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Workshop Overview

 Day 1
— Introduction/Overview (8:00 — 8:30)
— Code Organization (8:30 — 9:00)
— Presto (9:00 — 9:30)
— Break
— Numerical Issues ( 10:00 — 12:00)
— Lunch
— CTH (1:00 — 5:00)
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Workshop Overview

* Day?2
— LAME and Model Implementation (8:00 — 10:00)
— Break
— Running Presto (10:15 — 12:00)
— Lunch

— Examples (1:00 — 5:00)
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Workshop Overview

 The schedule 1s flexible

— What would you like to see?
— What are your problems?

* Current design/implementation is driven by our problems

* Does the design work for your problems?

— We want this to be interactive
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Solid Mechanics Codes

» Sandia National Laboratories has a long history of
mechanics code development
— Shock Physics
— Transient Dynamics
— Quasi-Static

* Solve engineering problems for nuclear weapons
program

— Design, manufacturing and use (normal, abnormal and
hostile environments)
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Solid Mechanics Codes

* Types of codes

— Description

» Lagrangian (material) CTH is an Eulerian, shock

« Eulerian (spatial) physics, finite difference code
— Physics

Presto 1s a Lagrangian, transient
* shock physics dynamic, finite element code

e transient dynamics

Adagio 1s a Lagrangian, quasi-

* uasi-static . .
static, finite element code

— Numerical Method

» finite difference

* finite element
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Solid Mechanics Codes

e Concentration will be on Lagrangian (material)
descriptions for Presto

— Natural description for constitutive models

e CTH — Shane Schumacher

— Equation of state, strength and damage models

* Presto
— Strength models

— Equation of state and damage models also exist
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Solid Mechanics Codes

e Presto has a third party library for constitutive models

— Particularly simple to do for a Lagrangian code

« Library of Advanced Materials for Engineering
(LAME)

— Gabriel Lamé — 1795-1870
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Solid Mechanics Codes

« LAME — Library of Advanced Materials for
Engineering

— Interfaces with Presto/Adagio through Strumento

|
|
|
— | Strumento :
|
|

shared routines
* elements
 constitutive models
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Solid Mechanics Codes

e Another twist...
— Some aspects of Presto are export controlled
— These are kept in a product called Vivace
— Allows us to have a non-ITAR version of Presto

Strumento
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Solid Mechanics Codes

 Why was LAME created?

application code
developers
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Solid Mechanics Codes

Ease of implementation for model developers

Constitutive models are independent of the host code
(e.g. Presto)

A single repository for constitutive models in
Engineering Sciences

LAME can be thought of as a logical extension of the
MIG concept (Brannon and Wong)
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Solid Mechanics Codes

e Is LAME finished? — NO
— LAME 1s currently used by Presto and Adagio
— LAME 1s not used by CTH — there 1s still work to do

— LAME defines an interface — a host code must use that
interface

— The interface will be flexible
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Solid Mechanics Codes

(L]

* What still needs to be addressed in LAM|
— Documentation
— Support for F90
— EOS model support

— Structural model support (truss/beam,
membrane/plate/shell)

— Kinematics and thermal strains
— Material model driver
— Improved application code interface

— Support for coordinate systems
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Code Overview

Strumento
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Code Overview

e There are a number of code products that appear
— Sierra
— Presto / Adagio
— Strumento
— LAME
— Vivace
— CTH
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Code Overview

e Sierra — framework
— data structures
— parallel 1ssues
— load balancing
— re-meshing
— alot of CS

 Constitutive modeling is many layers below Sierra
framework
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Code Overview

* Presto/ Adagio

— Solid mechanics codes
« transient dynamics (f = ma - hyperbolic)
* quasi-static (f = 0 - elliptic)
— Timescales
* Presto — us —ms
« Adagio — s — decades
— Solution procedures are different for both codes

 Presto — integrate using central difference

e Adagio — iterative solvers

 Both codes use constitutive models
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Code Overview

 Strumento

— Some common code to Presto / Adagio
« Elements
* Constitutive models

o Effective moduli

— What’s not in strumento

 Contact

» Constitutive models 1in strumento are being put into
LAME (Interface to LAME)
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Code Overview

