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ABSTRACT
Relying on differing assumptions, published models for 

predicting squeeze-film damping (SFD) give widely different 
results in the free-molecule regime, where the distance 
traveled by gas molecules between collisions in free space is 
much larger than the thickness of the film. The work presented 
here provides experimental data for validating SFD models. 
The test device was an almost rectangular MEMS oscillating 
plate supported by beam springs. The structure was base-
excited, and the velocities of the suspended plate and of the 
substrate were measured with a laser Doppler vibrometer and 
a microscope. Experimental modal analysis processed the 
velocity to give the damping ratio. The test structures were 
contained in a vacuum chamber with air pressures controlled 
to provide a five-order-of-magnitude range of Knudsen 
numbers. The damping coefficients from the measurements 
were compared with predictions from various published 
models. The resulting knowledge of damping as a function of 
Knudsen number is useful in designing many structures such 
as MEMS oscillators, sensors and switches. 

NOMENCLATURE
a plate width, m R universal gas constant, 
b plate length, m T temperature, K
c damping coefficient, 

Ns/m
t time, s

cs solid damping 
coefficient, Ns/m

z gap displacement

e
0

amplitude, m zp plate displacement

h mean gap height, m zb base displacement
hplate plate thickness, m  viscosity, Pa s
j √-1  gas density, kg/m3

k spring stiffness, N/m plate plate density, kg/m3

kB Boltzmann’s constant
ks structural spring 

stiffness, N/m
 mean free path, m

m plate mass, kg  squeeze number, nd
mm molecular mass, kg/mol  frequency, rad/s
P ambient pressure, Pa n natural frequency, rad/s

p pressure at (x,y), Pa  modal damping ratio, nd
nd = non-dimensional. 

1 INTRODUCTION
Oscillating structures at the micron and smaller scales 

have played an important and increasing role in the last two 
decades because of such applications as the atomic force 
microscope, resonant sensors, and MEMS oscillators. Because 
of the high surface-to-mass ratios, dynamic motions of small 
structures are affected tremendously by fluid damping. For 
most planar MEMS structures, the dominant fluid damping is 
squeeze-film damping (SFD), where fluid is squeezed in and 
out of a gap between the moving structure and the substrate
(Fig. 2). 

Continuum-based models assume that the gas is a 
continuum, meaning that gradient of pressure is continuous 
throughout the gas. Continuum-based squeeze film damping 
models are based on the linearized Reynolds equation (Blech, 
1983). 
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where x and y denotes coordinate axes, and z is the plate 
displacement in Eq. (1). z = 0 when the distance between the 
plate and the base is h. 

Figure 1:  Squeezed gas film between a substrate and a 
moving plate. 

Continuum-based models may break down when the 
distance traveled by gas molecules between collisions in free 
space is much larger than the thickness of the gap (Fig. 2). In 
that rarefied or free-molecule regime, gradients are not 
continuous, or do not even exist. Therefore, some researchers 
argue that continuum models should not be used in the free-
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molecule regime (Bhiladvala and Wang, 2004). The regime of 
gas damping is determined by the Knudsen number, which is 
the molecular mean-free-path length divided by the thickness 
of the gap. The free path length is illustrated in Fig. 1 as the 
distance traveled by a particle from one collision to the next. 
The mean free path is

mm

RT

P

2
  (2)

The Knudsen number is

Ks = 1.016 /h. (3)

Schaaf and Chambre (1961) define the free-molecule regime 
as Ks > 10. Knudsen numbers are high when the gap is very 
small, as typical of micro- and nano-scale structures. In 
experiments, high Knudsen numbers can also be achieved by 
lowering the gas pressure. 

Figure 2:  Gas particles between a substrate and a moving 
plate. 

Lacking experimental data, published models for 
predicting SFD are based on varying assumptions. Those 
models give widely different results especially in the free-
molecule regime. The work presented here attempts to provide 
experimental data for comparing the existing SFD models, 
helping in making decision on which model(s) to use.

