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• Linked modeling-experimental program on enhanced blast explosives (EBX)

• Modeling program 

– CTH (Eulerian shock wave physics code)

– Goal to develop predictive model of all enhanced-blast “events” 

• Experimental program to 

– Support model development directly with simple phenomenology studies (charge and 

containment geometry, single-parameter comparisons, control experiments)

– Comparative testing of conventional, enhanced blast materials

– Development of novel diagnostics for evaluating enhanced blast performance and measuring 

parameters relevant to enhancement

• Focus of this talk to highlight experimental and modeling capabilities

– Charge Description

– Facilities

• Chambers (Explosive Components Facility (ECF) Walk-in Chamber, “Big Blue”)

• Firing Areas (Terminal Ballistics Facility (TBF), ECF flash radiography pad) 

• ECF Gas Gun

Approach



EBX Charges

Cylinder (courtesy Rich Lottero, ARL)

Sphere
• Primarily composed of RDX, IPN 
• Aluminum particle sizes

– flake (~100 nm thick, 20 microns across)
– 120 nm (1.5-2.5 nm oxide layer, 5-15%)
– 50 nm (1-2 nm oxide layer, 20-30%)

SEM of flake Al

50 m
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Booster
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Detonator

Detonator

Booster

Polypropylene, Metal,
or HDPE shells



Charge Expansion

• Hadland Imacon 200
• 4 s framing rate



ECF: Walk-in Chamber

• 1 kg TNT limit

• Dia. = 3.35 m, L = 5.27 m, V = 36.8 m3

• Most heavily instrumented and utilized

• Closed chamber, but not gas tight

• Not symmetric due to floor, port 
structures, and door

Pencil Gauge

Framing Camera 

Optical Window

Charge

Instrumentation Flange

Pyrometry Gauge



Walk-in Chamber Capabilities

650 g, 50% flake Al / 50% nanometric Al (50nm)

N2
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Pyrometry of Expanding EBX Products

0.02ms 0.08ms 0.14ms 0.16ms 0.18ms 0.24ms 0.32ms

Path of 
Al/combustion 

products

Light collection 
volume

Fiber optic cable to 3-color pyrometer 
(700, 900, 1270 nm) outside of test 
chamber

‘Blackbody’ backstop

Protective window

R.J. Pahl, M. J. Kaneshige, and S. Snedigar, Post-detonation particulate temperature measurement for 
aluminized explosives using 3-color pyrometry, 2005 JANNAF Combustion Subcommittee Meeting, 
Charleston, SC, June, 2005.



TBF: “Big Blue” Chamber

• Limit: 3 kg C-4?

• Salvaged from surplus and modified for 
blast experiments

• Axisymmetric, clean interior suited to rapid 
simulation

• Simple construction supports chamber 
strain and temperature measurements



Terminal Ballistics Facility: Free Field
• 3 m height of burst 

– guided by modeling

• 20 kg TBX charge

• 6 pencil gauges

• High-speed cameras and radiometers 
(at berm in background)

• Identical blast performance of EBX and 
C-4 in free field shows importance of 
confinement to enhanced blast 
performance

20 kg EBX

3 m 
Standoff

• EBX Detonation
• Shock loading of mixture

Ground

• Onset of reflection with ground
• Expansion of booster charge

EBX 
products

Shock 
heated 
air

C4

• Booster collapse 
• Onset of reflected waves

Flow 
instabilities

Reflected wave Folding of air/products

• Rebound of booster products
• Shock folding of expansion products



TBF Free Field: 20 kg TBX and C-4

• Different cameras but similar view

• TBX charge exhibits clear jetting, not 
apparent with C-4

• Early investigation of scaling from 2-20 kg



ECF Flash Radiography Firing Pad

• 1 kg TNT limit

• Conventional X-rays for detonics

• Experimental mono-energetic soft X-rays 
for fireball density distribution

• Mono-energetic (Molybdenum) soft X-ray 
image

• Aluminum particulate cloud in expanding 
charge



ECF: Gas Gun

Target Cup

Kel-F
Sample Cup
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Modified
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• Understanding of the timing of Al energy 
release will aid in better predictive models for 
formulation design

