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ABSTRACT

Relying on differing assumptions, published models for
predicting squeeze-film damping (SFD) give widely different
results in the free-molecule regime, where the distance
traveled by gas molecules between collisions in free space is
much larger than the thickness of the film. The work presented
here provides experimental data for validating SFD models.
The test device was an almost rectangular MEMS oscillating
plate supported by beam springs. The structure was base-
excited, and the velocities of the suspended plate and of the
substrate were measured with a laser Doppler vibrometer and
a microscope. Experimental modal analysis processed the
velocity to give the damping ratio. The test structures were
contained in a vacuum chamber with air pressures controlled
to provide a five-order-of-magnitude range of Knudsen
numbers. The damping coefficients from the measurements
were compared with predictions from various published
models. The resulting knowledge of damping as a function of
Knudsen number is useful in designing many structures such
as MEMS oscillators, sensors and switches.

p pressure at (x,y), Pa ¢
nd = non-dimensional.

modal damping ratio, nd

1 INTRODUCTION

Oscillating structures at the micron and smaller scales
have played an important and increasing role in the last two
decades because of such applications as the atomic force
microscope, resonant sensors, and MEMS oscillators. Because
of the high surface-to-mass ratios, dynamic motions of small
structures are affected tremendously by fluid damping. For
most planar MEMS structures, the dominant fluid damping is
squeeze-film damping (SFD), where fluid is squeezed in and
out of a gap between the moving structure and the substrate
(Fig. 2).

Continuum-based models assume that the gas is a
continuum, meaning that gradient of pressure is continuous
throughout the gas. Continuum-based squeeze film damping
models are based on the linearized Reynolds equation (Blech,

1983).
thvz(pj_@(pj:@@, (1)
12u P) ot\P) oOt\h

where x and y denotes coordinate axes, and z is the plate
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Figure 1: Squeezed gas film between a substrate and a
moving plate.

Continuum-based models may break down when the
distance traveled by gas molecules between collisions in free
space is much larger than the thickness of the gap (Fig. 2). In
that rarefied or free-molecule regime, gradients are not
continuous, or do not even exist. Therefore, some researchers
argue that continuum models should not be used in the free-
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molecule regime (Bhiladvala and Wang, 2004). The regime of
gas damping is determined by the Knudsen number, which is
the molecular mean-free-path length divided by the thickness
of the gap. The free path length is illustrated in Fig. 1 as the
distance traveled by a particle from one collision to the next.

The mean free path is
P 2RT )
P\ m,

The Knudsen number is
K,=1.016 A/h. (3)

Schaaf and Chambre (1961) define the free-molecule regime
as K; > 10. Knudsen numbers are high when the gap is very
small, as typical of micro- and nano-scale structures. In
experiments, high Knudsen numbers can also be achieved by
lowering the gas pressure.

- - - -
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Figure 2: Gas particles between a substrate and a moving
plate.

Lacking experimental data, published models for
predicting SFD are based on varying assumptions. Those
models give widely different results especially in the free-
molecule regime. The work presented here attempts to provide
experimental data for comparing the existing SFD models,
helping in making decision on which model(s) to use.

2. GAS DAMPING MODELS

2.1 Non-Gradient-Based Models

For lack of a better concise term, this text will use the
term non-gradient-based models to refer to models that are not
based on continuum equations like Eq. (1). The non-gradient-
based models discussed here are based on the reasoning that
gas damping forces on solid structures are caused by the
collisions of the gas molecules impinging on the structure’s
surfaces. When bouncing on a plate, gas particles impart
momentum change. A statistical average of the momentum
change from all the particles bouncing on the plate results in
pressure. If a plate moves in the gas, the leading face of the
plate will receive a higher pressure than the trailing face. The
difference in pressures creates the damping force. The non-
gradient-based models in the next few paragraphs have been
compared to damping measured on a micro scale silicon beam
by Zook et al (1992) (henceforth Zook’s data). The
comparisons will be shown in this section after a brief
summary of the models. The models predict the damping
factor, which is

c=-F /2 4)

damping plate

where Fumping 18 the force on the plate due to gas damping, and

z is the velocity of the plate.

plate

Christian (1966) proposed that

CC/zriStian — 4 2m Ap (5)
\| kT
where

Newell (1968) used Christian’s model to derive gas
damping coefficient

c Newell — 2m p (6)
7k, T pbf,

Newell’s model was used by Zook et al (1992), who provided
experimental data against which other researchers have
compared their gas damping models.

