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Overview

Compressible Multi-Material Flows:
     Introduction
          - Motivation/Goals

     Mathematical Model
          - Governing equations (Multi-material reactive Euler equations)
          - Model reaction systems

     Numerical Technique
          - High-resolution Godunov method
          - Adaptive mesh refinement (AMR) for sharp features
          - Treatment of material interfaces
          - Treatment of stiff reaction sources

     Numerical Examples
          - Algorithmic verification via simple rate stick
          - Detonation dynamics for expanding geometry (“dead zones” and desensitization)
          - Detonation dynamics for converging geometry

Summary

Questions



Introduction

Motivation:
     - Attractive features of shock capturing methods 
          - AMR
          - Smooth mapped geometries on logically rectangular structured meshes
          - Non-linearly stable high resolution numerical methods (e.g. TVD)
          - Direct discretization of integral conservation laws

     - Shock capturing methods traditionally have difficulty with material interfaces
          - Numerical oscillations (particularly in the pressure)
          - Tightly coupled to stiff reaction sources causes unphysical results      

Goals:
     - Develop a multi-material numerical capability that allows an accurate treatment of 
       interfaces within a shock-capturing,  overlapping grid,  AMR framework

     - Verify this method for reacting flows via a simple reacting rate stick and shock polar analysis

     - Study detonation dynamics for diverging geometries (dead zone formation)
          - Standard ignition-and-growth (I&G) model
          - Extended I&G model to include shock desensitization

     - Study detonation dynamics for converging geometries



Compressible Multi-Material Flows

Non-reactive case:
    e.g. shock-bubble interaction

Mixture state
variables:



















ρ density

(u1, u2) velocity

p pressure

e internal energy

Reactive case:
    e.g. explosive rate stick

Species
variables:















µ mass fraction of
material r

λ mass fraction of
gas products

material “r”

µ=1, !=0

(solid explosive)

material “r”

µ=1, !=1

(gas products)

material “i”

µ=0

(inert confiner)

inert shock

interface
detonationmaterial “r”

µ=1 (air)

material “i”

µ=0 (freon)

shock

bubble interface



Governing Equations

Multi-material reactive Euler equations (2-D):

     where

Mixture EOS:

Mixture rules:                                                     Closure assumptions:

Mechanical: Thermal:

ek =
pkvk

ωk
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k = s, g, i
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v = µ [(1 − λ)vs + λvg] + (1 − µ)vi
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E = e(ρ, p, µ,λ) +
1
2
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2), R = reaction rate, S = desensitization rate

∂

∂t





ρ
ρu
ρv
ρE
ρµ
ρλ
ρφ





+
∂

∂x1





ρu
ρu2 + p

ρuv
u(ρE + p)

ρuµ
ρuλ
ρuφ





+
∂

∂x2





ρv
ρuv

ρv2 + p
v(ρE + p)

ρvµ
ρvλ
ρvφ





=





0
0
0
0
0

ρR
ρS







Reaction/EOS Models: Case 1

Pressure-dependent rate law:

Mixture ideal-gas EOS:

No desensitization model:

R = σ(1 − λ)ν(p − pign)n

where
σ = prefactor ν = depletion exponent

pign = ignition pressure n = pressure exponent

Fk = Zk = 0

which gives

e = pv

{

µ [(1 − λ)Cv,s + λCv,g] + (1 − µ)Cv,i

µ [(1 − λ)Cv,sωs + λCv,gωg] + (1 − µ)Cv,iωi

}

+ µ(1 − λ)∆Q

where

∆Q = heat release
Cv,k = specific heat

ωk = γk − 1

}

k = s, g, i



Ignition-and-growth rate law (Lee & Tarver, 1980’s):

     where

Mixture JWL EOS:

Desensitization model:

     - Parameters for reactive material fit to experimental data (e.g. PBX-9502)
        - Parameters for inert material chosen to mock “strong” or “weak” confinement

Reaction/EOS Model: Case II

RI =
{

0
I(1− λ)b(ρ/ρ0 − 1− a(φ))x

if ρ/ρ0 < 1 + a(φ)
if ρ/ρ0 ≥ 1 + a(φ) and λ ≤ λI,max

(hot spot ignition)

RG1 =
{

G1(1− λ)cλdpy

0
if λG1,min(φ) < λ ≤ λG1,max

if λ > λG1,max
(rapid growth)

RG2 =
{

0
G2(1− λ)eλgpz

if λ < λG2,min

if λ ≥ λG2,min.
(slow growth)

R = RI +RG1 +RG2

Fk(V ) = Aj

(
V
ωk
− 1

R1,k

)
exp (−R1,kV ) + Bj

(
V
ωk
− 1

R2,k

)
exp (−R2,kV )

Zk(V ) = Aj

(
V
ωk

)
exp (−R1,kV ) + Bj

(
V
ωk

)
exp (−R1,kV )





k = i,s or g

S = Arp(1− φ)(φ + er)



Numerical Method

• Godunov-type, shock-capturing scheme on a domain discretized using composite 
overlapping grids (overset grids).

