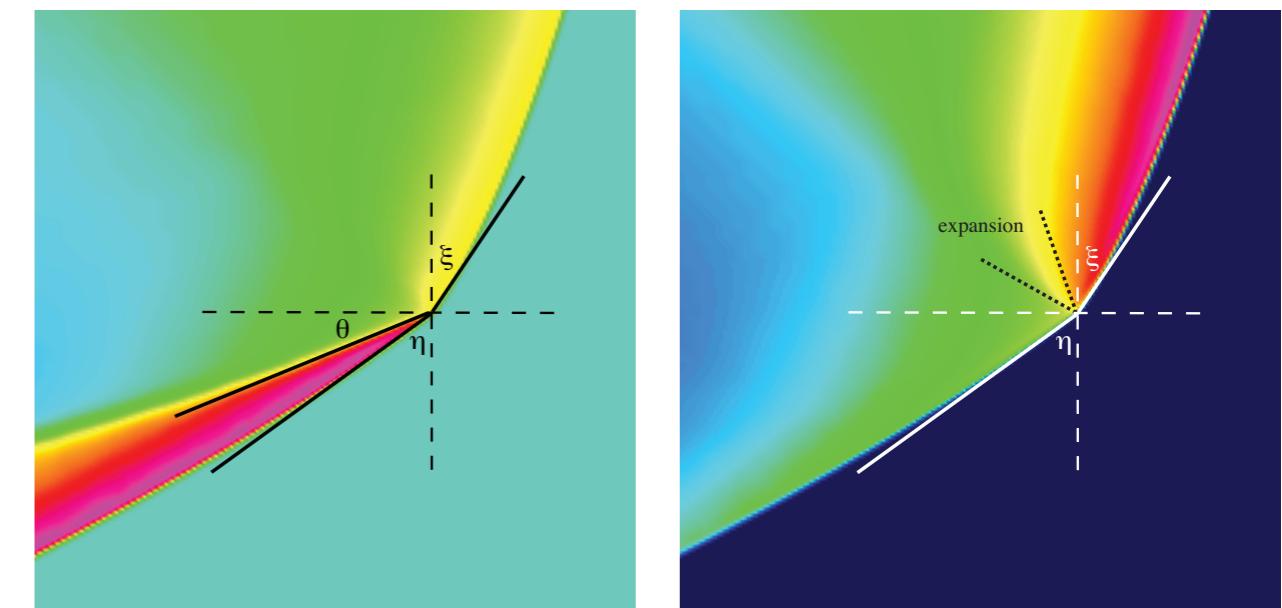
Simple reacting flow test case:

Shock polar analysis:

Strong Confinement



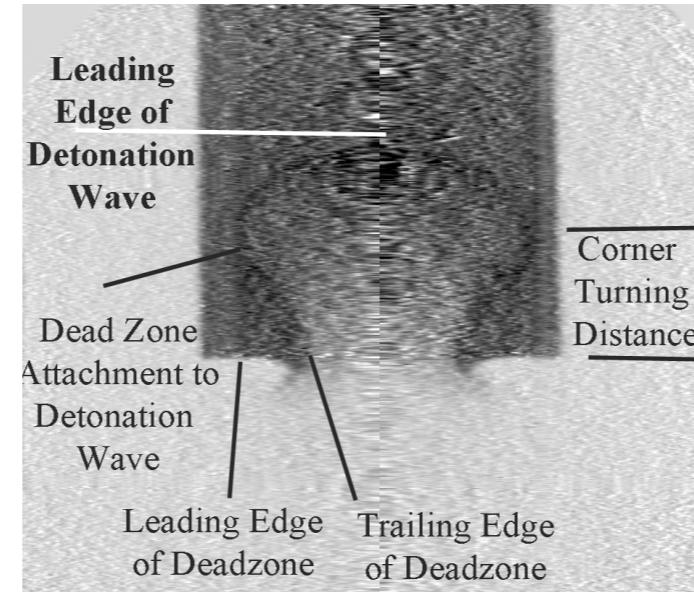
Weak Confinement



Detonation diffraction at a 90-degree corner:

Motivation: Corner-turning experiments...

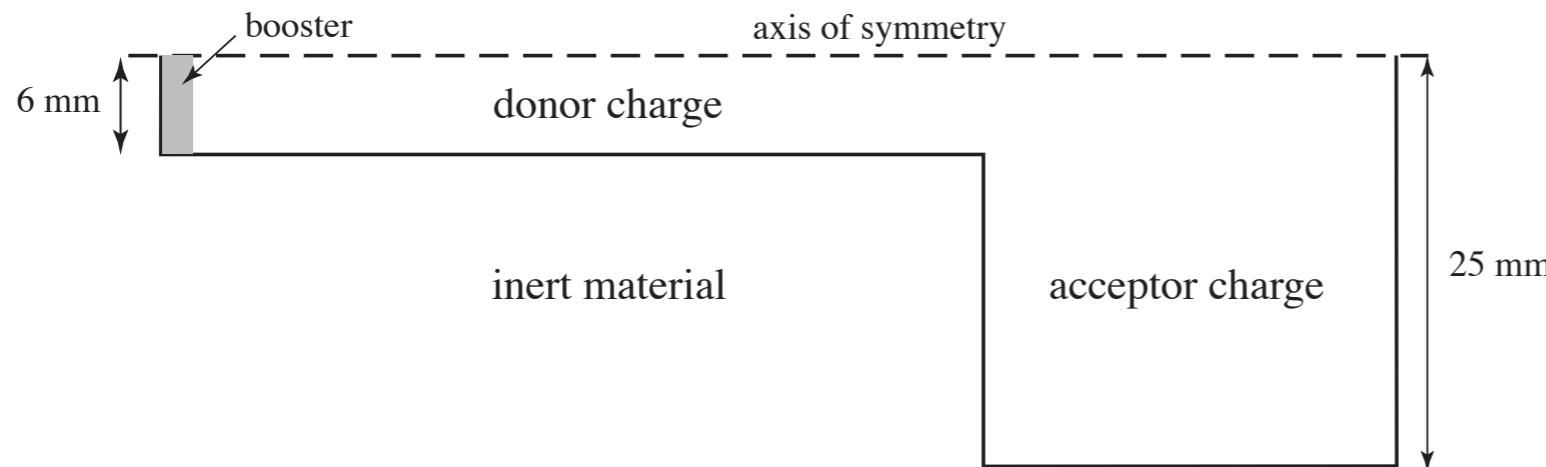
rate-stick charges.



Volume density image.

Eric N. Ferm, et al.
Proton Radiography Examination
of Unburnt Regions in PBX 9502
Corner-Turning Experiments

Model geometry...



Reaction/EOS

Ignition-and-growth model
with reaction rate and EOS
parameters calibrated to the
explosive PBX 9502.

(Tarver & McGuire, 2002)

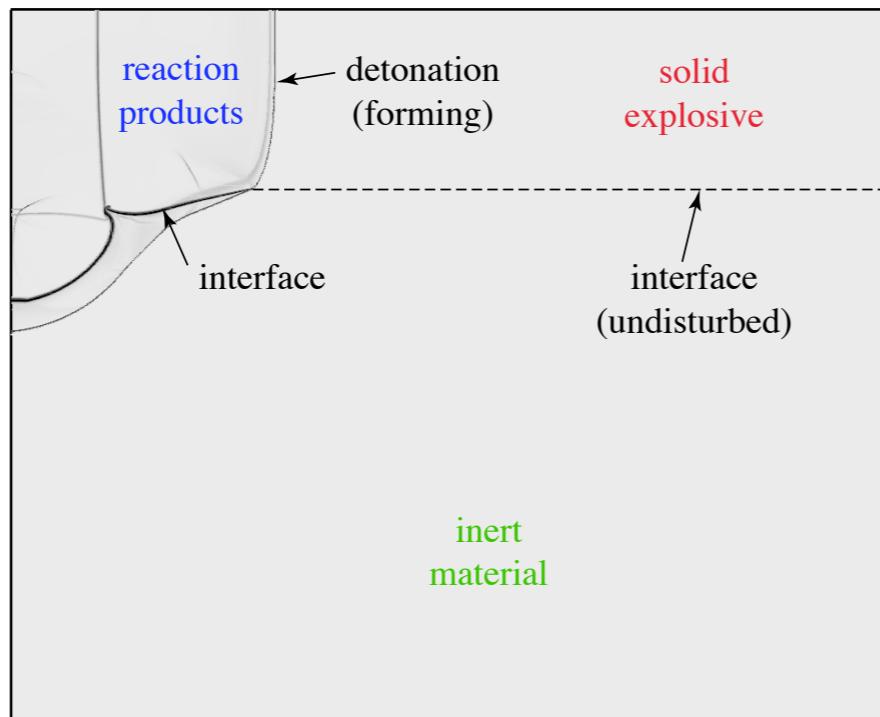
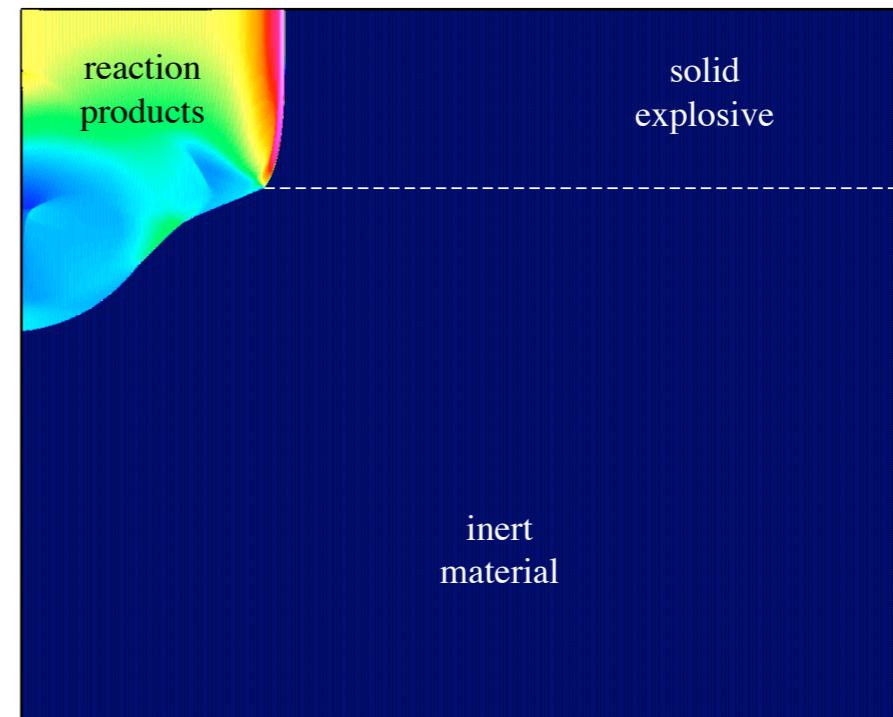
Base grid + AMR...