Kadar et al (1996) proposed an improvement to
Christian’s model by replacing its Maxwell-Boltzman gas
molecule velocity distribution with the Maxwellian stream
distribution, resulting in

chddr = T CChrstian (6)

Li et al (1999) improved on Kadar et al’s model by
correcting the velocity of the moving structure relative to the
fluid, resulting in
1.57 (7)

=—FC, L
M 2 “Christian
I+5 R U

In comparing their models to Zook’s data, the authors of
the above three models assumed that the structure in Zook et
al’s experiment was moving in free space, and there was no
gap or substrate to create a squeezed film. Kéadar et al argues
that, in the rarefied gas regime, squeeze film damping is the
same as free-space damping. However, Bao et al (2002)
pointed out that the geometry of the gap should have been
included in the models since the gas was squeezed between
the moving structure and the substrate. Bao et al’s correction
resulted in

CLi

ircumferaice /h
cBua = 1%771' Christian’ (8)
where, for a rectangular plate with a width @ and length b,
Lcircum/erence = 2(a+b) (9)

The above models were not derived from gradient-based
theory like the Reynolds equation. Their derivation is based on
reasoning of the averaged effect of gas particles colliding on
the structure. However, they are not based on actual molecular
dynamics either. A model that is truly based on molecular
dynamics was developed by Hutcherson and Ye (2004), who
developed a molecular dynamics code that simulated the
motion of a large number of molecules in the squeezed gas
film. Using Bao’s assumptions, Hutcherson and Ye’s
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simulation reproduced Bao’s result. Subsequently, Hutcherson
and Ye employed an improved relationship between the
particle velocity and the number of collisions, and showed that
the resulting damping factor for Zook’s beam was 2.233 times
higher than Bao’s calculation.

Except for Christian’s model, the attempt to validate the
above models was to compare them to Zook’s data. Zook et al
performed the measurement on a micro-beam of the following
properties: length 5 = 200um, width a = 40um, and gap size 4
= 1.1um. Using those parameters, the models are used here to
calculate the quality factor O, which is then translated into the
damping ratio £ defined here as

£=0.5/0 (10)

The resulting damping ratios are plotted against pressure in
Fig. 3. Hutcherson and Ye’s molecular dynamic simulation
results are directly from their publication. Zook’s
measurement result plotted on the same graph shows that each
model improvement brings the damping ratios closer to the
measured damping ratio.
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Figure 3: Damping ratio calculations from published particle-
based models attempting to match published measured data.

From Fig. 3, it is apparent that the most improved model,
i.e. Hutcherson and Ye’s, is the closest to the measured data in
the rarefied regime. However, Bao et al’s model is closer to
the measured data at 1000Pa or higher. In fact, at 10* Pa
Hutcherson and Ye’s damping is almost an order of magnitude
higher than Zook’s data. Each model improvement resulted in
a factor, which is a vertical shift of the damping-versus-
pressure curve on the log-log scale. All of the model results
have the same slope. On the other hand, Zook et al’s measured
damping curve has a slope that is significantly different from
the models’ slope. This difference calls for a closer scrutiny of
the assumptions used in deriving the models, especially of
whether those assumptions agree with the conditions under
which Zook et al’s damping data were obtained. The
comparisons below is limited to region II in Zook et al, in

which the gas is rarefied, but damping in the solid (“intrinsic
damping”) is negligible compared to gas damping.

Zook et al mentioned that a source of discrepancy
between Newell’s damping calculation and Zook’s data was
that the geometries of the air space were quite different. The
calculation assumed free or open space. The measurement was
done on a beam sandwiched between two squeezed air film,
one beneath the beam and another on top of the beam.
Squeeze-film damping can be much higher than free space gas
damping especially if the squeezed gas film is very thin.

The second source of discrepancy was the structural
boundary conditions of the beam. Table 1 has sketches of
boundary conditions used in deriving the models above versus
the boundary conditions of the structures used in obtaining
data for wvalidating the models. Zook et al used
Christian/Newell model for a cantilever (clamped-free) beam.
Yet they showed that their test structure was a clamped-
clamped beam. In fact, their finite element simulation with the
clamped-clamped boundary conditions resulted in natural
frequencies that agreed very well with their measured natural
frequency. The structural velocity distribution of the cantilever
is very different from that of a clamped-clamped beam. For
example, the right end of Newell’s cantilever has the highest
velocity of all points along the beam. On the other hand, the
right end of Zook et al’s beam has zero velocity. Gas damping
calculation from Christian/Newell’s model probably should
not be compared directly to Zook’s data.

