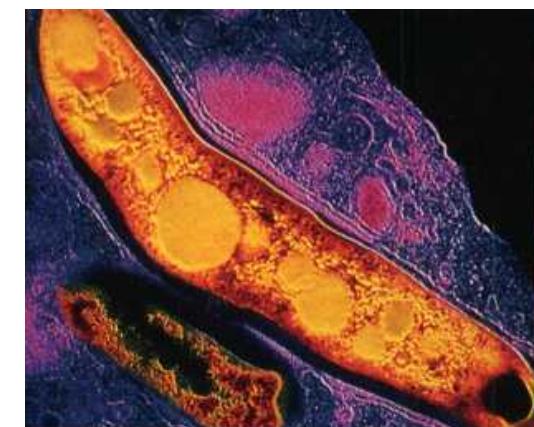


Biohazards of *Mycobacterium tuberculosis*

India
June 2007

www.biosecurity.sandia.gov

SAND No. #####


Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Outline

- History of Laboratory Acquired Infections
- Health Hazards
 - Classical Strains
- Viability
- MDR/XDR *M. tuberculosis*
- Laboratory Hazards
- Recommended precautions/practices
 - Containment
 - PPE
 - Decontamination
 - Inactivation
 - Incident response
- Medical surveillance

History of Laboratory Acquired Infections

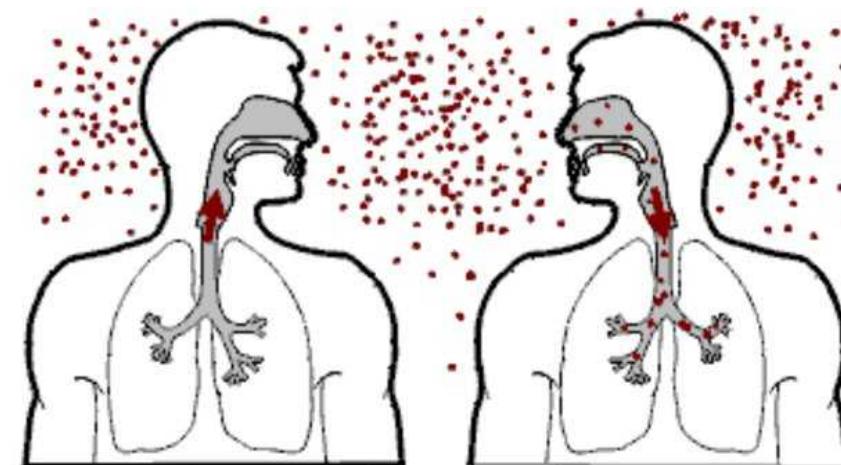
- Incidence of TB among laboratory workers working with TB 3 to 5 times greater than laboratory workers not working with TB*
- In a study of 16 laboratorians with traceable exposures:
 - 10 involved poor directional airflow
 - 8 within a lab
 - 2 within a clinic
 - 5 associated with failure in the biosafety cabinet (BSC)
 - 1 associated with an autoclave failure
- In 1993, a nurse acquired TB via a needle stick injury from an HIV/TB infected patient. The nurse did not acquire HIV **

*CDC Report, June 1997

** Kramer et al, 1993

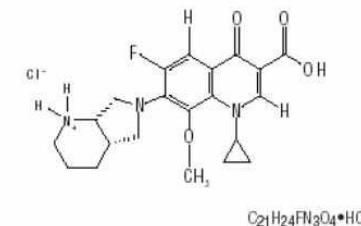
Health Hazards

- ***M. tuberculosis* falls into risk group 3**
 - H37Ra & **Bacillus Calmette-Guerin (BCG)** fall into risk group 2
 - H37Rv is a risk group 3 strain
- **Infectious dose is very low:**
 - ID₅₀ 1-10 bacilli
- **Routes of infection**
 - Inhalation of infectious aerosols
 - Accidental parenteral inoculation
 - Direct contact with mucous membranes
 - Ingestion



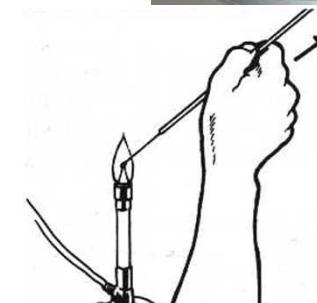
Viability

- **M. tuberculosis is fairly stable in the environment**
 - 90 to 120 days on dust
 - 45 days on manure
 - 105 days on paper
 - 6 to 8 months in sputum (within a cool dark location)
 - 45 days on cloth material



