1

SAND2007-2991C
Red Storm IO Performance Analysis

James H. Laros IIT #!, Lee Ward #2, Ruth Klundt *3, Sue Kelly #*
James L. Tomkins #°, Brian R. Kellogg #°

#Sandia National Laboratories
1515 Eubank SE
Albuquerque NM, 87123-1319

yhlarosesandia.gov
?lee@sandia.gov, %smkelly@sandia.gov

5jltomki@sandia.gov, Sbrkelloesandia.gov

*Hewlett-Packard
3000 Hanover Street
Palo Alto, CA 94304-1185

3rklundt@sandia.gov

Abstract— This paper will summarize an I0' performance
analysis effort performed on Sandia National Laboratories Red
Storm platform. Our goal was to examine the IO system
performance and identify problems or bottle-necks in any aspect
of the IO sub-system. Our process examined the entire IO path
from application to disk both in segments and as a whole. Our
final analysis was performed at scale employing parallel 10
access methods typically used in High Performance Computing
applications.

Index Terms— Red Storm, Lustre, CFS, Data Direct Networks,
Parallel File-Systems

I. INTRODUCTION

IO is a critical component of capability computing?. At
Sandia Labs, high value is placed on balanced platforms.
Balance between processor network and memory speed is
critical, but without an appropriately balanced IO sub-system
a severe bottle-neck could be introduced into an otherwise
efficient platform. It is, therefore, critical that the IO sub-
system, including the parallel file-system, provide performance
at a level sufficient to maintain architectural balance (or as
close as current technology will permit). The Red Storm[1]
platform was carefully architected to achieve this balance. Our
stated performance goal for 10 is 50000MB/sec, reading or
writing, from application to the parallel file-system®. We will
determine what impediments, if any, might prevent us from
realizing this goal.

Careful analysis of the entire path, from application to disk,
must be accomplished. Problems in any individual segment
or system component can potentially affect performance. The
effort described in this paper, while primarily an 10 perfor-
mance analysis exercise, necessarily considered the impact of
many system components. The analysis presented in this paper
is ongoing. Any change to a system like Red Storm, whether

110 is used throughout this paper, as in the field, to depict Input Output.

2Systems designed to support applications that use a significant fraction of
the total resource per job.

3This requirement resulted from calculating the time necessary to write the
entire contents of system memory (in the original configuration) to disk.

hardware or software, potentially affects how the entire system
performs.

We consider the testing described in this paper to be second
phase testing. Initial testing was accomplished to establish
baselines, develop test harnesses and establish test parameters
that would provide meaningful information within the lim-
its imposed such as time constraints. All testing presented
in this paper was accomplished during system preventative
maintenance periods on the production Red Storm platform,
on production file-systems. Testing time on heavily utilized
production platforms such as Red Storm is precious. Detailed
results of previous, current and future testing is posted on-
line[2].

In section II we will discuss components of the Red Storm
architecture pertaining to this performance analysis effort. A
complete discussion of the Red Storm architecture is quite
involved, therefore, we will limit the details provided in
this discussion. We will likewise limit our discussion of
Lustre®[3] file-system internals.

In section III we will begin our analysis by examining the
IO sub-system architecture first to determine theoretical band-
width expectations (section III-A), followed by targeted testing
to determine demonstrable expectations of what we anticipate
to be a limiting factor in our overall performance (section III-
B). This evaluation will be followed by parallel performance
testing using IO access methods typically employed by High
Performance Computing applications. Performance results and
analysis of file-per-process IO will be presented in section I'V-
B, followed by shared-file IO in section IV-C. Throughout
this paper we will provide both observations and lingering
questions instigated by our findings. Section V will present
some final observations based on our testing as a whole.
Finally, we will present some future work related to this topic
in section VI.