$$h_{\text{base}} = 0.1 \text{ mm} + 2 \text{ AMR grid levels} \Rightarrow h_{\text{eff}} = 0.00625 \text{ mm}$$

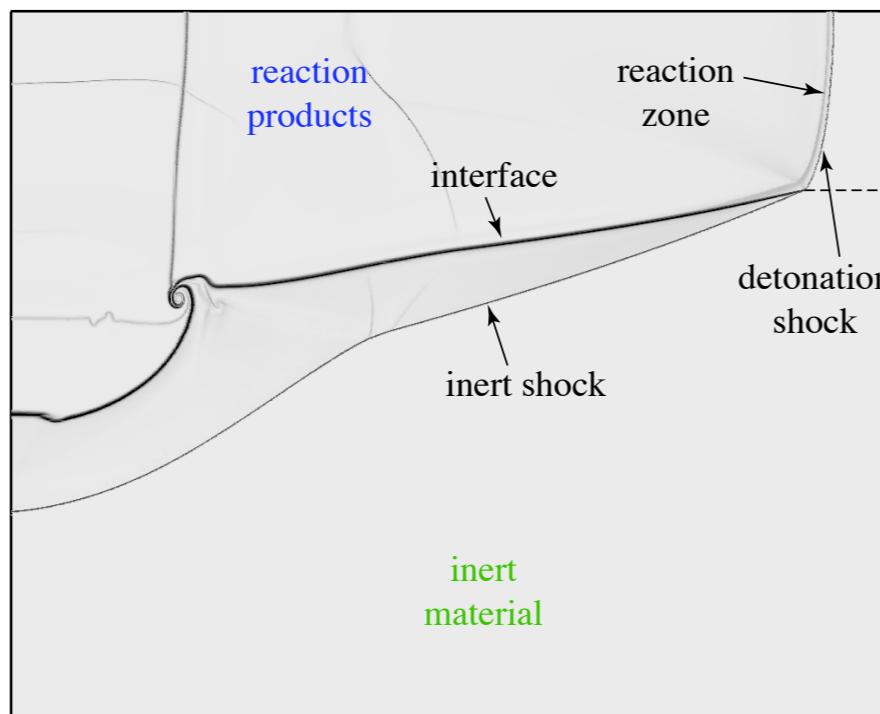
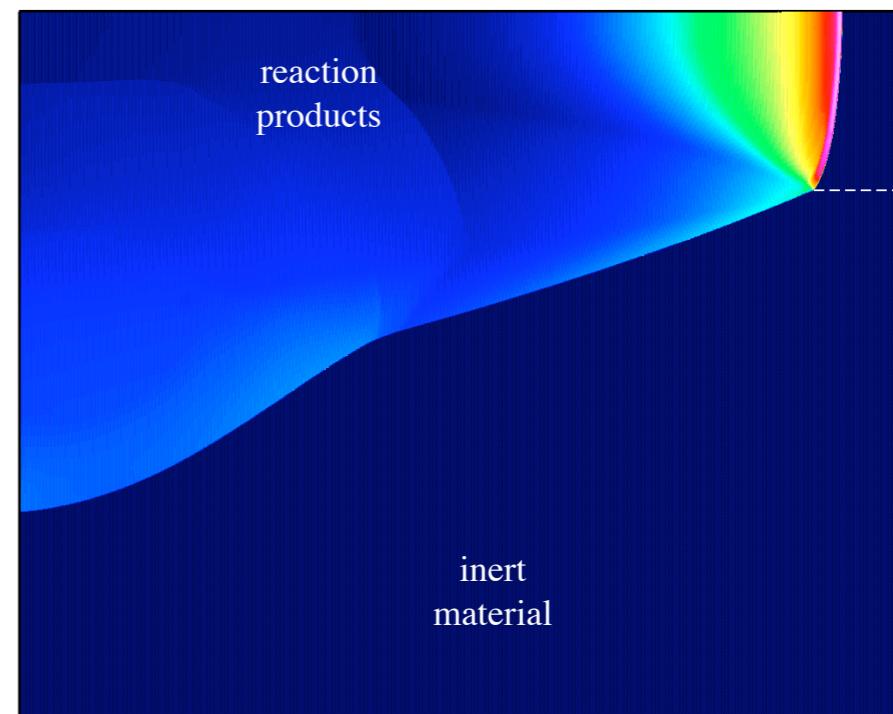
(approximately 75 grids cells across the reaction zone)

Stage 1: ignition and run to steady state in the donor charge...

$t = 1.0 \mu\text{s}$



$t = 3.5 \mu\text{s}$



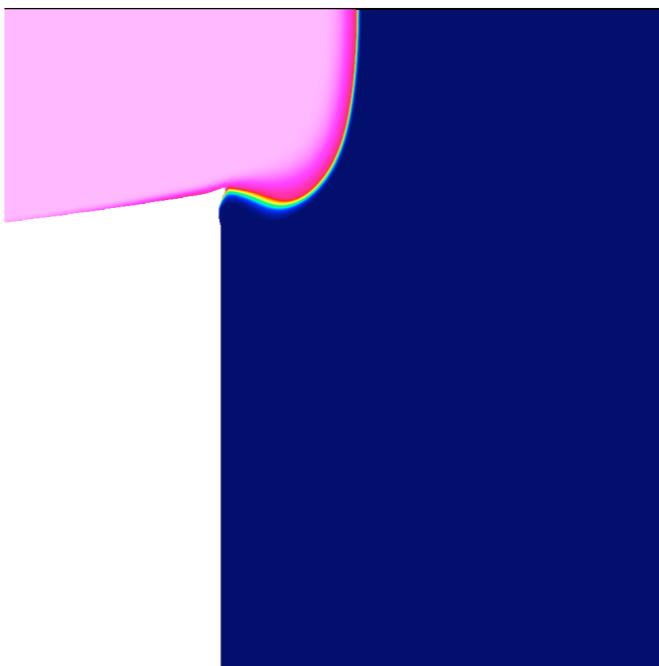
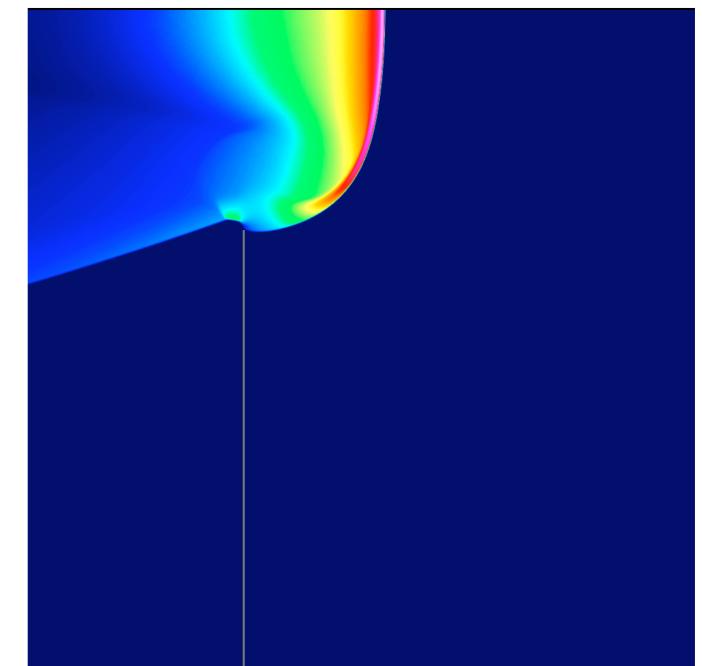
0.0 Pressure 34 GPa

Detonation forms from the high-pressure “booster” state and runs to steady state in the donor charge.

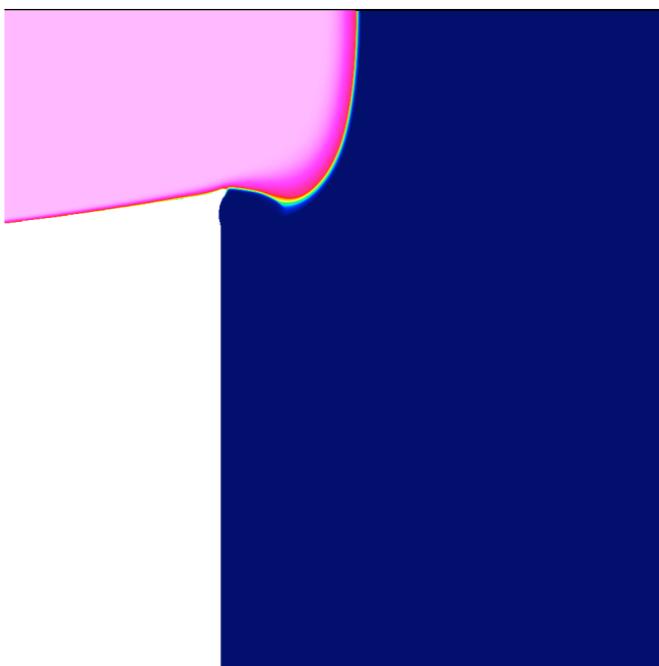
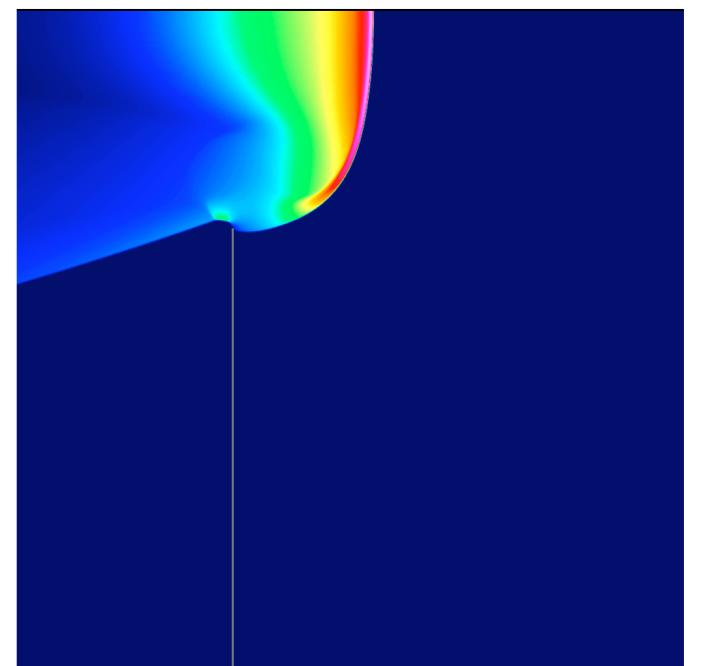
Stage 2: detonation diffraction in the acceptor charge...