2. GAS DAMPING MODELS

2.1 Non-Gradient-Based Models
For lack of a better concise term, this text will use the 

term non-gradient-based models to refer to models that are not 
based on continuum equations like Eq. (1). The non-gradient-
based models discussed here are based on the reasoning that 
gas damping forces on solid structures are caused by the 
collisions of the gas molecules impinging on the structure’s 
surfaces. When bouncing on a plate, gas particles impart 
momentum change. A statistical average of the momentum 
change from all the particles bouncing on the plate results in 
pressure. If a plate moves in the gas, the leading face of the 
plate will receive a higher pressure than the trailing face. The 
difference in pressures creates the damping force. The non-
gradient-based models in the next few paragraphs have been 
compared to damping measured on a micro scale silicon beam 
by Zook et al (1992) (henceforth Zook’s data). The 
comparisons will be shown in this section after a brief 
summary of the models. The models predict the damping 
factor, which is 

platedamping zFc / (4)

where Fdamping is the force on the plate due to gas damping, and 

platez is the velocity of the plate. 

Christian (1966) proposed that 
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where  
Newell (1968) used Christian’s model to derive gas 

damping coefficient
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Newell’s model was used by Zook et al (1992), who provided 
experimental data against which other researchers have 
compared their gas damping models. 

Kádár et al (1996) proposed an improvement to 
Christian’s model by replacing its Maxwell-Boltzman gas 
molecule velocity distribution with the Maxwellian stream 
distribution, resulting in 

cKádár =  cChrstian (6)

Li et al (1999) improved on Kádár et al’s model by 
correcting the velocity of the moving structure relative to the 
fluid, resulting in 

Christian

TR
MLi c

u
c

2
3 0

1

5.1




 (7)

In comparing their models to Zook’s data, the authors of 
the above three models assumed that the structure in Zook et 
al’s experiment was moving in free space, and there was no 
gap or substrate to create a squeezed film. Kádár et al argues 
that, in the rarefied gas regime, squeeze film damping is the 
same as free-space damping. However, Bao et al (2002)
pointed out that the geometry of the gap should have been 
included in the models since the gas was squeezed between 
the moving structure and the substrate. Bao et al’s correction 
resulted in 

Christian

ncecircumfere

Bao c
hL

c
16

/
 , (8)

where, for a rectangular plate with a width a and length b, 

Lcircumference = 2(a+b). (9)

The above models were not derived from gradient-based 
theory like the Reynolds equation. Their derivation is based on 
reasoning of the averaged effect of gas particles colliding on 
the structure. However, they are not based on actual molecular 
dynamics either. A model that is truly based on molecular 
dynamics was developed by Hutcherson and Ye (2004), who 
developed a molecular dynamics code that simulated the 
motion of a large number of molecules in the squeezed gas 
film. Using Bao’s assumptions, Hutcherson and Ye’s 
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simulation reproduced Bao’s result. Subsequently, Hutcherson 
and Ye employed an improved relationship between the 
particle velocity and the number of collisions, and showed that 
the resulting damping factor for Zook’s beam was 2.233 times 
higher than Bao’s calculation. 

Except for Christian’s model, the attempt to validate the 
above models was to compare them to Zook’s data. Zook et al 
performed the measurement on a micro-beam of the following 
properties: length b = 200m, width a = 40m, and gap size h
= 1.1m.  Using those parameters, the models are used here to 
calculate the quality factor Q, which is then translated into the 
damping ratio  defined here as 

 = 0.5/Q (10)

The resulting damping ratios are plotted against pressure in 
Fig. 3. Hutcherson and Ye’s molecular dynamic simulation 
results are directly from their publication.  Zook’s 
measurement result plotted on the same graph shows that each 
model improvement brings the damping ratios closer to the 
measured damping ratio. 

Figure 3:  Damping ratio calculations from published particle-
based models attempting to match published measured data. 

From Fig. 3, it is apparent that the most improved model, 
i.e. Hutcherson and Ye’s, is the closest to the measured data in 
the rarefied regime. However, Bao et al’s model is closer to 
the measured data at 1000Pa or higher. In fact, at 104 Pa 
Hutcherson and Ye’s damping is almost an order of magnitude 
higher than Zook’s data. Each model improvement resulted in 
a factor, which is a vertical shift of the damping-versus-
pressure curve on the log-log scale. All of the model results 
have the same slope. On the other hand, Zook et al’s measured 
damping curve has a slope that is significantly different from 
the models’ slope. This difference calls for a closer scrutiny of 
the assumptions used in deriving the models, especially of 
whether those assumptions agree with the conditions under 
which Zook et al’s damping data were obtained. The 
comparisons below is limited to region II in Zook et al, in 

which the gas is rarefied, but damping in the solid (“intrinsic 
damping”) is negligible compared to gas damping. 