 LAME

— Constitutive models are being placed here

— Simplifies model implementation
* Most constitutive modelers are “part-time” code developers
 Sierra code development environment is difficult for “part-time”
developers (C++/OO0P, dynamic code development environment)
— Mitigate code development problems with a well designed
code library

 LAME provides a stable platform for implementation
of constitutive models
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Code Overview

e Vivace

— International Traffic in Arms Regulations (ITAR)
 State Department — Arms Export Control

— EOS models are subject to ITAR
— We want ITAR and non-ITAR versions of Presto

— Vivace contains our ITAR code

* We have similar code products for other customers (e.g. CRADA
partners)

* Vivace will be able to support LAME models
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Code Overview

« CTH

— Eulerian, finite difference, shock physics code

— In the process of being coupled with Presto

— Shane Schumacher
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Fitting the Pieces Together

Except for CTH, all of these code pieces are under the

SNTools (Sierra/Nevada tools) code development
environment

SNTools has “systems™

— Sierra 1s a system

The systems have “products™
— Presto, Adagio, Strumento, LAME and Vivace are products

— CTH 1s not a product of the Sierra system (or any system)
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Fitting the Pieces Together

* Products 1n the Sierra system have dependencies

— On other products
— On Third Party Libraries

* Presto depends on the following products:

— contact, equationsolver, FETI-DP, framework, imprint,
lame, MPIH, strumento and utility
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Fitting the Pieces Together

* Right now LAME does not depend on any other
products or TPL’s
— We want to avoid depending on other products

— Dependencies on TPL’s could be supported
— LAME 1s “like” a TPL

 Why 1s LAME in the Sierra system
— Porting to supported platforms

— Easier to compile and link with Presto and Adagio

— ASC requires us to run on many platforms across the labs
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Fitting the Pieces Together

* There are many ways to look at how the pieces fit
together

e It 1s important that you have the “big” picture in mind
— It 1s very likely that LAME will not meet your exact needs

— Knowing the bigger picture allows us to decide where it 1s
best to make changes

— Current example: kinematics and objectivity
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Fitting the Pieces Together

« Kinematics and Objectivity

— Enforcing objectivity depends on kinematics
» We enforce a Green-Mclnnis stress rate

— In a finite element code, kinematics are done in the element

— Does this restrict us?
» Can we use a hyperelastic model?

e Can we use a Jaumann stress rate?

E
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Numerical Issues

» Constitutive models are relatively simple
G;’]’ = »flj (gkb‘c’:mn’éq)

* But they are not that simple
— They can be difficult to integrate
— They require many things from a code

— They provide many things to a code
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Numerical Issues

* One way to look at constitutive models...

 Two types:
— Hyperelastic — strain

— Hypoelastic — strain rate

— Strain and strain rate are loaded terms...

— Requires good continuum mechanics to handle safely!

Material Modeling Workshop — Sandia National Laboratories — June 12-13, 2007



Numerical Issues

e Strains

— Different strain measures
» small strain
» Green-Lagrange strain
» Logarithmic strain

» Seth-Hill family of strains

« But all strains measure the same thing — what 1s 1t?
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Numerical Issues

e Strain Rates
— With different strains come different strain rates...

— PLUS we seem to like to call the rate of deformation a
strain rate, even though it 1sn’t!

* Does this all matter?
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Numerical Issues

* From a constitutive modeling point of view it does
matter

— This 1s a matter for constitutive modelers to consider

* From a code development point of view kinematics
for constitutive modeling can pose a problem

— What do we supply?
— What should we supply?
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Numerical Issues

* Most models we implement are hypoelastic
— Qur architecture is set up to handle hypoelastic models

— Objectivity — Green-Mclnnis stress rate

GA.. :Gl] —Qikaj +szQk] — ﬁ](Dk[9§m)

y

Q. =R,R, ; F,=RU_=V,R,

y

Q. =-Q .
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Numerical Issues

 Why do we care about objectivity?

— Want constitutive model to be independent of rigid body
rotations

f+Af
S N

f+Af
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Numerical Issues

 How can we integrate the Green-Mclnnis rate?