$t = 7.25 \mu s$

non-desensitized



desensitized



0.0

Reaction progress

1.0

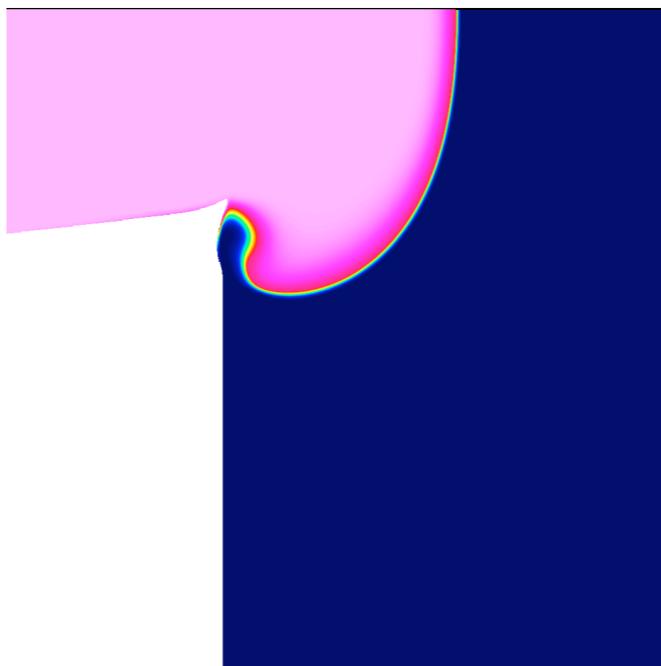
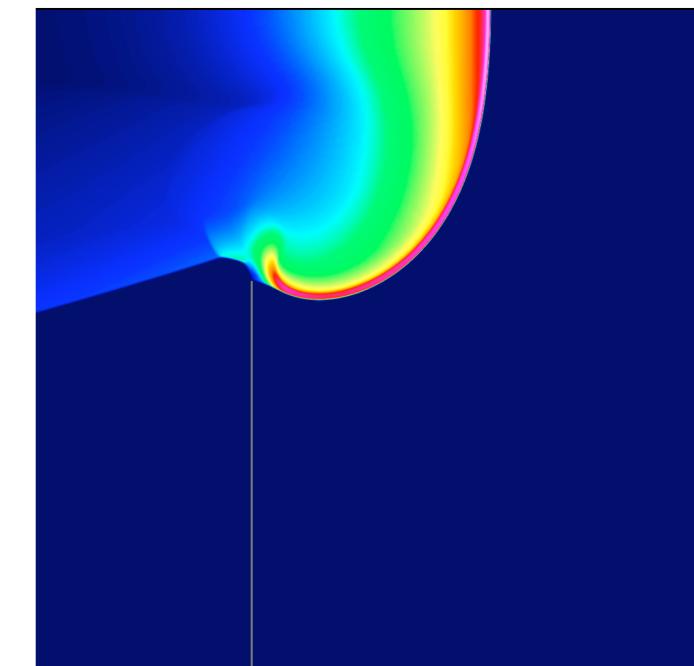
Pressure

34 GPa

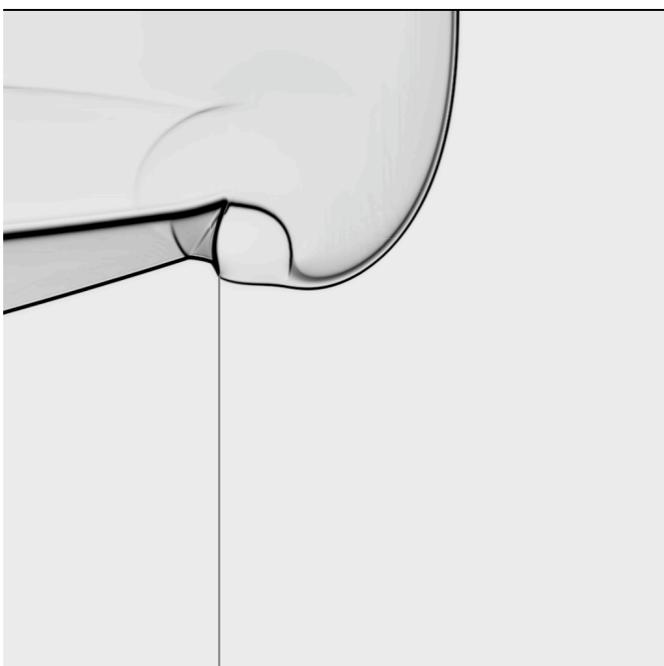
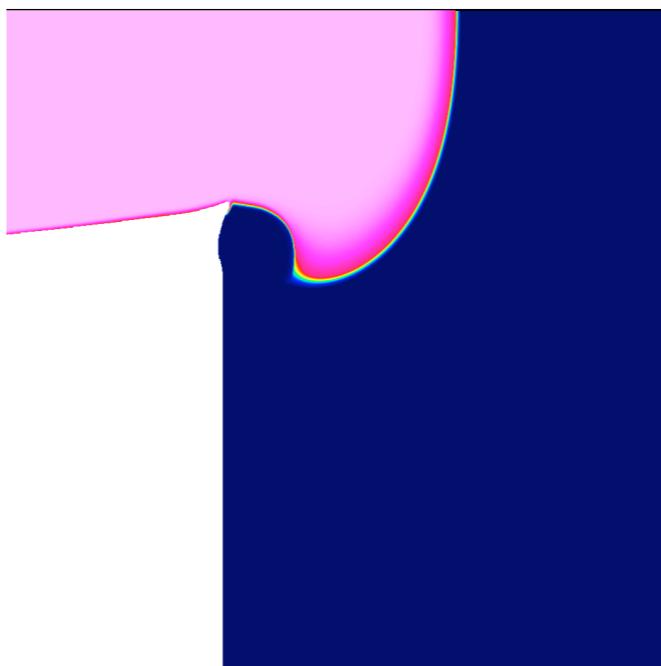
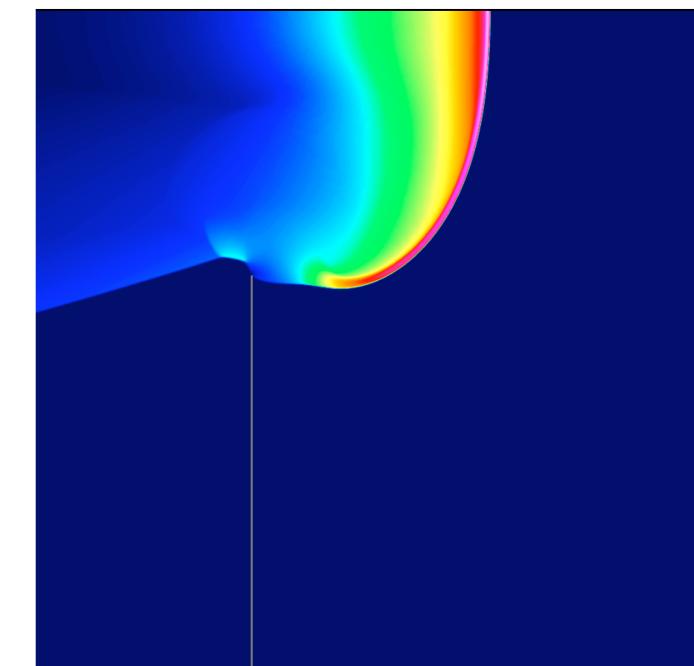
Stage 2: detonation diffraction in the acceptor charge...

$t = 7.75 \mu s$

non-desensitized



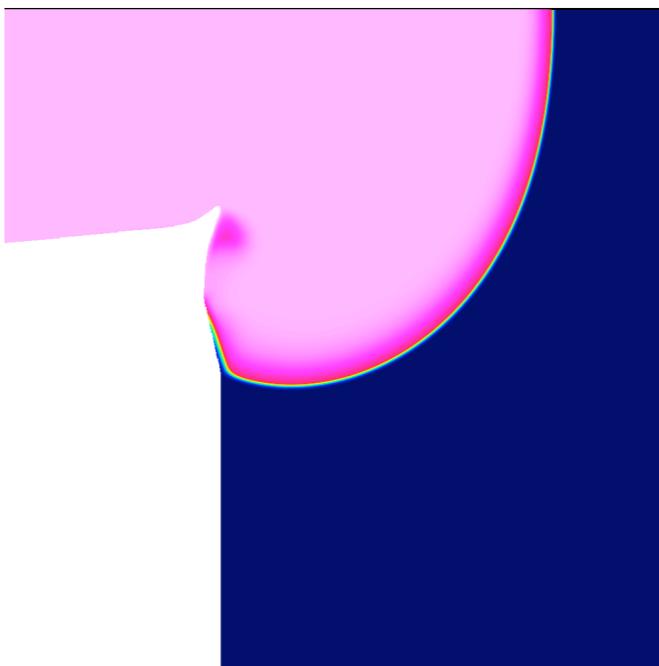
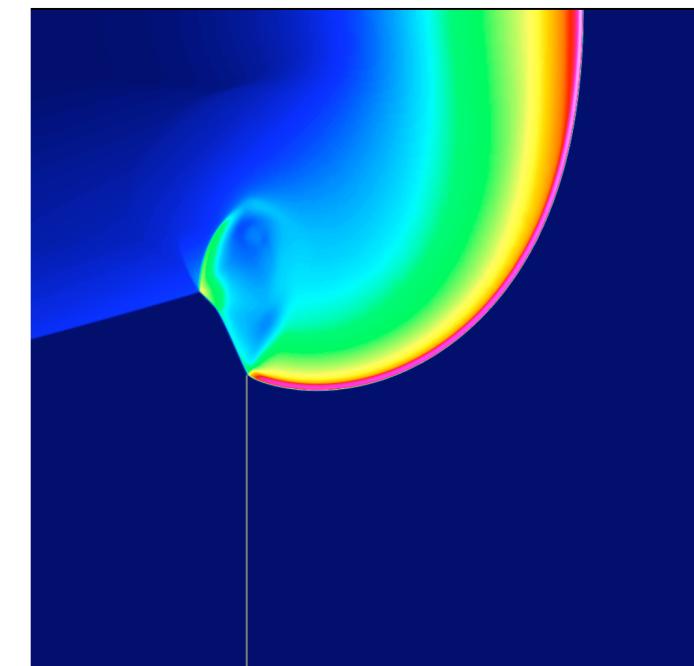
desensitized