Kadar et al and Li et al derived their gas damping model
for a rigid beam pivoting about its center with some torsional
spring. The ends of the beam had the highest structure
velocity. Yet they compared the calculation directly to Zook’s
measured beam, where the ends of the beam had zero velocity.

Bao et al and Hutcherson and Ye developed their models
for the case where the gas damping is caused by an air film
squeezed between the moving plate and the substrate. Zook et
al showed that the gas damping on their test device was indeed
caused by squeezed films. But in fact there were two squeezed
film in their test device because, in addition to the substrate,
the device also had a lid close to the beam. Another source of
discrepancy between the models and Zook’s data was the fact
that the test structure was a flexible beam. Bao et al and
Hutcherson and Ye’s models assume a rigid beam moving up
and down. In the models the ends of the beam move at the
same velocity as the center of the beam. In Zook’s device, the
ends of the beam were clamped and had zero velocity.

Table 1 and Fig. 4 lead to the following conclusion from
the above literature study: models that do not use the structural
velocity distribution correctly will not predict gas damping
correctly.
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Table 1: Structures assumed in deriving gas damping
equations (middle column) versus structures measured for
validation data (right column).

Reference Structure assumed in Structure used in
model comparison
measurement

Christian 1996 —% Nothing conclusive
Newell 1968 2— _ None

Zook et al. — —
1992 Newell (see above) — .

Kadar et al.
1996 —% Zook et al. (see above)
Lietal. 1999 _ﬁ_ Zook et al. (see above)

Bao et al.
2002 ot s R A R Zook et al. (see above)
Hutcherson

I
and Ye 2004 ) Zook et al. (see above)

Modeling the structural velocity distribution of a plate
vibrating with squeeze film damping is by no means a trivial
task. Nayfeh and Younis (2003) developed a model that does
that task elegantly for a flexible clamped-clamped beam like
the beam in Zook et al’s experiment. Their squeeze film
damping calculation agrees well with experimental data
published by Legtenberg and Tilmans (1994) from
atmospheric pressure down to five orders of magnitudes lower.
Agreement with the experimental data at such low pressures
shows that their model is quite accurate in the free-molecule
regime.

2.2 Continuum Models

It must be pointed out that Nayfeh and Younis’s model
was based on the continuum Reynolds equation without any
molecular dynamics. The lesson learned from the comparison
among models so far is that the continuum Reynolds equation
may well be more accurate than the non-gradient-based
models discussed so far -- in the non-continuum regime.
Reynolds-equation-based squeeze film damping models are
worth considering for prediction of damping in the free-
molecule regime. Besides the indication of accuracy
mentioned above, the reasons for using the continuum models
include the following. Continuum models have been
developed and established longer than molecular-based
models. The constitutive equations used for developing
continuum models have long been proven.

Except Christian and Newell who predated Zook et al, all
the researchers in Table 1 used Zook’s data even though their
theoretical derivation was based on very different conditions.

The reason was that very few publications presented
experimental data for rarefied gas damping better than Zook’s
data. Consequently, none of the publications show in Table 1
shows a model and experimental data that are both based on a
common structure and boundary conditions. An attempt to
validate a model with an experiment based on different
conditions than the model is not likely to be meaningful. On
the other hand, for continuum-based models experimental data
are available from tests under conditions that match the model
assumptions. This is another important reason to consider
continuum models for predicting SFD in the free-molecule
regime. Table 2 lists the references that present such models
and references that present experimental data correctly
corresponding to the models. This paper will discuss only the
case of a rigid rectangular plate moving up and down,
squeezing a gas film between the plate and the substrate.

Table 2: Afew squeeze film damping theories that have been
compared with experiments on a micro structure with boundary
conditions consistent with the theory.

Rigid structure Flexible Structure

I _ -_—
| —
e e )

Blech 1983, Veijola

Theory 2004, Gallis and Nayfehze:)r(l)(;Younls
Torczynski 2004.
[ Andrews et al. 1992, foof e{)al 19931’
Experiment  [Veijola 2004, Sumali cgienbers an
and Epp 2006. Tilmans 1994, Cheng
and Fang 2005.