— Un-rotated configuration

I, = sz‘lele

y

km™~" ml [

y

T..:R,a.(d,d—Q G+, )R,

]:.]f“ = R,’;G,';R;
n+l n
" =T, + At (dy.8,,)

dij = Rkkalle

continuum

discretized
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Numerical Issues

 How do we implement the discretized algorithm?

n n n * We need the rotation tensor
T = R.o,R; L .
 The constitutive equation needs
T =T+ Atf,, (dy,E,,) the un-rotated rate of deformation
! ! ! * [t may need other quantities un-

d;=R;D,R, rotated
 There 1s no indication of what
T =RT)VRY rotation is used for the rate of
deformation! (we use the current
rotation)

1. Flanagan and Taylor, 1987
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Numerical Issues

« Rate of deformation — two methods
— Midpoint (strong objectivity)!

1/2
1 av;m/z 6\/?”

+ n+l/2 n+l/2
ij n+l/2 n+l/2 ]
2| ox; OX,

1
;X T =x A,
2

— Strong incremental objectivity?

"' =Fdx, ; D= i(lnﬁ)

1. Hughes and Winget, 1980 ; 2. Rashid, 1994
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Numerical Issues

With either method, we can assume that the code
calculates a rate of deformation

Why do we use two?
— Strong incremental objectivity 1s closer to what we want

— Midpoint rate of deformation 1s faster to calculate

— For most applications, however, there 1s no appreciable
difference

Guideline: SIO has the most benefit in quasi-static
analyses — large incremental deformations
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Numerical Issues

Strong incremental objectivity for cyclic simple shear

ymax — O°01
|<_ —y _,| |<_)/ _,| 1 cycle goes between £y, ..
= sin (@j
y ymax T
0<¢t<L10T

E =31,870 psi
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Numerical Issues

Comparison of xx Stress Component for Small Cyclic Shear
10

* Normal stress grows

§ 5 X A A A with Incremental
WAV AVAVAVA RS

* Non-zero stress due

-5
to implementation of

Ll A i - finite deformation
constitutive model

A o eececmaeeeees e cm s s e s ssma e bes s e e

analytical ——
midpeint integration
-20 - strong incrementa objectivity ——s—— T AT .
-25
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cycles

Material Modeling Workshop — Sandia National Laboratories — June 12-13, 2007



stress (psi)

Numerical Issues

5000

4500

4000

2500

3000

2800

2000

1500

1000

£oo

Residua Mormal Stress vs. Mumber of Loading Cycles

| » Growth rate depends
------------- 20 inc/cycle . .

ot ey d— on size of increments
* Need for Strong
Incremental Objectivity
may depend on problem

——
S
S

——

1

25 &0 75 100 125 150 175 200

cycles

Material Modeling Workshop — Sandia National Laboratories — June 12-13, 2007



Numerical Issues

* We also need the rotation — two methods
— Midpoint — integrate a rate equation

— Strong incremental objectivity — polar decomposition

 What 1s the difference between the two?
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Numerical Issues

« Midpoint!-?
start with: V', R

W,=¢g,w
compute: D,, W, ’

l]’

o, z,=¢&,D,V,,

jm’ mk

compute: Q, =g,

(o:W+[Itr(V)—V} .Z

solve:
1 n+l 1 n
Sik_EAtQik R = 5,~k+§NQik R

1. Flanagan and Taylor, 1987 ; 2. Hughes and Winget, 1980
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Numerical Issues

* Midpoint

v =v+ AtV

ij ij

This 1s acceptable if the deformation over a time step 1s small
e.g. Presto

There may be significant errors 1f the deformation 1s large
e.g. Adagio

Material Modeling Workshop — Sandia National Laboratories — June 12-13, 2007



Numerical Issues

e Strong Incremental Objectivity

start with: V', R

. ou, . ..
i ' = 54‘]‘ "3 o We do this because 1t 18
X'
compute: J easy.to C'fllculate the
Frl_ OAu, gradient in the current
g gy configuration
J
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Numerical Issues

e Strong Incremental Objectivity

. OAu s
-1 ; -1 -1 -1
I — i n+1 — Bz — Fki Fk
J J axj J g
D= B [=1mV
2At At

Perform a spectral decomposition on B

1.e. find the eigenvalues and eigenvectors
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Numerical Issues

e Strong Incremental Objectivity

-1 @ui I S T
i =0, pwT —> B, =F_F,
J

v=(B") "~ ; R=V.F’