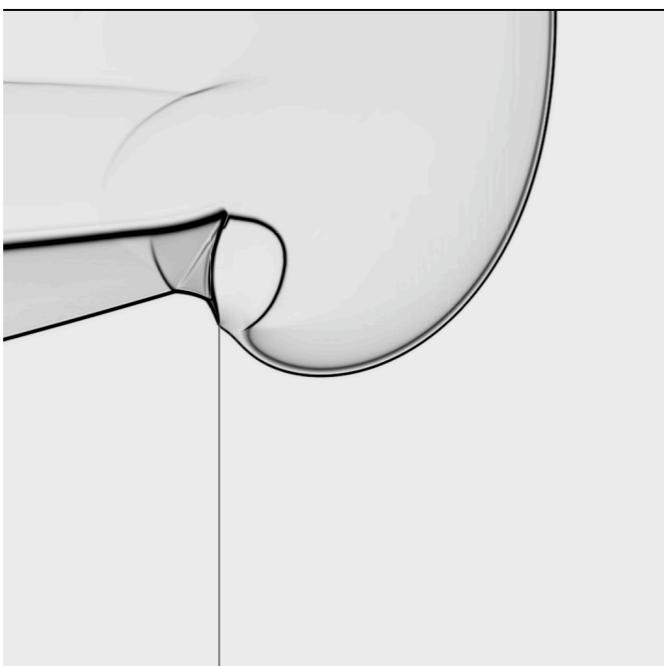
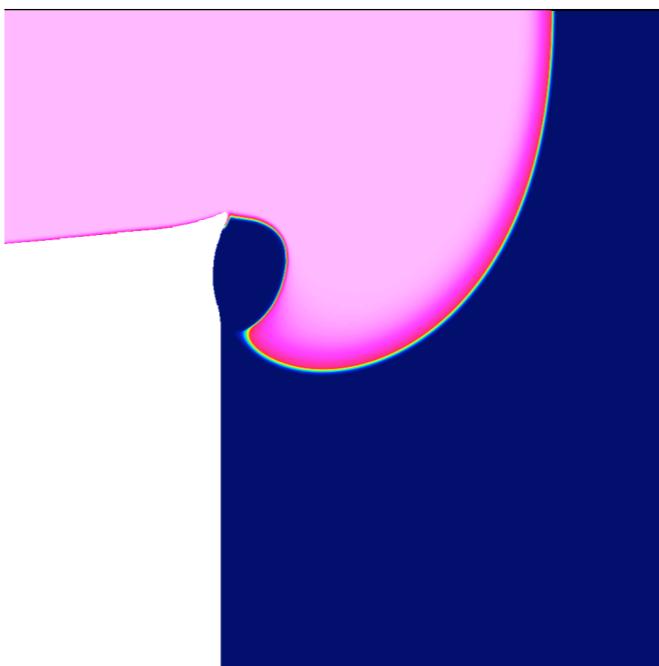
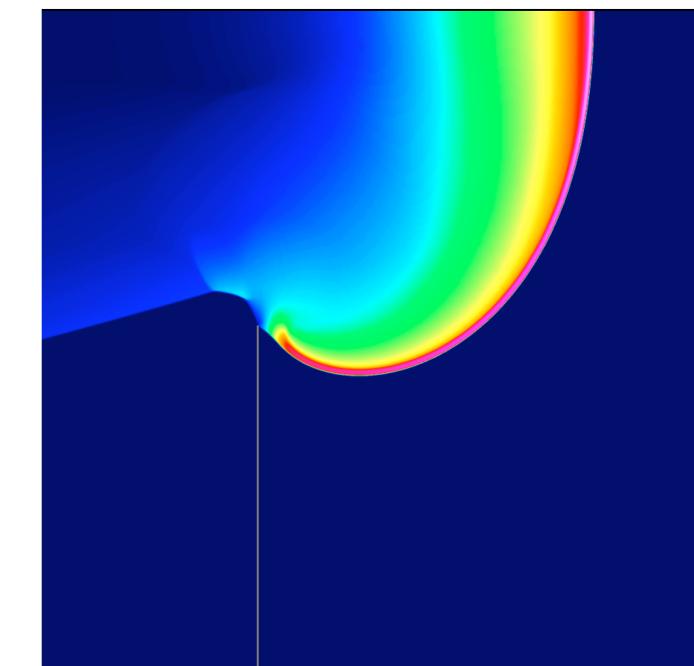
Stage 2: detonation diffraction in the acceptor charge...

$t = 8.25 \mu s$

non-desensitized



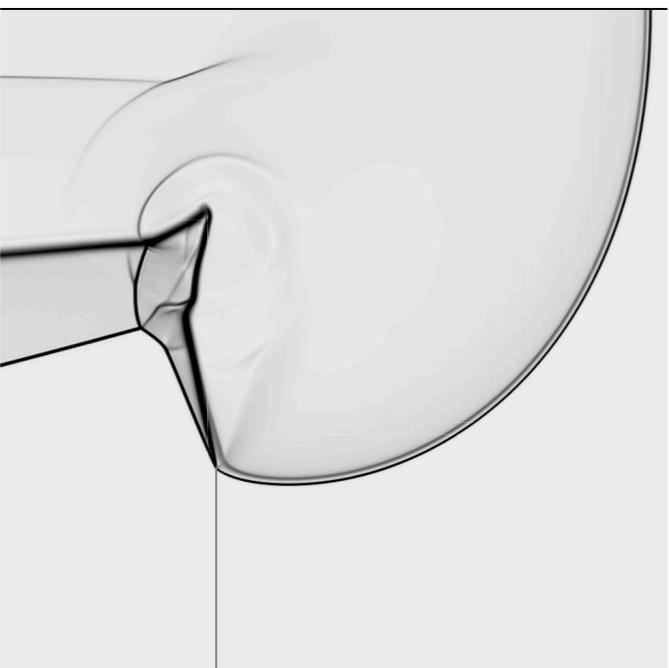
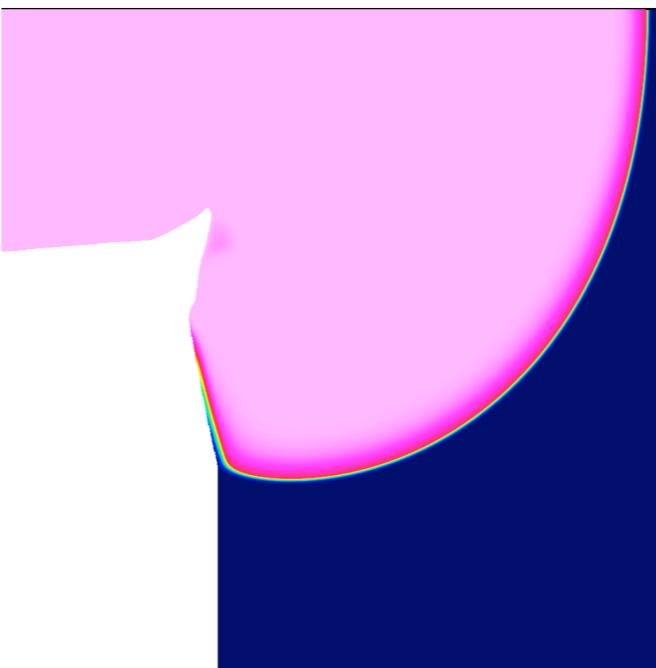
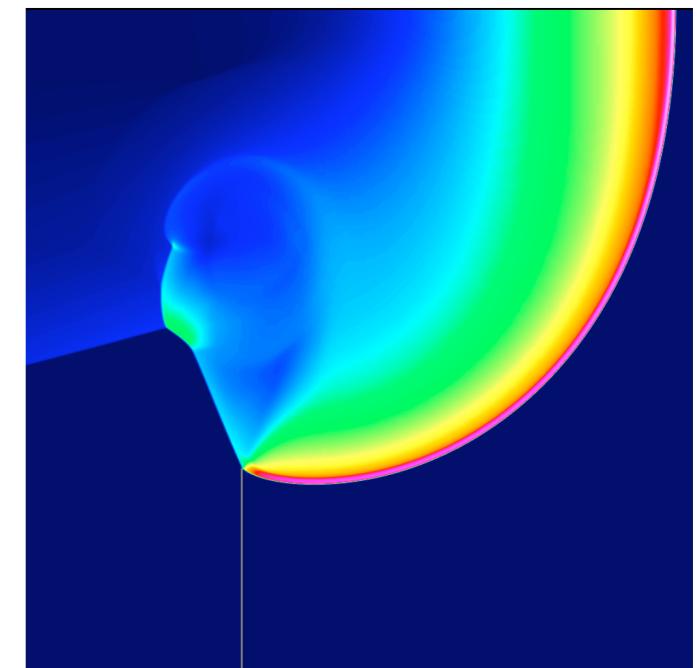
desensitized



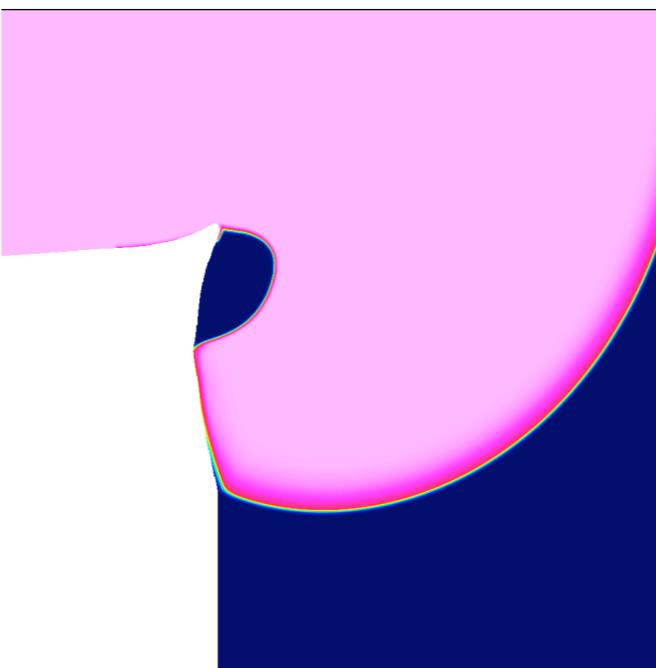
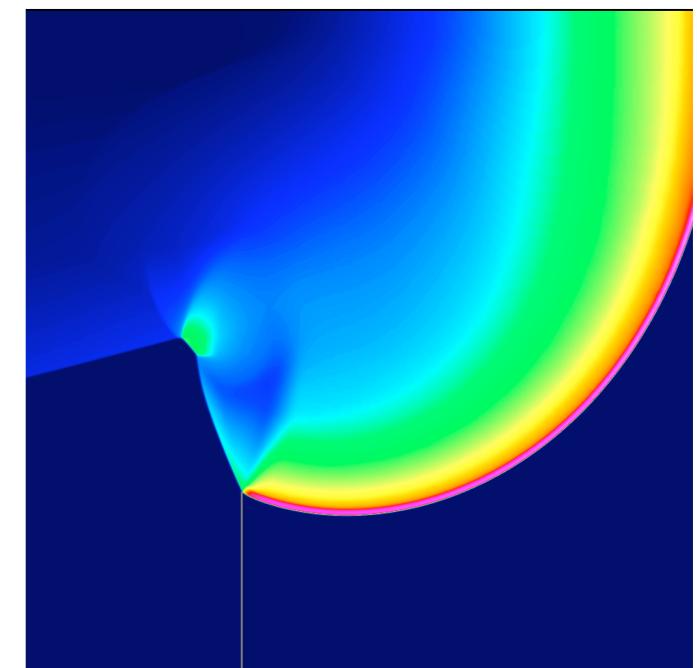
Stage 2: detonation diffraction in the acceptor charge...