Yet another reason for using Reynolds-equation-based
models is that the Reynolds equation facilitates the calculation
and the use of correct pressure distribution throughout the
plate due to SFD. To illustrate that statement, Fig. 4 shows a
model of what was likely to have happened in Zook et al’s
experiment with the clamped-clamped beam. Fig 4.a is a
cartoon of the deflected beam positioned between the substrate
beneath and the lid above. In deflecting, the beam squeezes
the air films, one film between the beam and the lid, and
another film between the beam and the substrate. For this
illustration, a finite element model was developed using the
commercial package COMSOL™, using Zook et al’s
dimensions and the squeeze-film damping model in the
MEMS module. Figure 4.b shows that the pressure due to SFD
varies not only along the beam, but also across the width of
the beam even though the deflection of the beam is not a
function of position across the width. Reynolds-equation-
based models facilitate correct pressure distribution
throughout the plate due to SFD, unlike the models in Table 1.
(Finite element methods and models for calculating SFD will
not be discussed further in this paper, since the paper’s
objective is to compare reduced-order models.)
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The Reynolds-equation-based models discussed in this
paper assume:
1. Rigid plate;
2. Small gap h/a<<l;
3. Small displacement ey/h<<1;
4. Small pressure variation p/P<<I;

Film pressure

Double squeeze films e
distribution

%

— e

Figure 4: a)Damping from double-squeezed films; b)Non-
uniform distribution of pressure throughout the beam.

2.2.1 Blech’s Model

In addition to the four assumptions above, Blech’s model
assumes:
5. Isothermal process;
6. The pressure right outside the plate edges = P (trivial

boundary condition);
7. Small molecular mean free path
8. No inertial effects of gas moving in and out of the gap.

The damping coefficient as a function of the plate
oscillation frequency is

ngu»h(w):@a%u Z m2+n2(a/b)2 , (11)

6 13
n° h m,noddmznz[mz+n2(a/b)2]2+62/7r4

where frequency and pressure are combined into the squeeze

number
c :12“(;11) (;‘;j (12)

Assumptions 7 and 8 above mean that Blech’s model is
not to be used for predicting SFD in the rarefied gas regime.
The model was developed mainly for liquid films. It is
included here because it is important historically and in many
practical SFD calculations, and its limit is an extremely simple
model, discussed next.

2.2.2 Andrews et al’s Model
For low squeeze numbers, Blech’s model reduces to [2]

272
CAmIrcw.\' — 042 a b .Lt s (13)
h3
henceforth referred to as Andrews et al’s model. Despite its
extreme simplicity, Andrews et al’s model will be shown later
to be quite accurate in the low Knudsen number regime.

2.2.3 Veijola’s Model

Veijola (2004) did away with Blech’s assumptions 6 and 7
above. Perhaps the most significant feature of the resulting
model is the replacement of the trivial boundary conditions

with a boundary condition that gives a much more accurate
transition from the pressure in the gas film under the footprint
of the plate into the ambient pressure away from the plate.
This is a major improvement over Blech’s and other models,
that assume that the pressure under the perimeter of the plate
is the ambient pressure (trivial boundary condition).

To use Veijola’s model, first, calculate the modified
Reynolds number

R.= ph’o/pu. (14)
Then calculate a complex frequency variable
g=+jop/ulh (15)
Veijola’s SFD model also takes into account the inertia of the
squeezed gas film. A frequency-dependent coefficient that

accounts for the effect of inertia on the flow of gas in and out
of the gap is

pr

_ 12u [gh-[2-g’1016AR}ann(gh/2)] (1)
Jjoph'q 1+1.016Aq tanh(gh/2)

The above coefficient is used to modify Reynolds equation.
The solution for a rectangular plate is a series summation over
odd indices m and # containing the terms

G ) (o (17)
"™ 768uab \ a® b
and
_ ' h(mn) (18)
" 64abn, P

Finally, the gas damping coefficient is

CW@pm{i il}. (19)

miis s 0 G + j0OC,,
In the above equation, Re[] means “the real part”.

2.2.4 Gallis and Torczynski’s Model

Gallis and Torczynski (2004) developed a truly
molecular-dynamics-based model by Direct Simulation Monte
Carlo method for SFD on a rigid beam. Their model takes
advantage of both Reynolds equation and molecular dynamics.
It is free from many assumptions that limited earlier models.
In particular, it is free from trivial boundary conditions.
Furthermore, Gallis and Torczynski adapted that model with a
continuum-based shape factor derived for a plate. The result is
summarized in Sumali et al (2007).