Perform a spectral decomposition on B™'

Note that BOTH methods of computing the rotation also
find the left stretch
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Numerical Issues

Finite Uniaxial Stretch
simple problem

A0 0
V=0 1 0
00 1

Solve this using 1 to 100 steps
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Numerical Issues

stretch

Comparison of Integrated Stretch to Exact Stretch

24 ' ! ' ! ! ! ! ! !
' exact -
integrated -
L B FE il i - A B A i o -
0 10 20 30 40 50 60 70 80 90 100

number of increments
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Numerical Issues

Small Stretch / Finite Rotation

' Acos’ 0 +sin’0 (1-A)cosOsinf 0]
V=[(1-1)cosOsin® cos’O+Asin°0 0
0 0 1

Solve this for one full revolution using
Final A =1.001 80 time steps
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stretch component

Numerical Issues

1.0014

Comparison of xx Stretch Component for & Small Strain Superimpesed on & Finite Rotation

1.0012 -

1.0010

Wi
approximate
exact

1.0008

1.0006

1.0004

1.0002

W

0.2

04

time

0.6

0.8

Analytical V_ =1.0010
Integrated J_ ~1.0013
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Numerical Issues

* So, with the rate of deformation and the rotation, we
have two ways to calculate them

— Incremental objectivity and strong incremental objectivity
— Integrated and polar decomposition

* We are also passing un-rotated stress and un-rotated
rate of deformation
— But what if we are using a hyperelastic model?
— What if we want to use a Jaumann stress rate?
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Numerical Issues

* Hyperelastic
— We have the rotation and left stretch
— We must pass back the un-rotated stress

 Jaumann stress rate

— We do not have a well defined way to do this with our
current code design — but there are ways to do it
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Numerical Issues

o Effective moduli

— Effective moduli for a constitutive model are used in many
places

— It 1s a way to make all constitutive model look the same —
1sotropic

f’ijkl = /{5;751(1 + /:‘ (5ik5 a T 51’15 jk)
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Numerical Issues

o Effective moduli — calculation

— Look at increments 1n stress and strain

____n+l n
Acrl.j =0, —O,

Agl.j = AtDl.j

Actually — we use the un-rotated versions of these.
It 1s easy to show that the results are not dependent on rotation.
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Numerical Issues

o Effective moduli — calculation
volumetric Ao, = (3/{ +2 ,&)Agkk
1
Asl.j = AGU. _ESUAGH(

deviatoric

. |
el.j = Dl] _ESUDkk
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Numerical Issues

o Effective moduli — calculation

3K =34 42 i = ﬂ effective bulk modulus
Ag,
. As.e,
2n = A— effective shear modulus
te,ey
A ~ 1/~ n
A+2u= 3 (K T 2(2,U )) effective dilatational modulus
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Numerical Issues

« Effective moduli — problems

— Two 1ssues
 Softening

K<0 4<0 A+24<0
» Negligible strain rate

€;

‘ékk‘<n <n

— A lot of logic 1s in place to handle these cases
* Is the logic robust?
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Numerical Issues

 Critical time step
— Courant stability limit
— Element by element

— Uses effective dilatational modulus to calculate sounds

speed
142 I A = d «——— characteristic
C = — c element
P dimension
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Numerical Issues

 Critical time step

— Value 1s modified for artificial bulk viscosity

At :Af(\ﬂ“?z _77) < Presto

At

- “ EPI
J1+1° +1 ¢

n 1 0 unless there 1s a shock
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Numerical Issues

* Hourglass control

— Underintegrated elements have zero-energy modes
— These are resisted by fictitious hourglass forces

— Stiffness used to compute hourglass forces is proportional
to the effective moduli
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Numerical Issues

° : 8 8
Shape functions for =S u =Y du,
hexahedron 1= =

1 1 1
=| & || =tn || ==
ben)=( Lot L[ Lec)
s v Len c Lo v lea
o, ¢1—§ 1+Z§ 11+ZTI 21+Z§ 37
; 1 1 1
A +5T]§F1] +EC€F2] +5gnr3l +€77§F41
R 1 <Em.C< 1 zl?ﬁilﬂ.ral )
e TS ,n,¢ < 5 are basis vectors
P
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Numerical Issues