$t = 8.75 \mu s$

non-desensitized



desensitized



0.0

Reaction progress

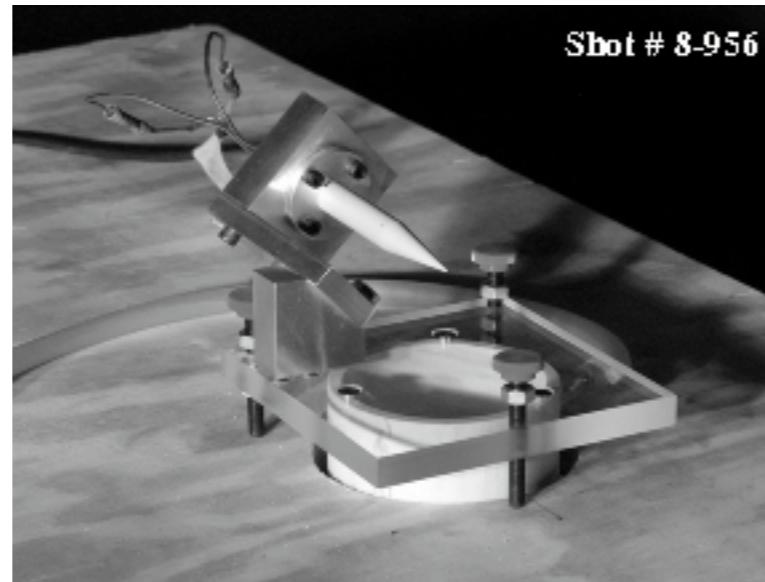
1.0

Pressure

34 GPa

Detonation failure in converging geometry:

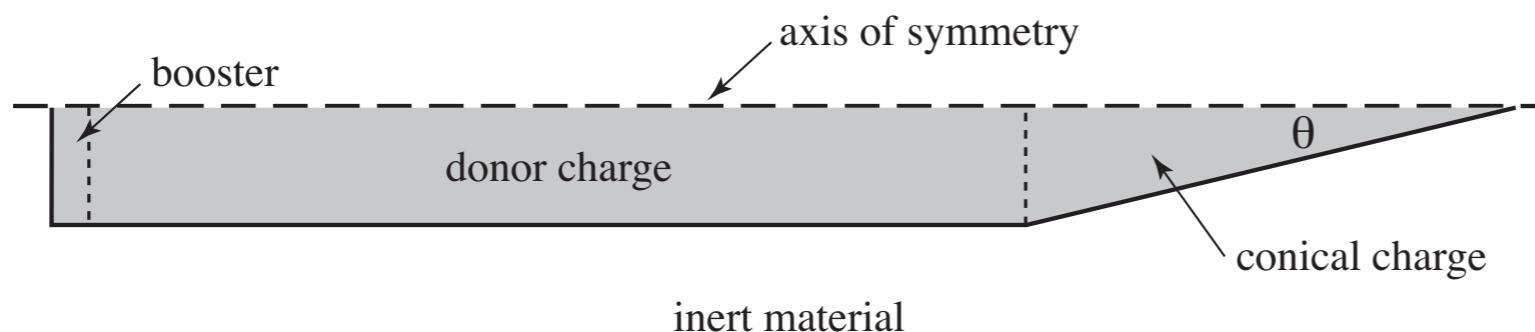
Motivation: “pencil” experiments...



experimental setup

T. R. Salyer and L. G. Hill
The Dynamics of Detonation
Failure in Conical PBX 9502
Charges

Model geometry...



Reaction/EOS

Ignition-and-growth model
with reaction rate and EOS
parameters calibrated to the
explosive PBX 9502.

(Tarver & McGuire, 2002)

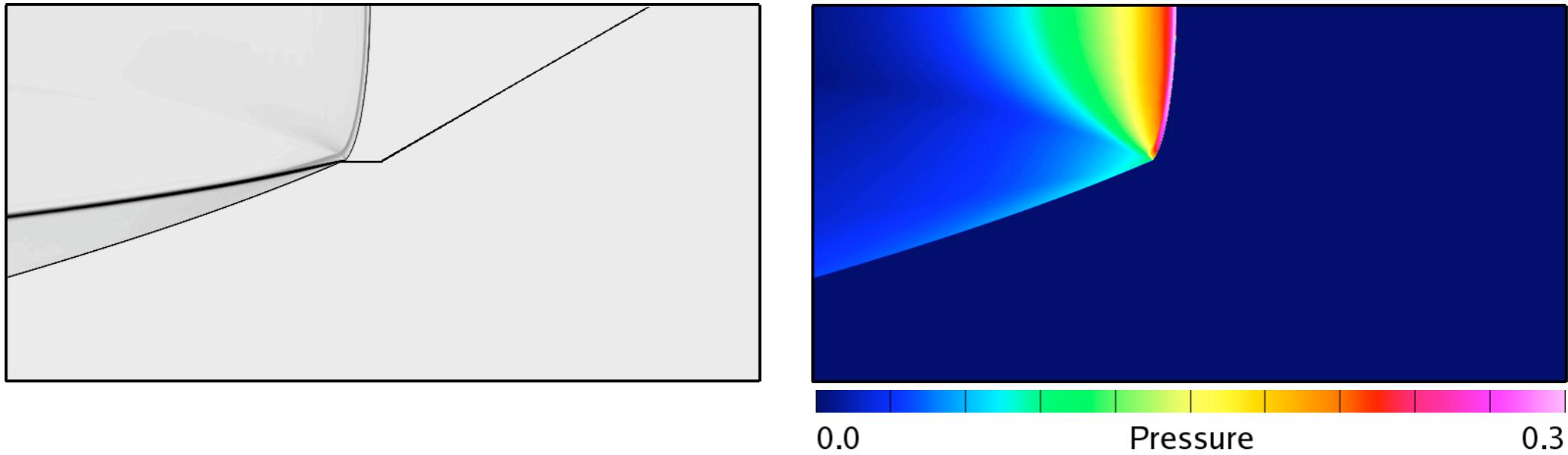
Base grid + AMR...

$$h_{\text{base}} = 0.1 \text{ mm} + 2 \text{ AMR grid levels} \Rightarrow h_{\text{eff}} = 0.00625 \text{ mm}$$

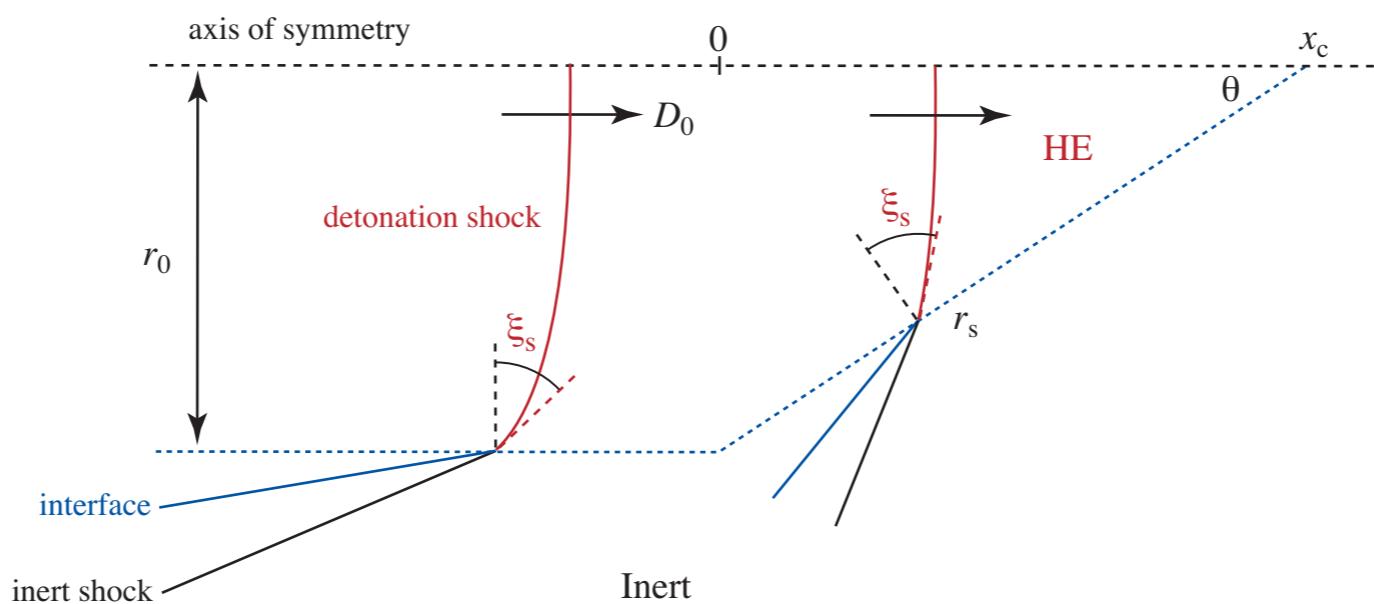
(approximately 75 grids cells across the reaction zone)

“Initial Conditions”: quasi-steady state prior to cone ...

$$\theta = 30^\circ, \quad t = 0$$



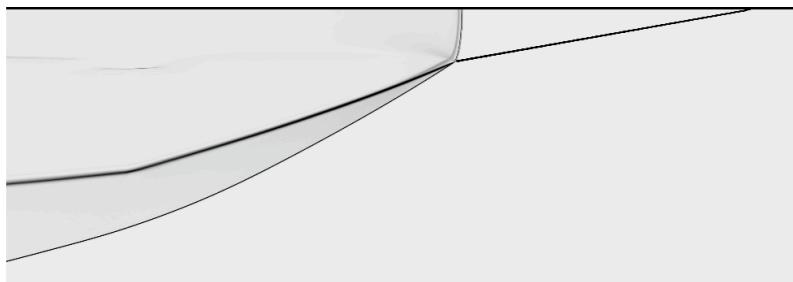
Analysis of “subcritical” cones (a la Salyer and Hill)