II. RED STORM ARCHITECTURE

The Red Storm platform is comprised of 12960 nodes each

Compute File I/O

Service

Users

Net IO

Fig. 1. Red Storm (Logical) Architecture

with a 2.4 Ghz Opteron dual core processor (25920 processors)
connected in a 3D mesh topology. The logical partitioning of
Red Storm is depicted in figure 1*. The minimum bisection
bandwidth of the interconnect is 3.6 TB/sec. The bandwidth
of an individual link between two nodes is 2.1 GB/sec[4],
unidirectional. For the purposes of this paper we will describe
nodes as either compute or 10. Each compute node runs a
Light Weight Kernel (Catamount[5], [6]) designed to deliver
the maximum amount of compute resource to the application,
in our case the IO performance analysis application. Each 10
node runs a Cray[7] modified version of SUSE[8] Linux ™[9].
It should be noted that the Linux nodes are currently not taking
advantage of the available second core. Each 10 node hosts a
Qlogics[10] 2300 2Gb/sec dual port fiber Host Bus Adapter
(HBA). Each port of the IO nodes HBA is individually capable
of 2Gb/sec and is connected to a 2Gb/sec port on a Data Direct
Networks (DDN)[11] S2A8500 Disk Controller. The DDN
controllers are configured into couplets for various reasons
including fail-over capabilities that will not be discussed here.
Each DDN controller has four available ports which equates to
eight ports per DDN couplet. Four IO nodes are connected to
each DDN couplet. Figure 4 depicts the connectivity between
four 10 nodes and a DDN couplet. This configuration is
repeated throughout the IO subsystem.

Internally, the DDN controller (detailed in figure 2) has ten
disk channels; eight data (A-H), one parity (P) and one spare
(S). Each channel is rated at 1Gb/sec. The four external DDN
ports are numbered 1-4. Currently we are using Seagate[12]
ST373307FC (and similar) fiber channel disk drives. The
specified rates for these drives are: minimum - 43MB/sec,
average - 66MB/sec and maximum - 78MB/sec[13]. In our
configuration there is one drive per data channel per controller
port. The eight disks are aggregated and exported as a single
LUN® per controller port. Ultimately, the LUN is seen as a
partition which is used by the parallel file-system. For the sake
of completeness figure 2 also depicts the couplet connections
used to allow access to LUNs from the other controller in the
couplet. This functionality is not exploited in our configuration
and will not be discussed in this paper.

4Physical layout can be found at

http://www.cs.sandia.gov/platforms/images/RedStormDiagram1.jpg

Logical Unit Number. Exportable, logical partition. Each LUN is seen by
the operating system as one drive.

CCoOO00I0

A BCDETFGHTPS

Couplet Connectivity

Fig. 2. Disk Controller Internals

The parallel file-system employed on Red Storm is Lustre®.
In brief, two Lustre file-systems were used in our testing. Both
file-systems were configured such that two Object Storage
Targets (OSTs) exist on each Object Storage Server (OSS or
IO node). By default, OSTs are allocated one per OSS until
the maximum number of OSSs are reached. Once one OST
on each OSS is allocated the allocation process begins again
and assigns the remaining OST on each OSS in the same
order. While two different file-systems were used, the OST
allocation was carefully controlled to eliminate, or minimize,
any potential variability in test results. This information is
site specific and is important in evaluating our performance
testing7. When significant, the maximum number of OSTs, or
OSSs that are used will be specified. For the following tests a
more detailed discussion of Lustre is beyond the scope of this
paper. We will, however, describe additional components or
characteristics of Lustre as needed to understand our testing
methodology.

III. AVAILABLE BANDWIDTH

Based on our description of the Red Storm architecture (as
it applies to this effort) we can calculate theoretical limits that
we can expect not to exceed. With this knowledge we can also
evaluate what segment of the overall IO path we expect to be
the limiting factor in performance which will help us interpret
the results of our parallel tests.

A. Theoretical

To arrive at theoretical estimates for our configuration we
start with a single end to end path that an IO operation travels.
If we coarsely represent the segments that an IO operation
travels, it would look something like figure 3. As noted in
section II and depicted in figure 4, each disk controller will
service four IO nodes. We must also determine if any of
the internal controller component rates themselves effect the

®Cray integrated version of Lustre for the XT3-4 platform, version 1.4.6.8

7On our system, each Lustre OST is assigned a single DDN LUN for data
storage. Lustre software distributes file data across several OSTs, in portions
of equal sizes known as stripes. The number of OSTs used to stripe the file
data is defined by the stripe number, which is user configurable. The OSS
node is a server where one or more OSTs are attached, and where the software
controlling data storage is running. A separate software stack on the MDS
(MetaData Server) manages metadata operations, and stores the list of OSTs
which hold file data for each file as well as the usual file attributes.

bandwidth that a controller can deliver when all four ports are
used in aggregate (ref. figure 2).