Zook et al mentioned that a source of discrepancy 
between Newell’s damping calculation and Zook’s data was
that the geometries of the air space were quite different. The 
calculation assumed free or open space. The measurement was 
done on a beam sandwiched between two squeezed air film, 
one beneath the beam and another on top of the beam. 
Squeeze-film damping can be much higher than free space gas 
damping especially if the squeezed gas film is very thin. 

The second source of discrepancy was the structural 
boundary conditions of the beam. Table 1 has sketches of 
boundary conditions used in deriving the models above versus  
the boundary conditions of the structures used in obtaining 
data for validating the models. Zook et al used 
Christian/Newell model for a cantilever (clamped-free) beam. 
Yet they showed that their test structure was a clamped-
clamped beam. In fact, their finite element simulation with the 
clamped-clamped boundary conditions resulted in natural 
frequencies that agreed very well with their measured natural 
frequency. The structural velocity distribution of the cantilever 
is very different from that of a clamped-clamped beam. For 
example, the right end of Newell’s cantilever has the highest 
velocity of all points along the beam. On the other hand, the 
right end of Zook et al’s beam has zero velocity. Gas damping 
calculation from Christian/Newell’s model probably should 
not be compared directly to Zook’s data. 

Kádár et al and Li et al derived their gas damping model 
for a rigid beam pivoting about its center with some torsional 
spring. The ends of the beam had the highest structure 
velocity. Yet they compared the calculation directly to Zook’s 
measured beam, where the ends of the beam had zero velocity. 

Bao et al and Hutcherson and Ye developed their models 
for the case where the gas damping is caused by an air film 
squeezed between the moving plate and the substrate. Zook et 
al showed that the gas damping on their test device was indeed 
caused by squeezed films. But in fact there were two squeezed 
film in their test device because, in addition to the substrate, 
the device also had a lid close to the beam. Another source of 
discrepancy between the models and Zook’s data was the fact 
that the test structure was a flexible beam. Bao et al and 
Hutcherson and Ye’s models assume a rigid beam moving up 
and down. In the models the ends of the beam move at the 
same velocity as the center of the beam. In Zook’s device, the 
ends of the beam were clamped and had zero velocity. 

Table 1 and Fig. 4 lead to the following conclusion from 
the above literature study: models that do not use the structural 
velocity distribution correctly will not predict gas damping 
correctly.
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Table 1:  Structures assumed in deriving gas damping 
equations (middle column) versus structures measured for 

validation data (right column). 

Reference Structure assumed in 
model

Structure used in 
comparison 

measurement

Christian 1996 Nothing conclusive

Newell 1968 None

Zook et al. 
1992

Newell (see above)

Kádár et al. 
1996

Zook et al. (see above)

Li et al. 1999 Zook et al. (see above)

Bao et al. 
2002

Zook et al. (see above)

Hutcherson 
and Ye 2004

Zook et al. (see above)

Modeling the structural velocity distribution of a plate 
vibrating with squeeze film damping is by no means a trivial 
task. Nayfeh and Younis (2003) developed a model that does 
that task elegantly for a flexible clamped-clamped beam like 
the beam in Zook et al’s experiment. Their squeeze film 
damping calculation agrees well with experimental data 
published by Legtenberg and Tilmans (1994) from 
atmospheric pressure down to five orders of magnitudes lower. 
Agreement with the experimental data at such low pressures 
shows that their model is quite accurate in the free-molecule 
regime. 

2.2 Continuum Models
It must be pointed out that Nayfeh and Younis’s model 

was based on the continuum Reynolds equation without any 
molecular dynamics. The lesson learned from the comparison 
among models so far is that the continuum Reynolds equation 
may well be more accurate than the non-gradient-based 
models discussed so far -- in the non-continuum regime. 
Reynolds-equation-based squeeze film damping models are 
worth considering for prediction of damping in the free-
molecule regime. Besides the indication of accuracy 
mentioned above, the reasons for using the continuum models 
include the following. Continuum models have been 
developed and established longer than molecular-based 
models. The constitutive equations used for developing 
continuum models have long been proven. 

Except Christian and Newell who predated Zook et al, all 
the researchers in Table 1 used Zook’s data even though their 
theoretical derivation was based on very different conditions. 