3. NEW TEST STRUCTURE AND ITS MODEL
Figure 3 shows that it would be very difficult to explain the
slope in Zook’s data perfectly with any of the model discussed
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here. A new set of data will be very useful. The test structure
discussed in this paper can be modeled as a rigid rectangular
plate supported by springs as shown in Fig. 5. A gas layer is
squeezed between the plate and the stationary base. (Details of
the structure can be found in the Experiment section later.)
Figure 5 shows the plate suspended by a structural spring k;
and structural damping dashpot ¢,. To excite oscillations, the
base is vibrated with a displacement Z,(®), where © denotes
radian frequency. The displacement response of the plate is
Z,(®). The difference between Z,(w) and Z,(w) is here referred
to as the gap squeeze

Z=2,-2, (20)

which expands and squeezes the air gap between the base and
the plate, resulting in squeezed-gas force. (Capital letters
denote the Fourier transform of the corresponding variable in
lower case letters.)

Plate

Structural 1

spring—k,
Structural  plmmEEeE T\

damping Gas film

e

“Base excitation

Figure 5: Model of oscillating plate showing squeeze-film
force.

The acceleration of plate is
mZ, =kz+cz, (21)

where the total damping coefficient is
c=cyt+ A (22)

The total damping coefficient ¢ will be obtained from the
experiments. The structural damping coefficient ¢ must be
subtracted from the total damping coefficient to obtain the gas
damping coefficient ¢** , which will later compared with the
various gas damping models discussed in the previous
sections.

The experiment measures the plate displacement z, and the
base excitation displacement z,. Therefore, the transmissibility
from base displacement to plate displacement,

Hypoa5(0) = Z(0)/ Z( o), (23)

is obtained from the measurement. The above measured
transmissibility can be used to calculate the frequency
response function from the base displacement to the gap
squeeze, which can be shown to be

2

_Z(o) _ ) . (24)
Hlw) J0) -0+ je2n,+o]

N

where( is the damping ratio defined as

E=clCmyw,), (25)

and w, is the natural frequency which is

o = Jk/my - (26)

The effective mass m,,; is the mass of the plate augmented by
a portion of the mass of the springs because the springs
oscillate with the plate. A lumped-parameter system equivalent
to the mass-springs structure can be derived with the Rayleigh
method (Blevins, 1995):

=m,  +4x0.37m,

mejf plate spring *

27
The factor 4 is inserted because the structure has four springs.
The plate mass m is estimated from the measured plate

plate
dimensions and a mass density of 19300 kg/m’ for gold. It is
assumed that the thickness is uniform throughout the structure.
From Eq. (21) and (23), it can be shown that

H(CO) = Hmeas(w) '1~ (28)

Curve fitting of H(w) into the form in Eq. (24) will give the
natural frequency o, and damping ratio £. To obtain the gas
damping ratio &, the structural damping ratio must be
subtracted from the total damping ratio &. Following Eq. (22),

¢r=0-4 (29)

where ¢ is the structural damping ratio. Thus, the gas
damping ratio £&“ can be obtained from the measured
transmissibility, provided that the structural damping ratio ¢ is
known. (A method to obtain the structural damping ratio will
be presented later.) The gas damping coefficient ¢"** from the
models discussed earlier can be converted into gas damping
ratios "% using E.q (25), and finally compared with the
measured gas damping ratio &*.

4. EXPERIMENT

Figure 6 shows the test structure, which consisted of a
plate suspended by four folded-beam springs. One end of each
spring supports the plate, and the other end is anchored to the
substrate. The structures were made of electro-deposited gold.
The design width of the plate was ¢ = 155.6 um.
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Folded-cantilever springs

N Plate width
155.6 pm

Air gap /
Mean thisgness = 4.1 Anchored to substrate
v}

X

Figure 6: Test structure.

Designed originally as MEMS switches, the test structures
had a plate that was not rectangular as modeled in the previous
sections. The four trapezoidal tabs on the ends of the plate
were designed to carry contact dimples for conducting
electrical transmission. In applying the analytical models
described above for rectangular plates, the needed length b is
estimated by equating the area of the plate including the four
trapezoidal tabs to ab, as shown in Fig. 7.

el

Figure 7: Equivalent length b = Area of plate including tabs
divided by width of plate a.