Front-End | Back—End

| 10 Node (OSS) Disk Controller

0510 5 5 5 0

Compute Node

2.1 GB/sec

I0R oST 1 2Gb/sec

200MB/sec

=T

]

& o]

OST 2
ABCDEFGHEP
Conplet Connecivity

Fig. 3. Single End-to-End IO Path

1) Single Data Path (Theoretical): For the single data path
case depicted in figure 3, the link between the compute node
and the IO node far exceeds the capability of one port on either
the HBA or the disk controller. Assuming the compute node
can deliver in excess of 200MB/sec to the IO node we can
focus on the bandwidth from the 10 node through to disk
(back-end). (We will perform tests specifically designed to
illustrate that sourcing data from the compute node to the 10
node (front-end) is not a limiting factor in our performance
in section I'V-A). First we should explain the 200MB/sec rate
depicted in figure 3. As stated in section II both the Qlogics
HBA and the ports on the DDN controller are 2Gb/sec fiber
channel ports. Fiber channel uses 8b/10b encoding which
requires 10 bits to transmit 8 bits resulting in a 200MB/sec
maximum rate ((2 X 109) +10 =2 x 108%0r200M B/sec). In
the case of a single compute node performing IO over a single
port of the HBA we assume that all of the available bandwidth
of the controller can be used. The following calculations are
used to arrive at theoretical data rates (ref. figures 2 and 3).

« Single port of IO Node HBA @ 2Gb/sec ~ 200MB/sec
max bandwidth

« Single DDN Controller port @ 2Gb/sec ~ 200MB/sec
max bandwidth

« DDN data channels (A-H,P,S) @ 1Gb/sec ~ 100MB/sec
max bandwidth per channel

o 8 DDN data channels (A-H) .. 800MB/sec max
aggregate data bandwidth

As stated in section II the rate of the disk drives in our
configuration range from a minimum of 43MB/sec to a maxi-
mum of 78MB/sec. In this single data path analysis all of the
aggregate bandwidth of the controller data channels is at our
disposal, therefore, even the maximum data rate quoted for the
disk drives in our installation throttles the performance of a
single data channel path since each channel can only support
100MB/sec. The following calculations show the minimum,
average and maximum data rates that can be obtained from
disk aggregated over the eight data channels.

o 43MB/sec/disk x 1 disk/channel x 8 channels =
344MB/sec (min)

o 66MB/sec/disk x 1 disk/channel x 8 channels =
528MB/sec (avg)

e« 78MB/sec/disk x 1 disk/channel x 8 channels =
624MB/sec (max)

While even the maximum rate the disks can deliver in aggre-
gate (624MB/sec) is less than what the 8 disk channels can
support (800MB/sec) the controller port (or the HBA on the
IO node) is still the throttling factor in the single end-to-end
IO path (theoretically). Since there are two ports per HBA on
each IO node we assume the maximum bandwidth we can
achieve is 200MB/sec per port.

2) Aggregate Controller Performance (Theoretical): In the
tests that follow using a parallel IO application, most involve
multiple clients, and controllers. More specifically we use all
four ports on a controller in aggregate. We also determine if
using all four ports in parallel changes the theoretical limits
stated in the previous section. The following calculations are
used to arrive at the aggregate controller rates (for a single
controller).

o 8 DDN data channels .. 800MB/sec max aggregate
bandwidth (from above)

o 800MB/sec + 4 ports/controller =
200MB/sec/port/controller

These calculations illustrate the controller data channels are
shared (we assume equally) when all four ports of the
controller are used. Based on these calculations, the data
channels in aggregate support the full port speed of each
controller port when all ports are used in parallel. From an
individual data channel perspective, the disks are no longer
the limiting factor in per data channel performance, even
if we use the minimum specified rate. Consider that each
controller channel supports 100MB/sec (max). When the entire
data channel can be dedicated to a single port, the channel
rate is greater than the maximum disk rate specified (per
channel). When the data channels are shared, however, each
port consumes 1 of the data channel (100M B/sec/channel =
dports = 25M B/sec/channel/port). Even the minimum
specified disk rate of 43MB/sec exceeds the available data
channel rate when all four ports of the controller are used
in parallel. Again, regardless of the disk speed, the controller
port, the HBA on the 10 node, or the aggregate data channel
capability per port (all now equal) is the limiting factor.
Whether we use one port individually or all four ports in
parallel the maximum theoretical bandwidth we can achieve
between an 10 node and a controller should be 200MB/sec.