• Riemann problems handled using Roe approximate Riemann solvers (extended to handle 
the equation of state for the mixture).

• Reaction source term is handled with a Runge-Kutta error-control scheme.

• AMR is used to locally increase grid resolution near shocks, detonations and the material 
interface.

• An energy correction term is added (at the level of the truncation error) to suppress 
numerical errors in the pressure near the material interface.

Summary:

Sample AMR grid and solution:

2.0

.38

Pr
ess
ure



Basic time-stepping algorithm:

ReactiveEulerSolver(G, tfinal)
{

t := 0; n := 0;
un := applyInitialCondition (G);
while t < tfinal

if (n mod nregrid == 0) // rebuild the AMR grid

e := estimateError(G, un);
G∗ := regrid(G, e);
u∗ := interpolateToNewGrid(un,G,G∗);
G := G∗; un := u∗;

end

∆t := computeTimeStep(G, un);

un+1 := advanceSolution(G, un,∆t); // reactive Euler time step

interpolate(G, un+1);
applyBoundaryConditions(G, un+1, t + ∆t);
t := t + ∆t; n := n + 1;

end
}



For each component grid at a fixed time...

Sample refinement near grid overlap:

component grid 1
(base level)

AMR grid belonging to 
component grid 1

component grid 2
(base level)

AMR grids belonging to 
component grid 2

interpolation
points

Adaptive mesh refinement (AMR):

• compute error estimate ei,j based on second differences of the components
of the solution and on the reaction rate

ei,j =
m

∑

k=1

sk

(

|∆2
rU

(k)
i,j | + |∆2

sU
(k)
i,j |

)

+ sR|τi,j |

• smooth ei,j and interpolate to the overlap (if any) from neighboring com-
ponent grids

• build refined (child) grid patches that cover all cells with ei,j > tol

• interpolate solution from the coarse (parent) grid or copy solution from
old child grids, if they exist



Overlapping grid...

Mapping...

Mapped equations...

Fractional-step scheme...

Component grid time step:

x = Gg(r, t), x = physical space, r ∈ [0, 1]2 = computational space

G = {Gg}, g = 1, . . . ,N Includes base grids + AMR grids

∂

∂t
u +

1

J

∂

∂x1

f̂1(u) +
1

J

∂

∂x2

f̂2(u) = h(u)

where

f̂1 = a2,2 f1(u) − a1,2 f2(u), f̂2 = a1,1 f2(u) − a2,1 f1(u), (mapped fluxes)

and

ai,j =
∂xi

∂rj

, J =

∣

∣

∣

∣

∂(x1, x2)

∂(r1, r2)

∣

∣

∣

∣

(metrics and jacobian are given by Gg)

Un+1
i

= Sh(∆t/2)Sf (∆t)Sh(∆t/2) Un
i , Un

i = cell average of u at ri, tn



Godunov schemes (e.g. 1D)...

Energy correction...

Update...

Convective term update: U∗

i
= Sf (∆t) Ui

∆E∗

i = ρ̃ie
(

ρ̃i, p̃i + ∆pi, µ̃i, λ̃i

)

− ρ̃iẽi, ∆pi = pi − p̄i

U∗

i = Ũ∗

i + ∆G∗

i , where ∆G∗

i =
[

0, 0, ∆E∗

i , 0, 0
]T

Ũ
∗

i = Ui −
∆t

J∆r

(

Fi+1/2 − Fi−1/2

)

Ū
∗

i = Ui −
∆t

J∆r

(

F̄i+1/2 − F̄i−1/2

)

(standard Godunov) (adjusted for uniform pressure-velocity flow)

Ui
*

~
Ui
*

_

Ui+1Ui!1 Ui

Fi!1/2 Fi+1/2

Ui!1

_ _
Ui+1

Fi!1/2 Fi+1/2

_ _

(ui , pi)

"r

"t



Energy-corrected scheme: test cases
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1D Riemann problem...