The reason was that very few publications presented 
experimental data for rarefied gas damping better than Zook’s 
data. Consequently, none of the publications show in Table 1 
shows a model and experimental data that are both based on a 
common structure and boundary conditions. An attempt to 
validate a model with an experiment based on different 
conditions than the model is not likely to be meaningful. On 
the other hand, for continuum-based models experimental data 
are available from tests under conditions that match the model 
assumptions. This is another important reason to consider 
continuum models for predicting SFD in the free-molecule 
regime. Table 2 lists the references that present such models 
and references that present experimental data correctly 
corresponding to the models. This paper will discuss only the 
case of a rigid rectangular plate moving up and down, 
squeezing a gas film between the plate and the substrate. 

Table 2:  A few squeeze film damping theories that have been 
compared with experiments on a micro structure with boundary 

conditions consistent with the theory. 

Rigid structure Flexible Structure

Theory
Blech 1983, Veijola 
2004, Gallis and 
Torczynski 2004.

Nayfeh and Younis 
2003

Experiment
Andrews et al. 1992, 
Veijola 2004, Sumali 
and Epp 2006. 

Zook et al 1992, 
Legtenberg and 
Tilmans 1994, Cheng 
and Fang 2005.

Yet another reason for using Reynolds-equation-based 
models is that the Reynolds equation facilitates the calculation 
and the use of correct pressure distribution throughout the 
plate due to SFD. To illustrate that statement, Fig. 4 shows a 
model of what was likely to have happened in Zook et al’s 
experiment with the clamped-clamped beam. Fig 4.a is a 
cartoon of the deflected beam positioned between the substrate 
beneath and the lid above. In deflecting, the beam squeezes 
the air films, one film between the beam and the lid, and 
another film between the beam and the substrate. For this 
illustration, a finite element model was developed using the 
commercial package COMSOLTM, using Zook et al’s 
dimensions and the squeeze-film damping model in the 
MEMS module. Figure 4.b shows that the pressure due to SFD 
varies not only along the beam, but also across the width of 
the beam even though the deflection of the beam is not a 
function of position across the width. Reynolds-equation-
based models facilitate correct pressure distribution 
throughout the plate due to SFD, unlike the models in Table 1. 
(Finite element methods and models for calculating SFD will 
not be discussed further in this paper, since the paper’s 
objective is to compare reduced-order models.)
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The Reynolds-equation-based models discussed in this 
paper assume: 
1. Rigid plate; 
2. Small gap h/a<<1; 
3. Small displacement e0/h<<1; 
4. Small pressure variation p/P<<1; 

Figure 4:  a)Damping from double-squeezed films; b)Non-
uniform distribution of pressure throughout the beam. 

2.2.1 Blech’s Model
In addition to the four assumptions above, Blech’s model 

assumes: 
5. Isothermal process; 
6. The pressure right outside the plate edges = P (trivial 

boundary condition); 
7. Small molecular mean free path
8. No inertial effects of gas moving in and out of the gap.

The damping coefficient as a function of the plate 
oscillation frequency is 
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where frequency and pressure are combined into the squeeze 
number
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Assumptions 7 and 8 above mean that Blech’s model is 
not to be used for predicting SFD in the rarefied gas regime. 
The model was developed mainly for liquid films. It is 
included here because it is important historically and in many 
practical SFD calculations, and its limit is an extremely simple 
model, discussed next. 

2.2.2 Andrews et al’s Model
For low squeeze numbers, Blech’s model reduces to [2]
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henceforth referred to as Andrews et al’s model. Despite its 
extreme simplicity, Andrews et al’s model will be shown later 
to be quite accurate in the low Knudsen number regime.

2.2.3 Veijola’s Model
Veijola (2004) did away with Blech’s assumptions 6 and 7 

above. Perhaps the most significant feature of the resulting 
model is the replacement of the trivial boundary conditions 

with a boundary condition that gives a much more accurate
transition from the pressure in the gas film under the footprint 
of the plate into the ambient pressure away from the plate. 
This is a major improvement over Blech’s and other models, 
that assume that the pressure under the perimeter of the plate 
is the ambient pressure (trivial boundary condition). 

To use Veijola’s model, first, calculate the modified 
Reynolds number 

Re = h2. (14)

Then calculate a complex frequency variable 

hjq //  (15)

Veijola’s SFD model also takes into account the inertia of the 
squeezed gas film. A frequency-dependent coefficient that 
accounts for the effect of inertia on the flow of gas in and out 
of the gap is  
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The above coefficient is used to modify Reynolds equation. 
The solution for a rectangular plate is a series summation over 
odd indices m and n containing the terms
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Finally, the gas damping coefficient is 
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In the above equation, Re[] means “the real part”. 