B. Demonstrable

We feel this testing is necessary for a number of reasons.
Documented results are difficult to find that apply to this effort.
DDN advertises a performance rate for a couplet ranging
from 1.4 - 1.5GB/sec[11]. Based on this figure the per port
range is 175-187.5MB/sec. In our informal discussions with
DDN about per port performance they stated that scaling
from one to three ports should be linear but a small hit is
realized when utilizing all four ports in parallel due to various
internal controller operations that introduce a small amount of
overhead. They also noted the controller should do a good job
of balancing this hit across all four ports.

To demonstrate what data rates can actually be achieved on
our configuration we will run a number of different tests using
the utility sgp_dd®. In each case we perform IO directly to the
SCSI° device layer followed by the file-system layer!?. Figure
4 depicts the paths that we exercise and connectivity to the
DDN controllers. Our first test exercises path A using a single
IO node, a single port on the HBA and a single controller. We
repeat this test using path B (through the file-system layer).
This test demonstrates the (best case) bandwidth for our single
data path. We then determine if we can achieve the same rate
on both ports of the HBA in parallel from one 10 node by
using the analogous paths A with D followed by B with C.
Finally, we test the bandwidth that can be achieved, at each
layer, from a single controller by using a single port on each
of four IO nodes connected to the same controller (figure 4).
During all of the tests performed we monitor the per port
and aggregate performance reported by the DDN controllers
themselves and report any applicable observations. The results
of the following tests are compared with both our theoretical
evaluation and the information we received from DDN.

10 Node

DDN Controller

=

yl'g'v =

g
—~w»n O wn

iy H
_9[I ’
] U

T

Fig. 4. Back-End Configuration

1) Single path (Demonstrable): The theoretical maximum
of our single end-to-end IO path (fig 3) is 200MB/sec (sec-
tion III-A.1). Executing a single sgp_dd from the 10 node
through the SCSI device layer, we observe a bandwidth of
196.23MB/sec consistently over three iterations of testing
using the command in figure 5.

sgp_dd if=/dev/zero of=/dev/sg0 bs=4k count=2621440 time=1 thr=16 sync=1

Fig. 5. sgp_dd command through the SCSI layer (path A and D)

If we repeat this operation using both ports of a single IO
node in parallel (paths A and D in figure 4) we observe exactly
the same rates on each port. (Note each IO node is connected

8sgp_dd is a utility that allows raw device 10, in addition to block and file-
system layer, and many other expanded capabilities like threaded execution
that made this the utility of choice for this effort. We also used dd during this
effort.

9Small Computer System Interface

10The file-system, in this case, is a Lustre patched version of the ext3
file-system.

to a separate controller which should allow the maximum per
controller bandwidth to be achieved). At the raw device level
it appears that sgp_dd reports very near theoretical rates. We
also note that monitoring the DDN controller at one second
intervals during these operations showed very little fluctuation
in data rates.

Next we executed a single sgp_dd using the file-system layer
(path B in fig 4). We observed a bandwidth, on average, of
179.84 MB/sec using the command in figure 6.

sgp_dd if=/dev/zero of=/mnt/testfile bs=4k count=2621440 time=1 thr=16 sync=1

Fig. 6. sgp_dd command through the file-system layer (path B and C)

If we execute this command in parallel on a single IO node
using both ports of the HBA (paths B and C in figure 4) we
observe a bandwidth of 102.35MB/sec on average per port. We
see a notable difference in the bandwidth that is achieved on
a single port compared to using both ports in parallel. When
performing file-system access, monitoring the DDN controller
revealed large fluctuations in data rates during the duration of
both the single and dual port tests.

2) Aggregate Controller Performance (Demonstrable):
Theoretically, each DDN controller should be able to deliver
200MB/sec/port bandwidth (800MB/sec aggregate). We tested
this first at the SCSI device layer by executing the command
in figure 5 on each of four IO nodes, in parallel, each to their
own SCSI device.

The bandwidth observed, on average, was 195.13MB/sec
per port. The individual per port rates were almost identical
indicating good balanced performance per port delivered by
the DDN controller. This rate is approximately 1MB/sec lower
than the single port rate shown in section III-B.1. As with
our previous SCSI level testing the data rates observed by
monitoring the DDN controllers were very consistent both per
port and per one second sample.

Next we executed sgp_dd using the same configuration but
at the file-system layer using the command in figure 6.