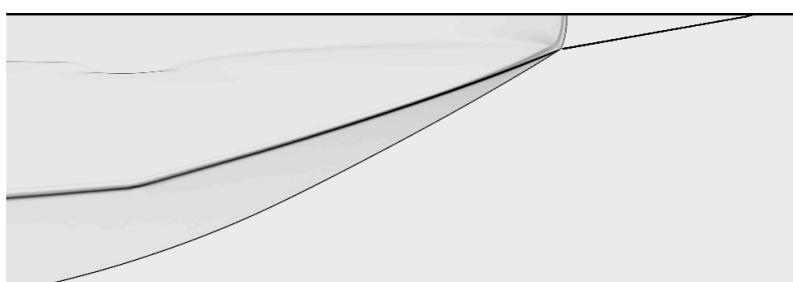
Detonation Dynamics: shallow cone angle ...

$$\theta = 10^\circ$$

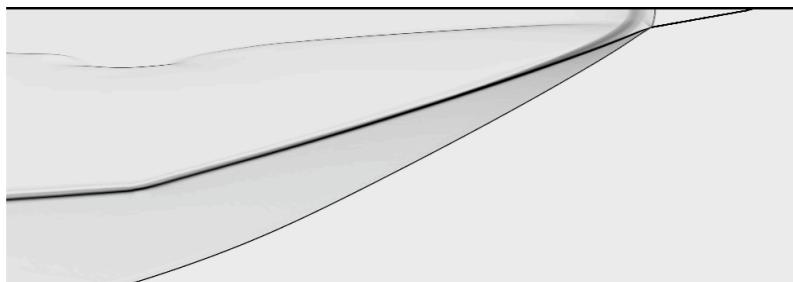
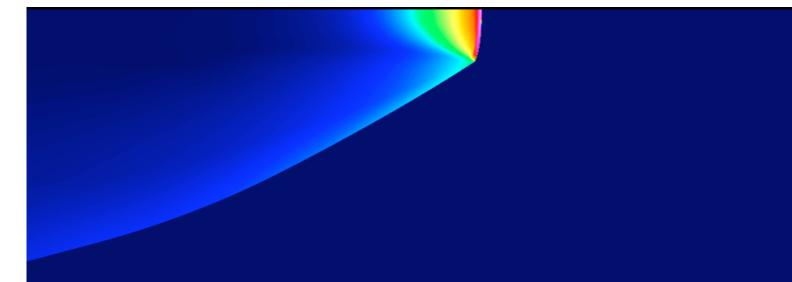
$t = 2.7$



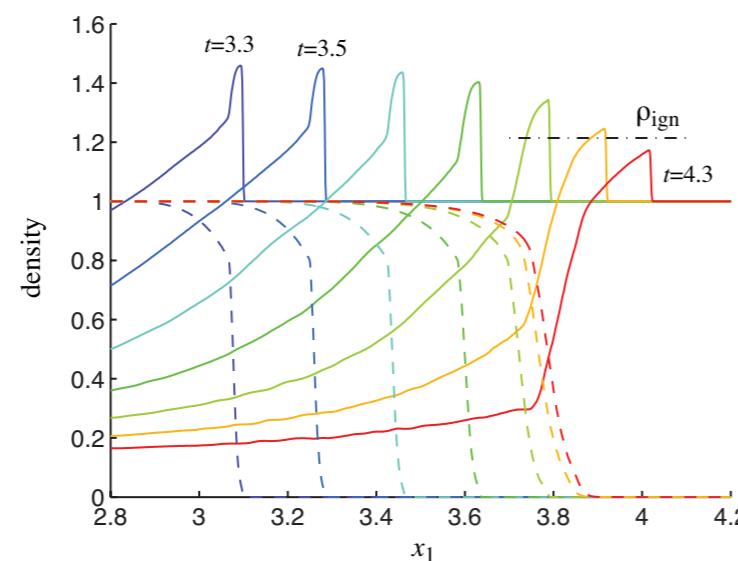
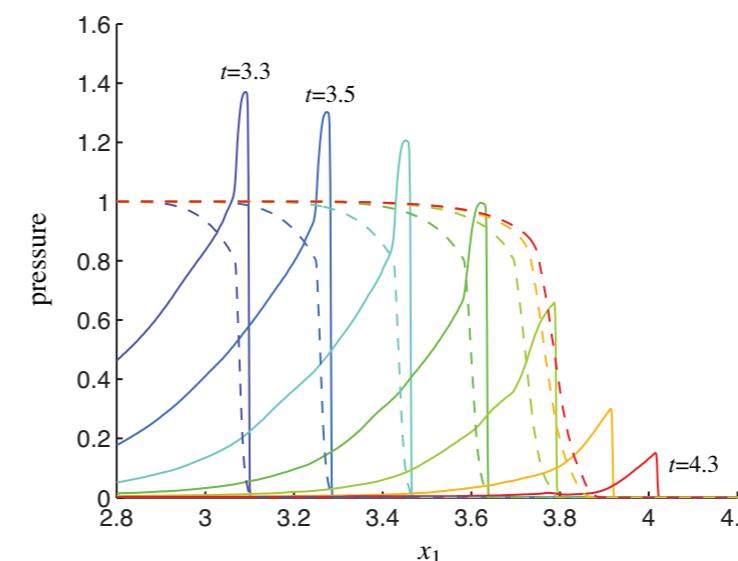
$t = 3.5$



$t = 4.3$



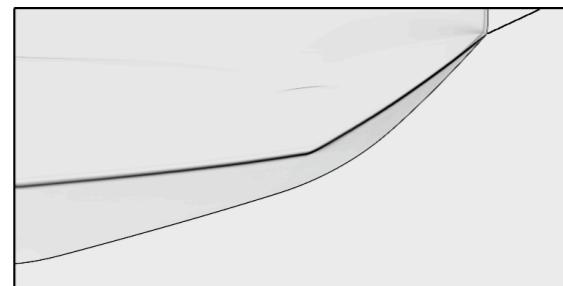
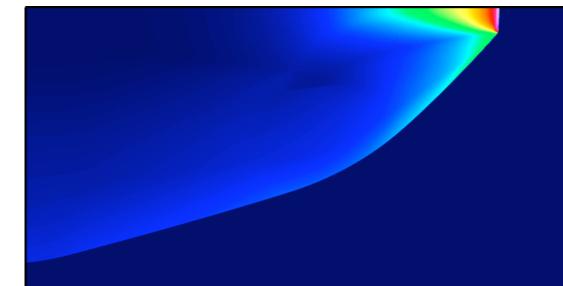
0.0 Pressure 0.3



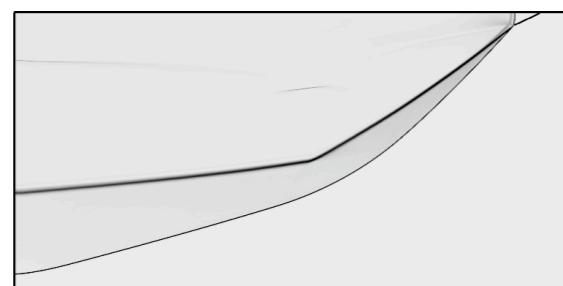
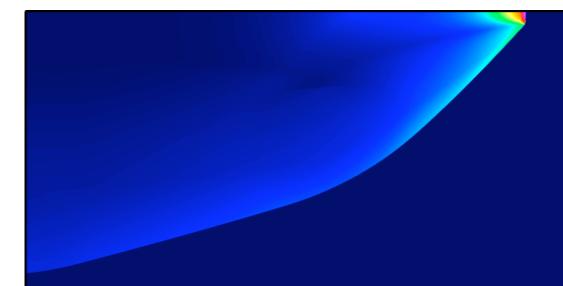
Detonation Dynamics: moderate cone angle ...

$$\theta = 25^\circ$$

$t = 1.5$



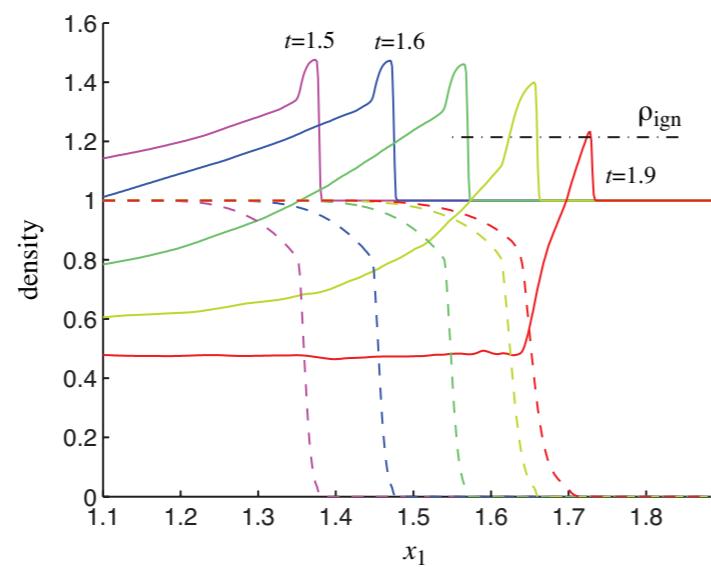
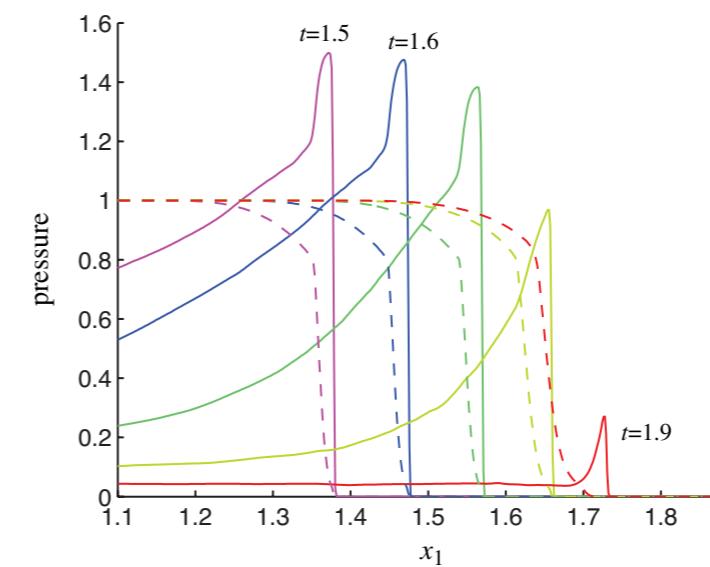
$t = 1.7$