• Gas gun work with low density HMX and Sugar 
targets at moderate projectile velocities (~0.4-1.2 
km/s) has revealed information about reactive 
wave growth

• ORVIS diagnostic reveals significant spatial as 
well as temporal fluctuations Spatially Resolved Velocity Profile

HMX/2-µm Al; 0.503 km/s

PMMA

Temperature

“hot spot” formation correlate 
with interfacial locations



– Nonideal detonation state

• PVT state + initial KE + how 

much metal reacts prior to 

breach of confinement + role of 

constituents

• partition of energy and 

dissipation due to case effects  

(case breakup, localization 

jetting effects, etc.) 

– Geometry / properties drive the later 

stages

– Combustion dictated by the shocked 

material characteristics

– Morphology and specific surface 

area of dispersed materials likely to 

be changed during detonation

– Predicts early-time expansion rate

- Mixture of IPN/RDX/Al, typical composite explosive

- Al plates 200 m x 200 m x 10 m (segregated during 
packing; inert)

- RDX 50 m and 100 m random blend 

- Shock-induced reaction rates determined by impact testing          

Mesoscale Modeling: Detonics



Spherical Charge Expansion

Detonation modeling predicts early expansion
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High speed photography of spherical expansion

Experimental observations
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Wave Features:

• Deceleration of gas expansion products  

• Separation of dispersed phase materials

• Formation of large scale jets and turbulent  

structures

• Heat transfer and reactions with entrained air 

• Formation of secondary shocks 

Current Modeling Efforts: Secondary Combustion



• Central idea: define an “averaging” method that 
extracts relevant combustion physics (occurring at 
small scales) that can be applied to the practical 
computational scales 

Turbulent Combustion Modeling 
PDF formalism

- Includes species transport and reaction, i.e.:



Computational Grid

Meso scale ~0.01mm

- A “point” means a distribution of states 

- i.e. 
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Key aspect is defining  f

Extension of PDF formalism using the “conservative 
scalar approach” already in place in CTH

“The devil is in the details!”

TH2O= 300 K

Marginal PDF formalism demonstration
• Multiphase PDF transport equation derived (Carrara, M. D. and DesJardin, 
P. E., “A Probabilistic Approach to Modeling Separated Two-Phase Flows 
Using LES I:  Mathematical Formulation,”  Int. J. Multiphase Flow, 2005)



Coupling to Structural Analysis

PRESTO
• Fully Three-Dimensional

– Massively Parallel
• Thousands of processors 

– Nonlinear
• Complicated material response
• Large deformations
• Complex interaction of components in contact

– Solution Method
• Explicit central-difference integrator
• Durations of interest: ms

• Target Modeling

– Expansion of particle methods (GPA, HPM)

– Element-to-particle conversion

– EPIC material models

• Explosive Modeling: CTH

• Coupling Strategies:

– One-way transfer of pressures from CTH to 
PRESTO

– Two-way coupling 

Blast onto single room structure

HE 
Charge



Conclusions

• Multiple experimental facilities and diagnostics enabling  
scientific study of EBX “events”

– Indoor and outdoor test facilities (large and small scale)

– Range of high-fidelity diagnostics and video imaging

• Ongoing, collaborative modeling efforts:

– Mesoscale simulations

– Models guiding experiments & experiments feeding 
models

– State-of-the-art turbulence modeling of secondary 
combustion



Recommendations for Future Work

• Aluminum’s role 

– Particle morphology and characterization (pre- & post-detonation; 
overall performance)

– Aerobic/anerobic burning, associated time scales and particle 
histories

– Does agglomeration cause jetting?

– Need evidence of “bootstrapping” 

• Continue PDF implementation for modeling of secondary 
combustion – fundamental combustion studies needed that study 
nonpassivated, highly strained metal additive.  

• Case effects and charge scale