2.2.4 Gallis and Torczynski’s Model
Gallis and Torczynski (2004) developed a truly 

molecular-dynamics-based model by Direct Simulation Monte 
Carlo method for SFD on a rigid beam. Their model takes 
advantage of both Reynolds equation and molecular dynamics. 
It is free from many assumptions that limited earlier models. 
In particular, it is free from trivial boundary conditions. 
Furthermore, Gallis and Torczynski adapted that model with a 
continuum-based shape factor derived for a plate. The result is 
summarized in Sumali et al (2007). 

3. NEW TEST STRUCTURE AND ITS MODEL
Figure 3 shows that it would be very difficult to explain the 
slope in Zook’s data perfectly with any of the model discussed 
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here. A new set of data will be very useful. The test structure 
discussed in this paper can be modeled as a rigid rectangular 
plate supported by springs as shown in Fig. 5. A gas layer is 
squeezed between the plate and the stationary base. (Details of 
the structure can be found in the Experiment section later.) 
Figure 5 shows the plate suspended by a structural spring ks

and structural damping dashpot cs. To excite oscillations, the 
base is vibrated with a displacement Zb(), where  denotes 
radian frequency. The displacement response of the plate is 
Zp(). The difference between Zp() and Zb() is here referred 
to as the gap squeeze

z = zp - zb, (20)

which expands and squeezes the air gap between the base and 
the plate, resulting in squeezed-gas force. (Capital letters 
denote the Fourier transform of the corresponding variable in 
lower case letters.) 

Figure 5: Model of oscillating plate showing squeeze-film 
force. 

The acceleration of plate is  

zckzzm p   , (21)

where the total damping coefficient is 

c = cs + cgas. (22)

The total damping coefficient c will be obtained from the 
experiments. The structural damping coefficient c must be 
subtracted from the total damping coefficient to obtain the gas 
damping coefficient cgas , which will later compared with the 
various gas damping models discussed in the previous 
sections. 

The experiment measures the plate displacement zp and the 
base excitation displacement zb. Therefore, the transmissibility 
from base displacement to plate displacement, 

Hmeas() = Zp()/Zb(), (23)

is obtained from the measurement. The above measured 
transmissibility can be used to calculate the frequency 
response function from the base displacement to the gap 
squeeze, which can be shown to be 
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where is the damping ratio defined as 

 = c/(2meff n), (25)

and n is the natural frequency which is 

effmk /1  . (26)

The effective mass effm is the mass of the plate augmented by 
a portion of the mass of the springs because the springs 
oscillate with the plate. A lumped-parameter system equivalent 
to the mass-springs structure can be derived with the Rayleigh 
method (Blevins, 1995): 

4 0.37eff plate springm m m   . (27)

The factor 4 is inserted because the structure has four springs. 

The plate mass platem is estimated from the measured plate 

dimensions and a mass density of 19300 kg/m3 for gold. It is 
assumed that the thickness is uniform throughout the structure.
From Eq. (21) and (23), it can be shown that 

H() = Hmeas() -1. (28)

Curve fitting of H() into the form in Eq. (24) will give the 
natural frequency n and damping ratio . To obtain the gas 
damping ratio gas, the structural damping ratio must be 
subtracted from the total damping ratio . Following Eq. (22), 

gas =  - s, (29)

where s is the structural damping ratio. Thus, the gas 
damping ratio gas can be obtained from the measured 
transmissibility, provided that the structural damping ratio s is 
known. (A method to obtain the structural damping ratio will 
be presented later.) The gas damping coefficient cmodel from the 
models discussed earlier can be converted into gas damping 
ratios  model using E.q (25), and finally compared with the 
measured gas damping ratio gas. 

4. EXPERIMENT
Figure 6 shows the test structure, which consisted of a 

plate suspended by four folded-beam springs. One end of each 
spring supports the plate, and the other end is anchored to the 
substrate. The structures were made of electro-deposited gold. 
The design width of the plate was a = 155.6 m.

zb
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ks cs h
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displacement

Gas film
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Base excitation

mplate

z

Structural 
damping

Structural 
spring

Plate
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Figure 6:  Test structure. 

Designed originally as MEMS switches, the test structures 
had a plate that was not rectangular as modeled in the previous 
sections. The four trapezoidal tabs on the ends of the plate 
were designed to carry contact dimples for conducting 
electrical transmission. In applying the analytical models 
described above for rectangular plates, the needed length b is 
estimated by equating the area of the plate including the four 
trapezoidal tabs to ab, as shown in Fig. 7. 