We observed a bandwidth of 140.82MB/sec on average per
port. This test seems to indicate that using all four ports
of a controller in parallel at the file-system layer results in
less bandwidth per port. As with our previous file-system
test we observed great fluctuation in the data rates observed
monitoring the DDN controllers both per port and per sample.

C. Available Bandwidth (Conclusions)

From our previous calculations and testing we can begin
to make some assumptions and form some expectations. We
found that when accessing data at the raw device layer, we
achieved very close to theoretical bandwidths whether access
was performed over a single path, in parallel over both ports
of an HBA, or accessing all ports of a controller in parallel.
Additionally, we found that performing the same tests at
the file-system layer revealed that parallel accesses, whether
utilizing both ports of an HBA or using all four ports of a
controller in parallel, achieve less of the theoretical bandwidth.
Using both ports of an HBA in parallel resulted in the worst
performance observed. In the tests that follow both types of

parallel access are used. As outlined previously, each IO node
(OSS) in our configuration supports two OSTs. Some of the
tests that follow utilize a single OST per OSS (analogous
to our single path test). As our tests scale upward we also
employ multiple OSTs, one per OSS, that use all ports on
their associated DDN controllers in parallel. As we continue
to scale we also demonstrate utilization of two OSTs per OSS
(utilizing both ports on each IO nodes HBA). By comparing
previous results with the results of the following tests we can
better evaluate the observed performance.

IV. PERFORMANCE ANALYSIS METHODOLOGY

Using the knowledge gained by the theoretical evaluation
of the architecture and subsequent testing we selected tests to
further analyze the performance characteristics of the 10 sub-
system on Red Storm'!. Our first test was designed to verify
our previous assumption that the link between the compute and
10 node should not be a limiting factor in performance (section
IV-A). IO on capability systems like Red Storm is typically
performed in one of two ways. Most applications at Sandia
Labs perform file-per-process I0 which we define as each
process in the parallel application performing IO to a single
file. This is simplified further on the Red Storm architecture
where only one process executes on a processor. Section IV-B
covers file-per-process testing. The other type of 10 tested is
shared-file IO. An application using shared-file IO performs
IO to a single file no matter how many processes (or in our
case processors) are employed. Shared-file testing is covered in
section IV-C. In both file-per-process and shared-file tests we
over-subscribe the IO subsystem in an effort to observe how
the file-system performs when stressed. Over-subscription of
60:1 was selected based on the ratio of compute to IO node
on the Red Storm platform!?.

The parallel application used to perform both the file-per-
process and the shared-file tests was IOR[14]. IOR is well
recognized in the community as a capable IO testing appli-
cation and is instrumented to carefully measure bandwidth at

scale even on a large platform like Red Storm!3.

A. Single Source Node Test

Our previous analysis showed the back-end (the segment
of the IO path from the IO node to the DDN controller,
including the disk, see figure 3) is the limiting factor in
our IO performance. Additionally, using parallel paths in
the back-end at the file-system layer further limits our IO
performance. Our assumption, thus far, has been that the link
between the compute and IO node would provide far greater
bandwidth than the back-end. What we did not consider is
how fast the compute node can source data to the IO sub-
system. In addition, we have not measured the link between

A much larger range of testing was performed. Results can be found at
http://www.cs.sandia.gov/RSIOPA

12This ratio has changed due to recent upgrade of Red Storm to approxi-
mately 75:1. If we consider that the new processors are dual core our ratio
increases to 150:1.

13The exact parameters used in executing IOR for all of the tests mentioned
in this paper and additional tests that were performed during this analysis can
be found at http://www.cs.sandia.gov/RSIOPA.

the compute and 10 node'®. In this test we characterize both
how fast a single compute node can source data, and whether
the network link between the compute node and IO node(s)
hinders performance. There is only one process (processor)
throughout the test therefore only one file. The factor that will
vary in this test is the stripe number of the file'>. By increasing
the stripe number our intent is to simulate a sink that removes
our assumed limitation so we can test the performance of other
segments in the IO path. Figure 7 shows the results of this
test. It should be noted the maximum number of OSTs used
in this test is 56. In this test one OST per OSS (or IO node)
is allocated. In addition, the stripe number also indicates the
number of unique OSTs used, each on an individual OSS.