$t = 1.9$



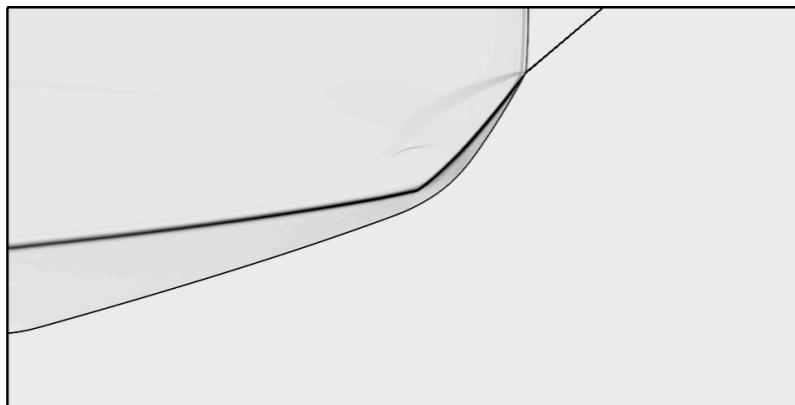
0.0 Pressure 0.3



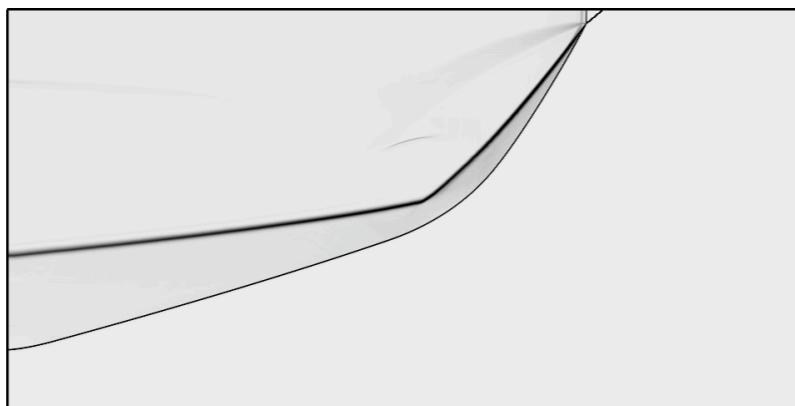
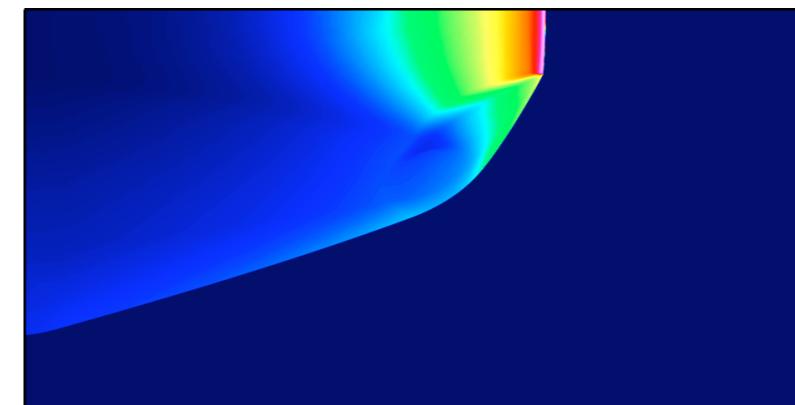
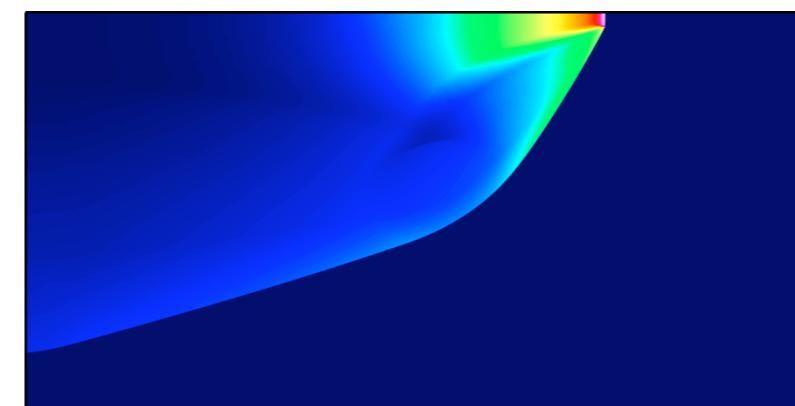
Detonation Dynamics: sharp cone angle ...

$$\theta = 40^\circ$$

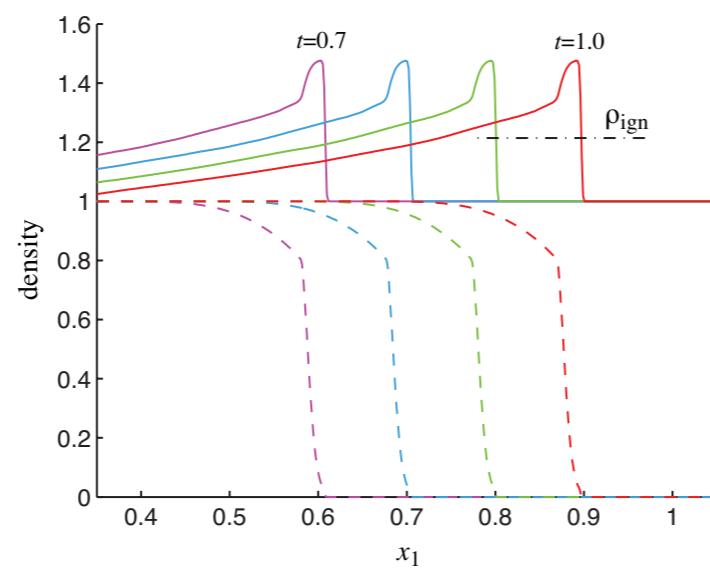
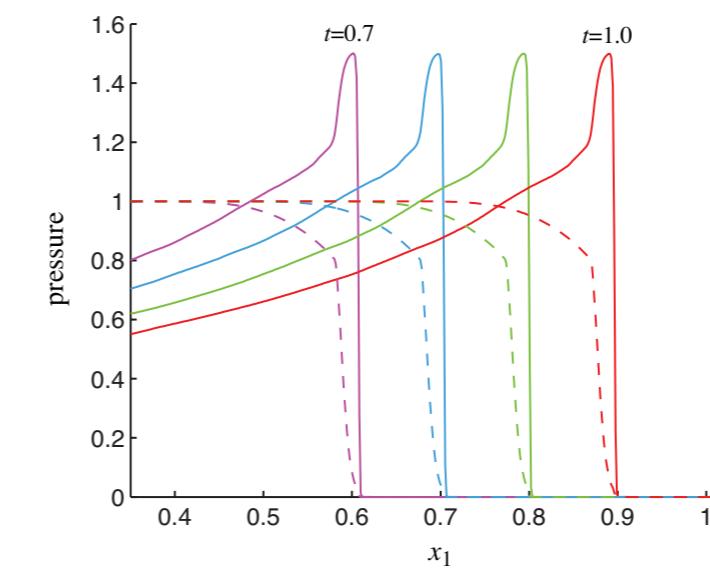
$t = 0.7$



$t = 1.0$

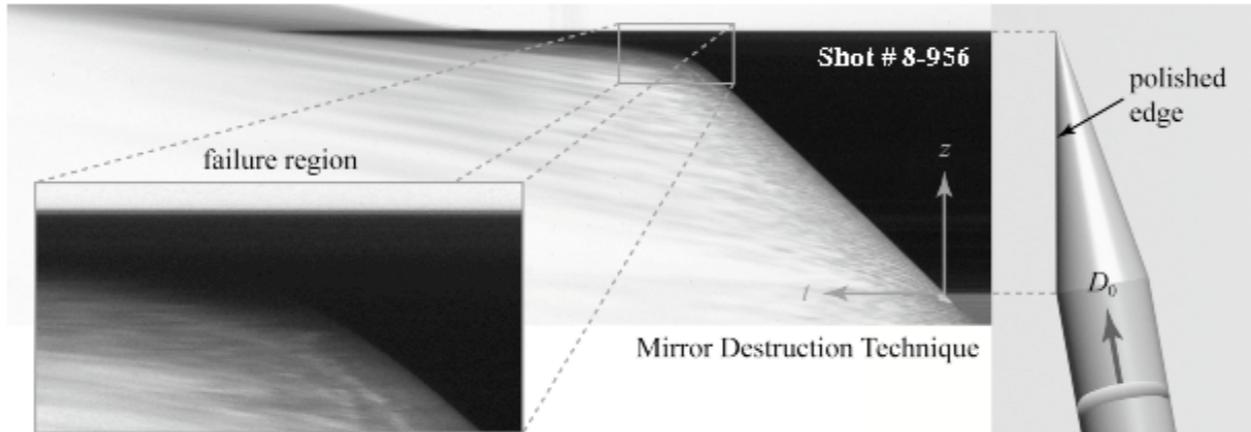
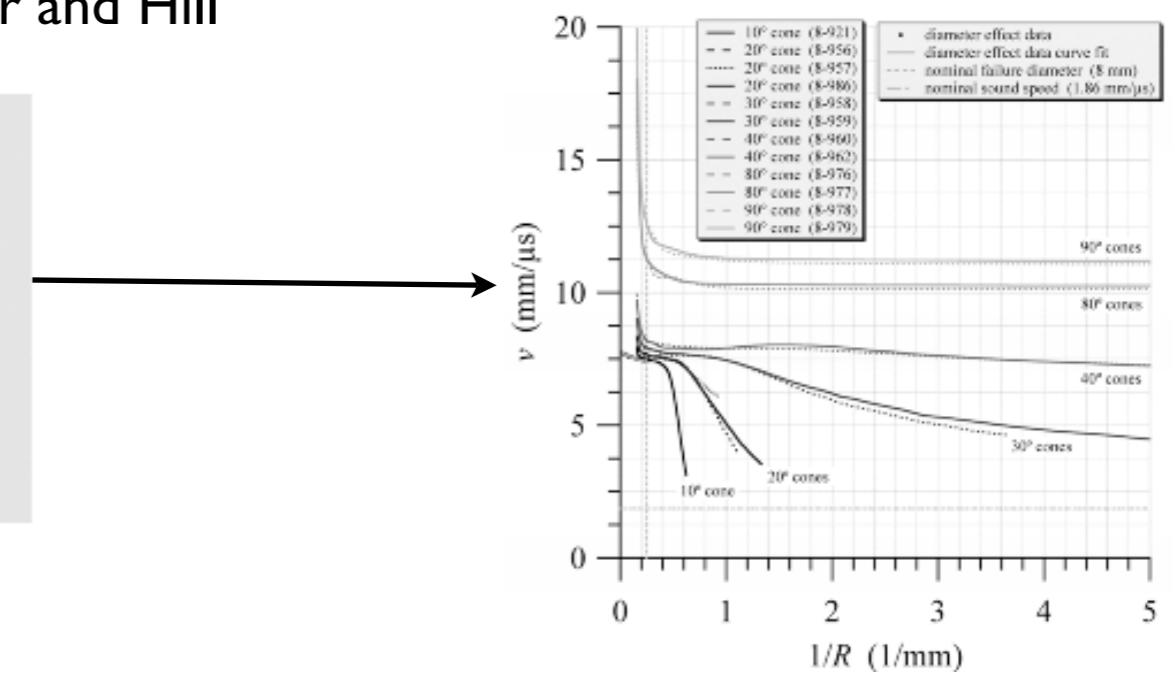