Figure 7:  Equivalent length b = Area of plate including tabs 

divided by width of plate a. 

The experimental setup can be summarized as follows. A 
piezoelectric transducer shakes the substrate with random 
vertical displacement. As a result, the plate oscillates 
vertically, expanding and squeezing the air layer between the 
plate and the substrate. The suspension springs flex and 
provide a restoring force to sustain the oscillation. A laser 
Doppler vibrometer (LDV) with a microscope measured the 
velocities at one point on the substrate (the “base”), and 21
points all over the plate and the springs. All data were 
obtained under small excitations where linear responses were 
verified. The spot size of the laser was about 1 m. The test 
structures were contained in a vacuum chamber with air 
pressures from atmospheric down to five orders of magnitude 
lower. 

Figure 8: Test setup. 

RESULT
The measured transmissibility (plate velocity divided by 

base velocity) is converted into the gap transmissibility using 
Eq. (28). A typical set of gap transmissibilities is shown in Fig. 
9. Using a commercial package ME’ScopeTM, experimental 
modal analysis (EMA) was performed on the gap 
transmissibilities to determine the natural frequency and the 
modal damping ratio. Mode shapes were also obtained. The 
EMA computed three modes shown in Fig. 10. The mode of 
interest is the lowest-frequency mode in which the plate 
oscillates vertically while staying parallel to the substrate. The 
two higher modes will not be discussed here. 

Figure 9: Gap FRF for all measured points. 

b

a

b

a

b

a
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Figure 10: Measured natural frequencies and mode shapes 
from experimental modal analysis. 

A problem in comparing the models with the 
measurement is the damping caused by the solid structure, 
referred to here as the non-squeeze-film damping (nonSFD). 
For damping measurements at low Knudsen numbers, nonSFD 
is so much lower than squeeze film damping that it can be 
ignored. However, at higher Knudsen numbers nonSFD 
dominates the damping, and therefore must be included as an 
important part of the comparison. As shown in Eq. (29), 
nonSFD must be obtained before gas damping ratios can be 
obtained from the measurement data. NonSFD is the damping 
in the solid structure in the absence of any gas, i.e., at absolute 
zero pressure. Because the absolute zero pressure is 
unattainable, nonSFD is obtained here by extrapolation. Figure 
11 shows the total gas damping ratios  from the measurement 
at the seven lowest pressures. The pressure range in the graph 
is so narrow that the  -versus-pressure relationship can be 
assumed linear. Therefore,  is curve-fit as a linear function of 
pressure. The dashed line in Fig. 11 shows that the linear fit is 
justified. NonSFD, which is the structural damping ratio s, is 
the value of  at zero pressure, which is obtained as the zero-
pressure intercept of the linear fit. Subsequently, gas is 
obtained by subtracting s from  according to Eq. (29). The 
resulting gas damping ratios are plotted with the + symbols in 
Fig. 11. 

Figure 11:  Non-squeeze-film damping as zero-pressure 
extrapolate of total measured damping. 

Gas damping ratios obtained from the above process for 
all the pressures in the experiment are shown in Fig. 12. The 

plot of the measured total damping as a function of pressure 
has a sigmoidal shape. The zero-pressure asymptote is the 
non-squeeze-film damping value. At the highest pressure, the 
damping ratio appears to practically reach its saturation. 
Subtracting the non-squeeze-film damping from the total 
damping produces the squeeze-film damping as a function of 
pressure, whose plot appears to have a slope of 1 
decade/decade in the low-pressure region. 

Figure 12:  Measured squeeze-film damping obtained after 
subtracting non-squeeze-film damping from the measured total 

damping. 

Finally, Fig. 13 show the gas damping ratio from all the 
models discussed above, compared with the measurement 
result. 

CONCLUSIONS
• On rigid plates with width ~150 mm, oscillating around 

4.1 mm above the substrate, squeezed air film can cause 
large damping. 

• The non-gradient-based models developed specifically for 
the free-molecule regime are not necessarily more
accurate than current molecular models. 

• For the conditions tested here, in atmospheric air the 
simplest model mentioned by Andrews et al. is as good as 
any more sophisticated models. 

• In the high squeeze number regime (low pressures or high 
frequencies), Veijola’s model appears to match 
experimental data accurately.
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