(ρL, uL, pL, µL) = (0.138, 0.5, 1.0, 1.0) (ρR, uR, pR, µR) = (1.0, 0.5, 1.0, 0.0)

for x < 0.4 at t = 0 (helium on the left) for x ≥ 0.4 at t = 0 (air on the right)

Solution at t=0.1: black = exact, blue = Godunov w/out correction, red = Godunov w/ correction



Simple reacting flow test case:

Simple rate stick with ideal gas EOS and pressure dependent rate law:

explosive (region 1)

booster (region 2)
inert (region 3)
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Simple reacting flow test case:

Shock polar analysis:
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Motivation: Corner-turning experiments...

Model geometry...                                                             Reaction/EOS 

Base grid + AMR...

Detonation diffraction at a 90-degree corner:

PROTON RADIOGRAPHY EXAMINATION OF UNBURNED
REGIONS IN PBX 9502 CORNER TURNING EXPERIMENTS

Eric N Ferm, Christopher L. Morris, John P. Quintana, Peter Pazuchanic, Howard Stacy,
John D. Zumbro, Gary Hogan, and Nick King

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract.  PBX 9502 Corner Turning Experiments have been used with various diagnostics techniques
to study detonation wave propagation and the boosting of the insensitive explosive.  In this work, the
uninitiated region of the corner turning experiment is examined using Proton Radiography.   Seven
transmission radiographs obtained on the same experiment are used to map out the undetonated regions
on each of three different experiments.  The results show regions of high-density material, a few
percent larger than initial explosive density.  These regions persist at nearly this density while
surrounding material, which has reacted, is released as expected. Calculations using Detonation Shock
Dynamics are used to examine the situations that lead to the undetonated regions.

INTRODUCTION

  The PBX 9502 corner turning experiments were
one of many explosive assemblies used to study the
initiation and boosting requirements of insensitive
explosive.  The experiment was able to identify
differences in materials that had subtle particle size
changes in the material.  The experimental
configurations shown in Fig. 1 show two of the
charges used for this work.   Although the charges
from different experimental groups differ in details,
they can be described as consisting of three
sections, an initiation/booster charge, a smaller
diameter donor charge, and a larger diameter
acceptor charge. The most common diagnostic
used on these assemblies was to place a flasher
material along the edge of the acceptor charge and
measure the axial distance from the face of the

acceptor to the first breakout on the cylinder edge1.
With an ideal explosive, first breakout occurs at the
face of the acceptor.  The further down the
acceptor charge the breakout occurred, the more
difficulty the donor had initiating the acceptor.

FIGURE 1.  Corner turning charges used in PRad0067 and
PRad0068 experiments.

Radiographs of planar corner turning
experiments have been taken using the PHERMEX

radiographic machine2.  Radiographs showed
regions of high-density material that did not
appeared to have reacted or expanded significantly.

ANALYSIS

A high-density region is visible in Figure 3,
which appears to emanate out of the detonation
front and widen as it approaches the face of the
acceptor charge.  Analysis of the images indicates
the average density is higher than the initial density
of the explosive, which is confirmed by examining
Figure 2.

The leading edge of the deadzone is radially
expanding about 3.3 mm/µs while the trailing edge
is expanding about 0.9 mm/µs.  The attachment
point to the detonation wave was estimated by
extrapolating the surface leading the deadzone and
the trailing edge back to where it appears to blend
into the detonation front.  The axial position of the
attachment point is entering the charge at 3.mm/µs
and then slows down to near zero. In the 12- and
18-mm donor charges, the attachment point enters
acceptor as deep as 13- and 11-mm respectively.
Radially growth is initially stalled, and then rapidly
increases to more than 6 mm/µs.  During this
period it becomes clear that the detonation wave
has turned the corner, i.e. the detonation wave has
a point that is radially expanding to the wall, and
will be the first breakout point.

MESA calculations using Detonation Shock
Dynamics (DSD) 5 are compared with the
experiment in Figure 4.  DSD as implemented has
no curvature failure criterion.   Without a criterion,
it can easily be seen that the deadzone is not
modeled nor does the calculation reproduce the
corner turning distance.  Although the curvature
slows the wave propagation along the face of the
acceptor it is not sufficient to model the effect.
The existence of the deadzone is required to model
the corner turning effect.