0.0 Pressure 0.3

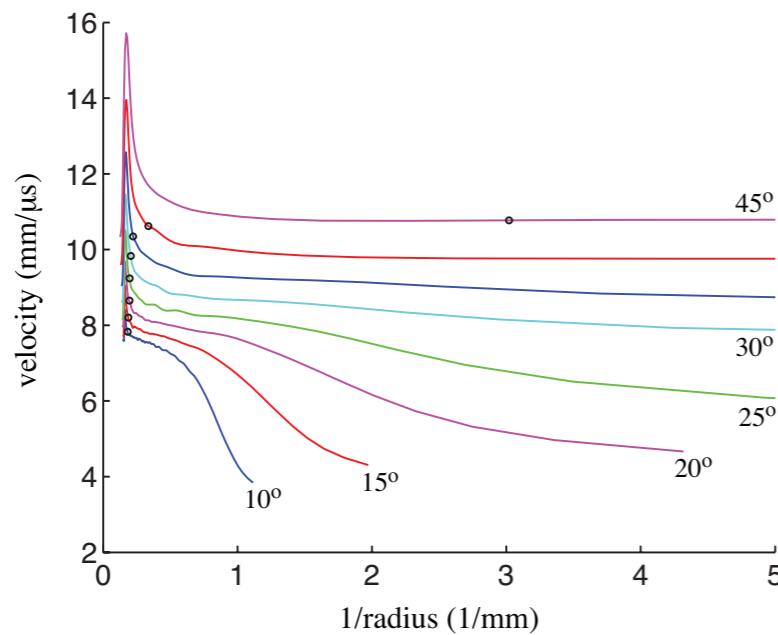
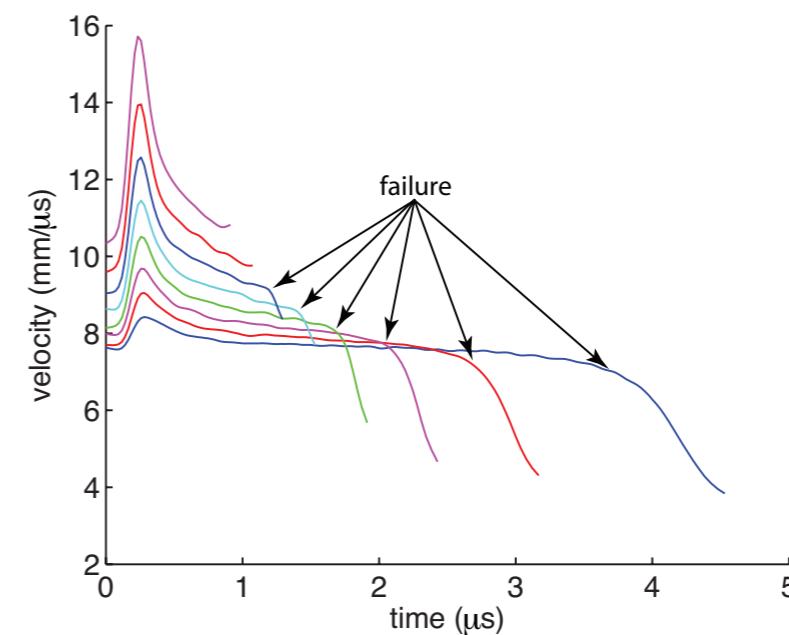


Detonation Dynamics: interface destruction ...

Results from Salyer and Hill

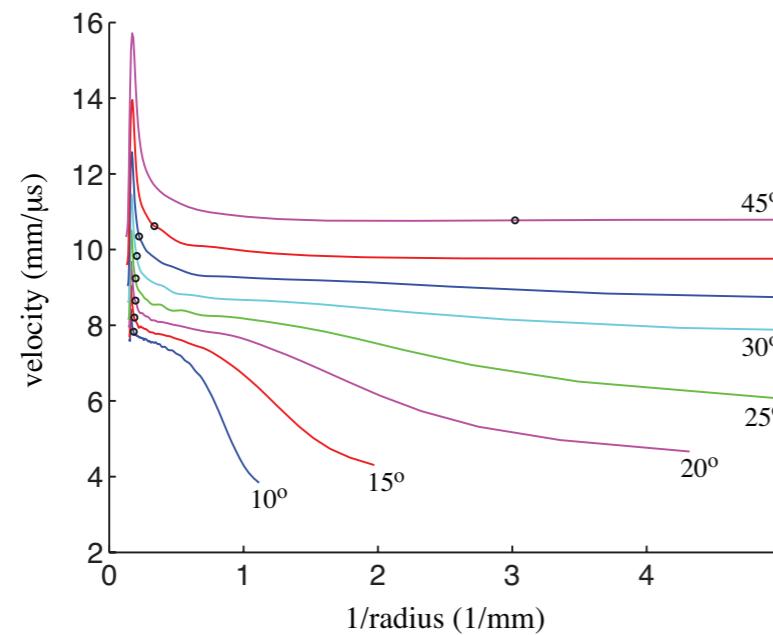
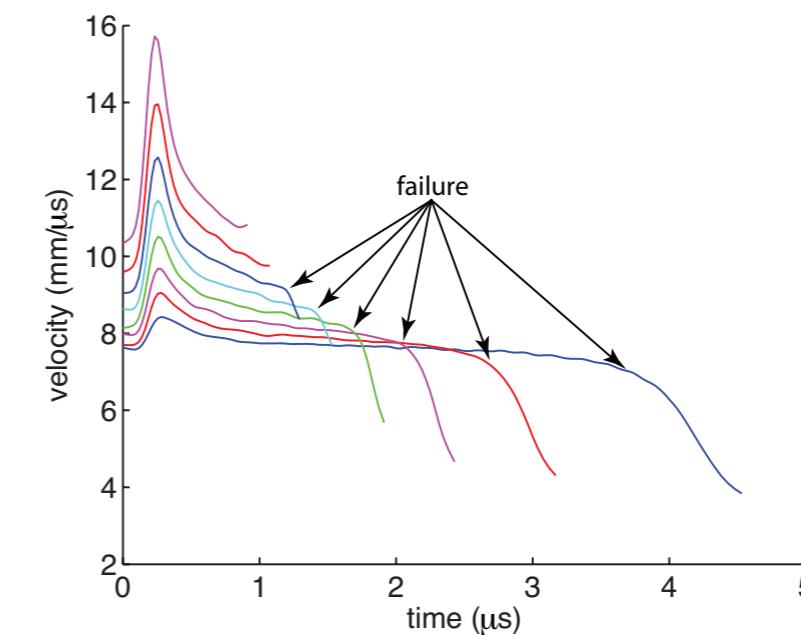


Simulation results

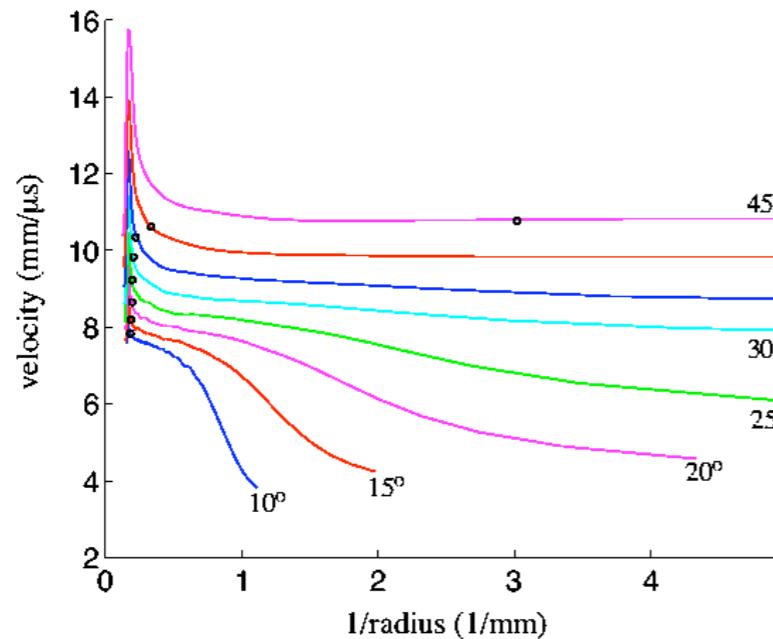
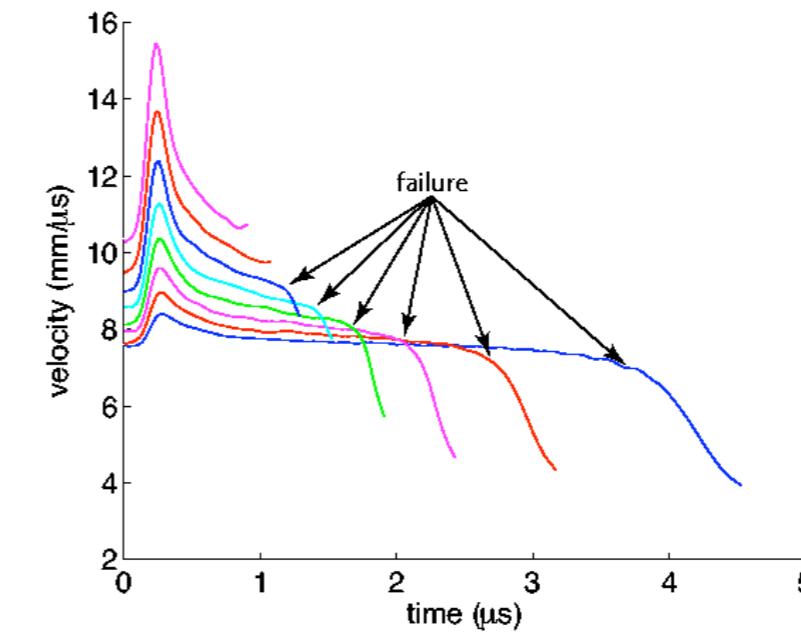


Detonation Dynamics: interface destruction ...

Results with no desensitization model



Results using desensitization model



Results are nearly identical for desensitized and non-desensitized models

Conclusions:

- An accurate and efficient numerical treatment of material interfaces for shock capturing schemes
- Overlapping grids used to capture complex geometry
- Validation on simple rate stick (shock polar analysis)
- Studies of detonation diffraction in shock desensitized high explosives
- Studies of detonation dynamics in converging rate sticks

Full details appear in...

J. Banks, D. Schwendeman, A. Kapila and W. Henshaw, *A high-resolution Godunov method for compressible multi-material flow on overlapping grids*, J. Comput. Phys.

J. Banks, et al., *A Study of Detonation Propagation and Diffraction with Compliant Confinement*, Combust. Theory and Modeling (preprint).

Thank you!!

Questions??