MDR/XDR - TB

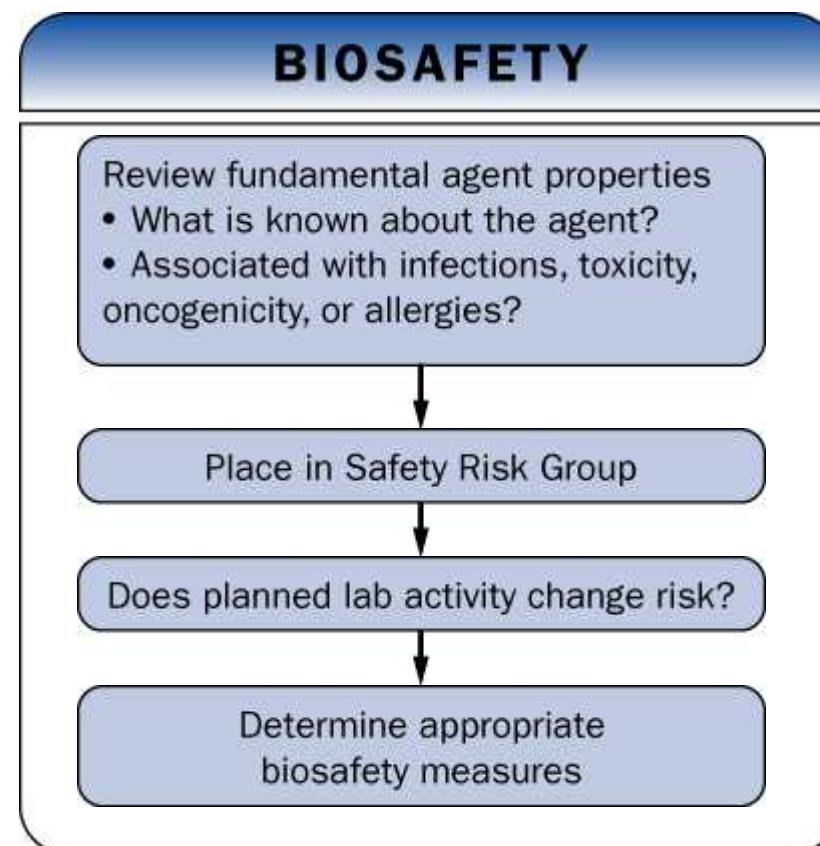
- Multi-Drug Resistant (MDR-TB) is a TB strain showing resistance to at least rifampicin and isoniazid
- Extensively Drug Resistant (XDR-TB) is also resistant to rifapicin and isoniazid in addition to fluoroquinolone and at least 1 of the following injectable drugs: capreomycin, kanamycin and amikacin
- Infectious dose and routes of infection are believed identical to standard *M. tuberculosis*
- Viability of XDR and MDR is also believed to be the same but some inactivation tests demonstrated XDR may be less stable



Laboratory Hazards

- **Aerosol Exposure**
 - Centrifugation
 - Pipetting
 - Homogenizing (vortexing, grinding, or blending)
 - Sonication, heating or boiling
 - Loop flame-sterilization
 - Flow cytometry
- **Containers with clinical specimens**
- **Animal studies**
 - Non-human primates
 - Litter and animal waste
- **Skin puncture**
- **Tubercle bacilli have been reported to survive heat-fixed smears**
- **Frozen material when cut can release ice particles which are contaminated, even if formalin-fixed**

Recommended precautions/practices



- **Risk Assessment**
- **Containment**
- **PPE**
- **Surface Decontamination**
- **Waste Decontamination**
- **Inactivation**
- **Incident response**

Risk Assessment

Containment

- **Health Canada and the CDC recommend:**
 - Biosafety level 2 practices, containment equipment and facilities for primary culture of sputum and smear preparation
 - Biosafety level 3 practices, containment equipment and facilities for the propagation and manipulation of cultures of *M. tuberculosis* or *M. bovis* and for animal studies utilizing non-human primates.
- **Work should be conducted within a BSC when possible**
- **Work with MDR or XDR**
 - Based upon risk assessment, any non-diagnostic biosafety level 3 containment is recommended
 - Class III BSC should be considered for:
 - Aerosol studies
 - Studies with large cultures

p1

Slide 10

p1 is this stating that BSL3 containment is required for non-diagnostic work?
paustin, 5/16/2007

PPE

- **Gross contamination protection**
 - **Laboratory coat and gloves when manipulating TB specimens**
 - **Gloves and gown with tight wrists and ties in back when manipulating TB cultures**
 - **If working with chemicals, the selection of gloves used should be based upon the chemical***
 - **E.g. If working with Tetrahydrofuran (THF) only Teflon gloves provide protection**

- **Eye and mucosal membrane protection**
 - **Goggles or facemask should be worn manipulating TB specimens or cultures**
 - **A full facemask protects against unintentional touching of the mouth, nose and eyes with a contaminated hand**

*See glove/chemical chart

PPE (Respiratory Protection)

- **Respiratory protection for:**
 - Work outside the BSC
 - Any work with MDR/XDR
 - High level of aerosolization risk
- Surgical masks do not provide any protection from TB
 - Infectious droplet nuclei < 5 um in diameter
- Particulate mask respirator
 - N, R and P models
 - N100 is effective for working with TB
 - Medical assessment and fit testing are required with particulate masks
- Powered Air purifying Respirator (PAPR)

PPE (Blood borne pathogen protection)

- **Blood borne pathogen protection**

- **Blood borne pathogen protection when sharps (including potential sharps like glassware) are in use**

- **Gloves**

- Multiple layers of gloves can reduce the amount of infected material on a sharp instrument when it punctures the skin
 - Heavy weight utility gloves should be worn for equipment cleaning and spill response