(constant. client count = 1, varwing xPersize range = 4 - 112 MiB)
T T : T

T
write ——
00 read o

800

700

00

500

MiB/sec

400

300 F

200 F

100

1.2 1.11 1.22 1.33 1.44 1.96

increasing stripe count

Fig. 7. Single Source Node, Multiple 10 Node

The first observation we make is the overall shape of the
curve is smooth and regular for both read and write operations.
We also observe the error bars, especially for reads, are larger
than we would like to see at smaller stripe numbers but tighten
up nicely at larger stripe numbers. As the sink increases (as
the stripe number increases) the bandwidth delivered by the
single compute node increases, quickly at first and flattening as
we reach the 56 wide stripe data-point. Without increasing the
stripe beyond 56 we cannot guarantee that this is the asymptote
but based on the shape of the curve it is likely. Regardless,
the purpose of the test was to determine the limits on how
much the compute node can source and if there seems to be
any performance impediments in the link between the compute
and IO partitions. Based on the results of this test, our stated
assumption that we are limited by our back-end seems correct.
We are left with at least one question: why do we have to scale
up to such a wide stripe to sink the bandwidth sourced from

4We entered this exercise with a fair amount of confidence that the link
between the compute and IO node would not be a bandwidth problem based
on other testing done on this platform. While this proved to be true we will
briefly discuss a problem uncovered during this analysis exercise that reminds
us of the necessity of rigorous analysis practices.

15Stripe number, in this case, is the number of OSTs used per file. OSTs
may be oversubscribed.

a single compute node? Our initial data-point is for a single
compute node writing a two stripe file. This process uses two
OSTs, each on a separate OSS. The average rate of the three
runs for this data-point per OST is approximately 128MB/sec.
Based on this initial data-point, seven OSTs should be able to
sync in excess of the 850MB/sec rate that we peak at using
56 OSTs. While we do not expect perfect scaling, we have
to question why our per OST rate drops as we add additional
OSTs. One possible explanation is Lustre overhead, especially
considering that we are using a single source node and writing
to a single file. We will keep these observations in mind as
we proceed with our testing.

B. File-Per-Process Test

The single source node test (section IV-A) added weight to
our assertion that the back-end will be the limiting factor in
our performance. Our next test(s) are designed to determine
how the file-system performs during parallel file-per-process
activity. The results of the first test (shown in figure 8) were
obtained by increasing the number of clients while keeping the
stripe number per client static at one. In this test the maximum
number of OSTs used is 56, the maximum number of OSS
nodes is 28. For client sizes up to and including 28, one OST
is allocated per OSS per client up to 28 clients. Client sizes
from 29 to 56 allocate the unallocated OST on each OSS, of
the 28, one per OSS per client in the same order'®. Runs with
client counts greater than 56 begin to over-subscribe OSSs in
the same order.

toonstant stripe size = 1, constant xfersize = 2 MiB)
T T T

T
write
read

T
10000 -

o) -

o0 -

NiB/sec

4000 -

2000 -

153.1 204.1 6.1

increasing nunber of clients

102.1

Fig. 8. [Initial File-Per-Process

The graph in figure 8 shows a steep increase in performance
which initially peaks when all 56 OSTs are allocated. There
is a clear saw-tooth pattern in the remainder of the graph
as OST allocation repeatedly fluctuates from unbalanced to

16Some examples to clarify. 2 clients 2 OSTs on 2 unique OSSs. 29 clients
29 OSTs on 28 OSSs (two of the OSTs are on one OSS). 56 clients 56 OSTs
on 28 OSSs (two OSTs per OSS). 57 clients begin to oversubscribe therefore
they use 56 OSTs on 28 OSSs but one OST is now servicing two clients.

balanced allocation. An observation that we can make from
the saw-tooth pattern is that unbalanced allocation of OSTs
results in poorer performance. This seems logical considering
that a portion of the overall number of OSSs that are used
have more work to do resulting in the dips observed during
uneven allocation data points. We also noticed the peaks are
successively higher up to three times the maximum OST
allocation after which the available data shows a flattening
trend. This trend suggests that to a point over-allocation of
OSTs can result in a higher per OST performance when
balanced over the number of OSSs. In general, this test
seems to show efficient performance. The performance per
OST averaged over the entire graph is 134.46MB/sec. This
includes data points from uneven allocation. Rates as high as
167MB/sec/OST were observed. Since we are exercising both
ports on an IO node in parallel'’” and in many cases all four
ports of a controller!®, these bandwidths compare well with
previous results from section I1I-B.