The experimental setup can be summarized as follows. A
piezoelectric transducer shakes the substrate with random
vertical displacement. As a result, the plate oscillates
vertically, expanding and squeezing the air layer between the
plate and the substrate. The suspension springs flex and
provide a restoring force to sustain the oscillation. A laser
Doppler vibrometer (LDV) with a microscope measured the
velocities at one point on the substrate (the “base”), and 21
points all over the plate and the springs. All data were
obtained under small excitations where linear responses were
verified. The spot size of the laser was about 1 um. The test
structures were contained in a vacuum chamber with air
pressures from atmospheric down to five orders of magnitude
lower.

Microscope Die under test
Laser beam

V

PZ T actuator aenin
chamber

(shaker)

Figure 8: Test setup.
RESULT

The measured transmissibility (plate velocity divided by
base velocity) is converted into the gap transmissibility using
Eq. (28). A typical set of gap transmissibilities is shown in Fig.
9. Using a commercial package ME’ScopeTM, experimental
modal analysis (EMA) was performed on the gap
transmissibilities to determine the natural frequency and the
modal damping ratio. Mode shapes were also obtained. The
EMA computed three modes shown in Fig. 10. The mode of
interest is the lowest-frequency mode in which the plate
oscillates vertically while staying parallel to the substrate. The
two higher modes will not be discussed here.

F=3830mT

Gap Squeeze ! Base Displacement

Frequency. Hz
Figure 9: Gap FRF for all measured points.
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Ql6910Hz. .
~s

Figure 10: Measured natural frequencies and mode shapes
from experimental modal analysis.

A problem in comparing the models with the
measurement is the damping caused by the solid structure,
referred to here as the non-squeeze-film damping (nonSFD).
For damping measurements at low Knudsen numbers, nonSFD
is so much lower than squeeze film damping that it can be
ignored. However, at higher Knudsen numbers nonSFD
dominates the damping, and therefore must be included as an
important part of the comparison. As shown in Eq. (29),
nonSFD must be obtained before gas damping ratios can be
obtained from the measurement data. NonSFD is the damping
in the solid structure in the absence of any gas, i.e., at absolute
zero pressure. Because the absolute zero pressure is
unattainable, nonSFD is obtained here by extrapolation. Figure
11 shows the total gas damping ratios & from the measurement
at the seven lowest pressures. The pressure range in the graph
is so narrow that the § -versus-pressure relationship can be
assumed linear. Therefore, ¢ is curve-fit as a linear function of
pressure. The dashed line in Fig. 11 shows that the linear fit is
justified. NonSFD, which is the structural damping ratio &, is
the value of & at zero pressure, which is obtained as the zero-
pressure intercept of the linear fit. Subsequently, ** is
obtained by subtracting £ from { according to Eq. (29). The
resulting gas damping ratios are plotted with the + symbols in
Fig. 11.

K]
x 10

® Meas. total
~~~Linear fit -
1.5/ —Non sqgz. film -
* Squeeze film | -~

0.51

ol . ‘ ‘
0 20 40 60 80

. F’.ressure, Pa .

Figure 11: Non-squeeze-film damping as zero-pressure

extrapolate of total measured damping.

Gas damping ratios obtained from the above process for
all the pressures in the experiment are shown in Fig. 12. The

/

plot of the measured total damping as a function of pressure
has a sigmoidal shape. The zero-pressure asymptote is the
non-squeeze-film damping value. At the highest pressure, the
damping ratio appears to practically reach its saturation.
Subtracting the non-squeeze-film damping from the total
damping produces the squeeze-film damping as a function of
pressure, whose plot appears to have a slope of 1
decade/decade in the low-pressure region.

10 ° Measured total o * %
Man squeeze film ® ¢ ]
t  SBgueeze film
10 o E
?
=]
ap 10 a0 © o ,. |
. +
4 +
10 F . E
-
i L L L L
10D 101 102 103 104 105

Pressire. Pa

Figure 12: Measured squeeze-film damping obtained after
subtracting non-squeeze-film damping from the measured total
damping.

Finally, Fig. 13 show the gas damping ratio from all the
models discussed above, compared with the measurement
result.

CONCLUSIONS

*  On rigid plates with width ~150 mm, oscillating around
4.1 mm above the substrate, squeezed air film can cause
large damping.

*  The non-gradient-based models developed specifically for
the free-molecule regime are not necessarily more
accurate than current molecular models.

* For the conditions tested here, in atmospheric air the
simplest model mentioned by Andrews et al. is as good as
any more sophisticated models.

* In the high squeeze number regime (low pressures or high
frequencies), Veijola’s model appears to match
experimental data accurately.
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