- **Sharps handling**

- Utilize safe sharp devices
 - Keep hands away from needles
 - Use mechanical methods for needle removal
 - Never bend, recap or manipulate sharps by hand.
 - Dispose of entire unit into sharps container
 - Collect reusable sharps in labeled, leak-proof container

Surface Decontamination

- **M. tuberculosis** has a high lipid content of the cell wall which creates a greater resistance to classical disinfectants
- MDR and XDR strains do not show any difference from the classical strains
- **Ineffective Disinfectants:**
 - Quaternary ammoniums only inhibit
 - Resistant to acids, alkali and mercurial compounds
- **Effective Disinfectants:**
 - 5% Phenol or 5% formaldehyde - 10 minute contact
 - 2% Glutaraldehyde - 30 minutes contact time
 - 5% Sodium hypochlorite - 1 minute contact time
 - 70% Ethyl and isopropyl alcohol
 - Iodine and ionophores are also effective when used with ethyl alcohol

Waste Decontamination

- Articles should be autoclaved at a minimum temperature of 121°C & 1 MPa (15 psi) for a minimum period of 15 minutes
 - After autoclaving waste material may be disposed of as rubbish
 - Re-usable articles may be washed and reused
- Animals larger than mice cannot be fully decontaminated via autoclaving*
 - Mice require 1.5 hours in autoclave to be fully decontaminated
- Autoclaving can be used to decontaminate the surface of an animal storage container
 - Animal carcasses should be incinerated or placed into a chemical digester

*RTI International 1989

Inactivation

- **Traditional Chemical Inactivation**
 - 2% paraformaldehyde and 2% glutaraldehyde
 - 5% formalin
- **Chemical inactivation study:**
 - 90% ethanol for 2 hrs at room temperature then incubated at 96°C in 20% Chelex for one hour showed 100% inactivation (Djelouagji et al)
- **Heat Inactivation studies:**
 - Heat inactivation of TB at 80°C was shown to not be effective
 - 77% of tested cultures were shown to still be active
 - Heat inactivation in a 100°C water bath or dry heat oven at 95°C for 20 min showed inactivation but also degraded the DNA. (Seagar et al)
- **All inactivation's must be validated regardless of method before handling at a lower biosafety level**

Incident response

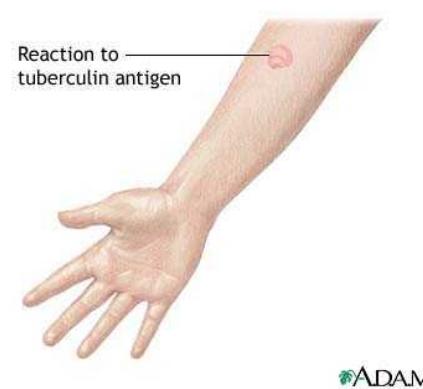
- **Spill Response**

- Allow aerosols to settle
- Wearing protective clothing, gently cover spill with paper towels and apply 5% phenol, starting at perimeter and working towards the centre
- Allow sufficient contact time before clean up
- Decontaminate before disposal

- **Post Exposure**

- Incident should documented in writing
- The effected person(s) should be counseled immediately after exposure and referred a physician or health department to begin follow up and appropriate therapy
 - Baseline testing should be performed as soon as possible post-incident
- Any person should be clinically evaluated for active tuberculosis; if active tuberculosis is diagnosed, appropriate therapy should be initiated
- Others within the laboratory should also be tested if the exposed individual is positive

Medical surveillance



- Persons working with TB should have a tuberculin skin test, unless a previously positive reaction can be documented or after completion of appropriate preventative therapy or adequate therapy can be documented
- Persons with a history of Bacillus of Calmette and Guerin (BCG) vaccination should also have the tuberculin skin test
- Persons who exhibits a first time positive reaction to the skin test must be cleared by a physician
 - Investigation of exposure route
 - Additional testing required as TB is endemic
- Persons with a history of a positive skin test (PPD) or adequate treatment of latent infection or active diseases should be from further testing unless signs and symptoms of TB disease develop
- Periodic retesting of PPD-negative persons be conducted to identify persons whose skin tests convert to a positive status
 - The frequency of retesting is risk-dependent

Medical surveillance (con't)

- **Skin Testing**
 - Targeted tuberculin skin testing (TST) uses a purified protein derivative which is also within the BCG vaccine
 - People who have had the BCG vaccine should be retested 6 weeks after the initial test to look for reaction to the vaccine
- **New whole blood tests are showing more accurate results than the TST in areas where BCG vaccine is common.**
 - QFT-RD1 is one of these tests

©ADAM.

References

- Health Canada Material Safety Data Sheet
- Biosafety Recommendations for the Contained Use of *Mycobacterium tuberculosis* complex isolates in industrialized countries, Royal Library of Belgium
- Interim Laboratory Biosafety Guidance for Extensively Drug-Resistant (XDR) *Mycobacterium tuberculosis* strains, Centers for Disease Control (USA)
- Goals for working safely with *Mycobacterium tuberculosis* in Clinical, Public Health and Research Laboratories, Department of Health and Human Services (USA)