The purpose of the following test is to analyze how the file-
system responds to over-subscription during file-per-process
access. As mentioned previously, the ratio of compute to 10
nodes on Red Storm is approximately 60:1. To be able to
test this level of over-subscription sufficiently in a reasonable
amount of time the number of OSTs were limited to eight
on four OSS nodes. It should be noted that even using a
limited number of OSTs the tests using large numbers of
clients consume large amounts of time. In some cases we were
not able to take multiple data points, however previous tests
support these findings.

toonstant stripe size = 2, constant =fersize = 4 NiB)

write ——
read

1doo |

1200 |

1000

oo

MiB/sec

]

400

200

L L L L
208.2 3z.z2 416.2 4952

increasing number of clients

L
1.z 104.2

Fig. 9. Oversubscribed File-Per-Process

While compressed due to the large range of data points,
the early portion of the graph, depicted in figure 9, indicates
a saw-tooth pattern similar to figure 8. The most remarkable

17Based on the previously discussed allocation pattern, at client count 29
OSS one OSS node is using both HBA ports in parallel. At 30 clients two
OSS nodes are using both ports, at 56 all OSSs are using both HBA ports in
parallel.

$Dependent on how OSS nodes are connected to controllers.

feature of the graph is the clear drop off of read performance
as the over-subscription of the file-system increases. While
it is difficult to specifically analyze the exact point the drop
begins, the overall trend is clear. At large scale there is a
significant problem with read performance. Write performance
seems to hold up at large scale in contrast to read performance,
using file-per-process 10. As in the test depicted in figure
8, the per OST performance (for writes) compares favorably
with previous observations using both ports of an IO node in
parallel. Average performance per OST (for writes) calculated
over the entire test was 154.15MB/sec with a maximum rate
of 176.31MB/sec. We should note that while this test is a
useful measure of how the system might perform during over-
subscription at least minimal testing should be done at true
scale to determine if significant differences are observed.

C. Shared-File Test

While not as common as file-per-process 10, at least at San-
dia Labs, shared-file IO is utilized by important applications.
Testing how the file-system responds to this method of 10 is
important. The stripe number used for the single shared-file
in this test is eight. Due to the configuration of the Lustre
file-system each of the OSTs allocated are on separate OSS
nodes. The selection of an eight stripe file was made, as in our
previous file-per-process test (see section IV-B), to determine
how the file-system responds to over-subscription in the ratio
of 60:1. We should note that previous tests performed in this
manner proved to be very time-consuming. Due to limitations
in the amount of time available on this production platform,
fewer data-points were gathered but were chosen based on
previous tests to best represent how the file-system responds
to shared-file IO.

(constant stripe size = 8, constant xfersize = 16 NiB)

write ——
read

1200

1000 I

o0

MiB/sec

]

400

200

L L L L
2085 3z.8 416.5 4965

increasing number of clients

L
z.8 1045

Fig. 10. Oversubscribed Shared-file

The graph in figure 10 illustrates the results of our shared-
file IO testing. Our first observation is for small numbers of
clients the read performance exceeds the write performance.
After the initial rise, the read performance drops sharply.

Based on the available data-points the drop appears to begin
at about the same level of over-subscription that the file-
per-process test in figure 9 indicates. The write performance
seems more regular, excluding the fact that for small numbers
of clients writing is less performant than reading. After a
fairly pronounced dip following the initial peak, the write
performance appears to even out through the remainder of the
graph. A final observation is that the per OST performance
for shared-file 10 is far less than file-per-process 10. Average
performance per OST (for writes) calculated over the entire
test was 105.44MB/sec. The maximum observed rate was
127.61MB/sec.

V. CONCLUSIONS

Based on our testing we have determined our IO sub-system
is physically configured in a manner appropriate to achieve our
performance goals (50000MB/sec, reference section I). Our
testing showed that at the device level we can obtain very
close to theoretical bandwidth. Consider, if we could achieve
the aggregate bandwidth per controller that we demonstrated
during device level tests (approximately 195MB/sec per port)
our maximum bandwidth for our largest file-system (320
OSTs) would be 62400MB/sec.

In our file-system layer tests we saw performance degrade,
especially when parallel paths were employed. The per OST
results observed when using Lustre, however, were more
promising. If the best of the per OST rates we observed
remained consistent at scale our performance goals could be
achieved for file-per-process access (for writes). If we calculate
the maximum bandwidth achievable using the average rate,
for writes, over the entire test in figure 9 we would see
49280MB/sec (154.15MB/secx32005T's), very close to our
performance goals. Alternatively, if we use the maximum rate
observed in the same test (176.31MB/sec) we could achieve
56419.2MB/sec (176.31MB/secx 3200S5T's), which easily ex-
ceeds our goal. Unfortunately, all of our tests indicate that read
performance suffers at scale. In addition, write performance,
while it did not degrade badly like read performance, for
shared-file access did not produce sufficient results even using
best case figures. Our goal is to exceed 50000MB/sec for
IO, reading or writing, whether file-per-process or shared file
access is used.