A boundary of the dead zone can be chosen by
connecting up the detonation wave attachment
points found in the experiment.  This region is
about twice as big as the estimated mass of the
dead zones from the radiographs.  When this
boundary is used in the calculation the corner
turning distances is represented much better,
although this is not surprising.

The significant overestimation of the deadzone
mass indicates that there is reaction taking place in

the vicinity of the attachment point.  The size of
dead zone region is influenced by several factors,
including rarefactions coming from acceptor face,
possible shock desensitization, and the length of
time before rarefactions quench shocked explosive.

FIGURE 3.  Volume density image of the 12 mm corner turner
experiment 25.3 µs. The identified regions are used in
describing the deadzone region.

FIGURE 4.  A MESA calculation of density is shown on the
right half of the above image, while the left side is and average
density from the two symmetric sides in figure 3.

rate-stick charges.                       Volume density image.

Eric N. Ferm, et al.
Proton Radiography Examination 
of Unburnt Regions in PBX 9502 
Corner-Turning Experiments

Ignition-and-growth model 
with reaction rate and EOS 
parameters calibrated to the 
explosive PBX 9502.

(Tarver & McGuire, 2002)

axis of symmetry

donor charge

acceptor chargeinert material

booster

6 mm

25 mm

hbase = 0.1 mm + 2 AMR grid levels ⇒ heff = 0.00625 mm

(approximately 75 grids cells across the reaction zone)



inert

material

reaction

products

inert

material

reaction

products
solid

explosive

detonation

shock

reaction

zone

interface

inert

material

reaction

products

inert shock

interface

inert

material

reaction

products
solid

explosive

interface

(undisturbed)

detonation

(forming)

Stage 1: ignition and run to steady state in the donor charge...

0.0                             Pressure                          34 GPa

t = 1.0 µs

t = 3.5 µs

Detonation forms from the high-pressure “booster” state and runs to steady state in 
the donor charge.



Stage 2: detonation diffraction in the acceptor charge...

0.0                     Reaction progress                     1.0 0.0                             Pressure                          34 GPa

t = 7.25 µs

non-desensitized

desensitized



Stage 2: detonation diffraction in the acceptor charge...

non-desensitized

desensitized

t = 7.75 µs

0.0                     Reaction progress                     1.0 0.0                             Pressure                          34 GPa



Stage 2: detonation diffraction in the acceptor charge...

non-desensitized

desensitized

t = 8.25 µs

0.0                     Reaction progress                     1.0 0.0                             Pressure                          34 GPa



t = 8.75 µs

Stage 2: detonation diffraction in the acceptor charge...
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desensitized

0.0                     Reaction progress                     1.0 0.0                             Pressure                          34 GPa



Motivation: “pencil” experiments...

Model geometry...                                                             Reaction/EOS 

Base grid + AMR...

Detonation failure in converging geometry:

experimental setup

T. R. Salyer and L. G. Hill
The Dynamics of Detonation 
Failure in Conical PBX 9502 
Charges

Ignition-and-growth model 
with reaction rate and EOS 
parameters calibrated to the 
explosive PBX 9502.

(Tarver & McGuire, 2002)

hbase = 0.1 mm + 2 AMR grid levels ⇒ heff = 0.00625 mm

(approximately 75 grids cells across the reaction zone)
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“Initial Conditions”: quasi-steady state prior to cone ...

Analysis of “subcritical” cones (a la Salyer and Hill)
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θ = 30◦, t = 0



Detonation Dynamics: shallow cone angle ...
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Detonation Dynamics: moderate cone angle ...
θ = 25◦
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Detonation Dynamics: sharp cone angle ...
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Detonation Dynamics: interface destruction ...
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Detonation Dynamics: interface destruction ...
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Results are nearly identical for desensitized and non-desensitized models



Conclusions:

- An accurate and efficient numerical treatment of material interfaces for shock capturing schemes

- Overlapping grids used to capture complex geometry

- Validation on simple rate stick (shock polar analysis)

- Studies of detonation diffraction in shock desensitized high explosives

- Studies of detonation dynamics in converging rate sticks

Full details appear in...

J. Banks, D. Schwendeman, A. Kapila and W. Henshaw, A high-resolution Godunov 
method for compressible multi-material flow on overlapping grids, J. Comput. Phys.

J. Banks, et al., A Study of Detonation Propagation and Diffraction with Compliant 
Confinement, Combust. Theory and Modeling (preprint).
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Questions??