In general, however, this has proven to be a valuable
exercise for our site. The close examination of our IO con-
figuration instigated by this effort identified inefficiencies that
were corrected and resulted in increased performance. Scaling
studies done in conjunction with this effort identified bugs in
both Lustre and problems in the high speed network routing
algorithm. Our routing problems have been corrected and the
Lustre problems identified have been resolved or are in the
process of being resolved by CFS[3]. Our lingering concern
is performance at large scale, especially for reads. Our results
have been shared with both CFS and Cray.

VI. FUTURE WORK

This effort is ongoing. Our testing harness is used to
verify our IO performance after each upgrade; hardware or

software. We continue to test for performance and reliability
using the testing procedures developed for this analysis. Our
performance goals have not yet been achieved but we are
hopeful that continued testing and analysis will move us
closer to our goals in the near future. We have also identified
multiple opportunities for improvement in our procedure and
identified additional tests that should be developed to enhance
our analysis capability.

We previously mentioned the necessity to test at true scale.
We have performed tests on a Lustre file-system that is
configured with 160 OSS nodes with two OSTs per node. In
file-per-process, one stripe per client, tests using all 320 OSTs
we have seen aggregate transfer rates of up to 54104MB/sec
using only 640 clients. This rate is 86% of our device level
bandwidth of 62400MB/sec (see section V) and exceeds our
goal of 50000MB/sec. In addition, we have seen rates ex-
ceeding 50000MB/sec for client counts up to 3200 indicating
that high per OST bandwidth rates can be sustained for large
client counts. Unfortunately, we have found these results to be
inconsistent. We can report, however, that bandwidth numbers
like these can be realized and use them to set achievable,
repeatable, performance goals in the future.

VII. ACKNOWLEDGMENTS

We would like to acknowledge the members of departments
1422 (Scalable Computer Architectures) and 1423 (Scalable
Systems Software) for their involvement in this exercise,
whether peripherally or directly. We have also worked closely
with personnel at CFS and Cray and are grateful for their
contributions. On site support was critical to this effort. All
members of the Cray system administrative team (Richard
Dimock, Victor Kuhns, Barry Oliphant, Roberto Purdy and
Jason Repik) supported this effort 24 hours a day. We greatly
appreciate their responsiveness and patience. We would also
like to thank Robert Ballance and John Noe for their coopera-
tion in scheduling the large amount of system time necessary
for this effort to proceed.

REFERENCES

[1] Red Storm - http://www.sandia.gov/ASC/redstorm.html
[2] Red Storm 10 Performance Analysis -
http://www.cs.sandia.gov/RSIOPA
[3] Lustre - http://www.clusterfs.com
[4] Red Storm - SeaStar Interconnect - SeaStar Interconnect:
Balanced Bandwidth for Scalable Performance, Ron Brightwell,
Kevin T. Pedretti, Keith D. Underwood, Trammell Hudson -
http://doi.ieeecomputersociety.org/10.1109/MM.2006.65
[5] Catamount (Light Weight Kernel) - Suzanne M Kelly, Ronald B
Brightwell, "Software Architecture of the Light Weight Kernel, Cata-
mount," Conference Paper, Cray User Group, May 2005
[6] Catamount (Light Weight Kernel) - Suzanne M Kelly, Ron B Brightwell,
John P VanDyke, "Catamount Software Architecture with Dual Core
Extensions," Conference Paper, Cray User Group, May 2006
[7] Cray - http://www.cray.com
[8] SUSE Linux - http://www.novell.com/linux
[9] Linux - Linux is the registered trademark of Linus Torvalds in the U.S.
and other countries
[10] Qlogics - http://www.qlogic.com
[11] Data Direct Networks - http://www.datadirectnet.com
[12] Seagate - http://www.seagate.com
[13] Seagate Data Sheet - Publication Number: 100195490, Rev. F, Printed
in USA
[14] IOR - http://www.lInl.gov/icc/lc/siop/downloads/download.html