\
1 r-----

3, A, rotation
y-direction

Au A31 shear
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Numerical Issues

* Hourglass modes

A

1

1

1

1

1

1

1

J
’
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Numerical Issues

* Hourglass modes are not all the same

I‘

A T—T |

* Hourglass modes
that contribute to
gradient operator

mode 1 mode 2 mode 3

* Hourglass mode
that does not
contribute to
gradient operator

mode 4
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Numerical Issues

« Hourglass forces are proportional to the effective
moduli

Qz'a — KKmaxqia
1 ! L hourglass
hourglass mode
force

maximum element
stiffness (effective moduli)
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Numerical Issues

e Cantilever beam — pressure load

Quasi-static - ADAGIO

Beam dimensions are Pressure chosen

20x1x4 so that 6 =0.01
: : with a beam theory
Material Properties solution
E=10x10°
v =03 Can we get coarse
mesh accuracy?
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Numerical Issues

e Cantilever beam — pressure load

tip displacement

0.0130 g 2 !
0.0125 i
0.0120
0.0115
0.0110

0.0105 -&K”——

0.0100 =~ — == — ﬁi__fm__“_ |
0.0095 v
0.0090 \\

0.0085

0.008!

Tip Displacement of a Pressure Loaded Cantilever Beam

e
132
1:4:

BN

0
000 o001 002 003 004 005 006 007 008 009 010 011 012
hourglass stiffness

Element aspect ratios:
(1) I:1:1
(2) 1:2:2
3) 1:4:4

Elements through thickness
(1) 2
(2) 4
3) 8
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Numerical Issues

* Hourglass results
— Mesh refinement 1s the only real guarantee of accuracy

— Choice of hourglass stiffness combined with element aspect
ratio determines “coarse mesh accuracy”

— Coarse mesh accuracy can only be attained 1f we have an
accurate approximation to maximum element stiffness — 1.e.
accurate tangent (effective) moduli
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Numerical Issues

e Tangent moduli
— For Newton methods in quasi-static problems — Adagio

— We primarily use iterative methods (Nonlinear
Preconditioned Conjugate Gradient)

— We have not used tangent moduli 1n our codes
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Numerical Issues

« Uses for tangent moduli in addition to forming a
stiffness matrix
— Replacing/augmenting effective moduli routines

— Stability calculations

— Two moduli of interest
 Instantaneous tangent — effective moduli, stability calculations

 Consistent tangent — stiffness matrix
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Numerical Issues

« Augmented Lagrange

— Used 1n quasi-static solution procedure — Adagio
* Incompressible materials

« Multiple materials stiff/soft

— Solves a series of (easier) model problems that converge to
the true solution

— Especially useful for iterative solvers

— AL strategies depend on constitutive models
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Numerical Issues

e There are many numerical 1ssues associated with
constitutive models
— Constitutive model type
— Kinematics
— Transient dynamic / quasi-static
— Element design

— Solution strategy

* Handling these issue will define an interface
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LAME Design

 C++/OO0P interface
— Not an expert in C++/O0OP
— Modelers are not expected to be experts either
— Blind leading the blind?

* Problems with OOP (...as I see it)

— Not the way we normally solve problems

* Objects and relationships vs. sequential thinking

— Way more rope than we need to hang ourselves!
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LAME Design

e So why use C++/O0OP? — Design an interface

ol e

Strumento

-

 Base class provides
the interface through
the Material class

e Host code has a
Material object, it
could be an elastic
material, and elastic-
plastic material,...
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LAME Design

« A material model calculates the stress given a strain
— This design 1s great!

« Host code: “Hey, Material, here’s a strain, what’s the new stress?”

 Material: “Hold on... Here it 1s.”

* But there 1s more to 1t than that...
— What strain (strain rate) does the material need?
— If the material uses a stress rate, what stress rate 1s 1t?
— How do we get output from the material other than stress?

— How does the material affect the numerical method?
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LAME Design

* A well designed interface needs to handle a wide
range of material models and capabilities

— variable length mputs

— update and output state variables
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Material.h

« The Material base class — line by line

class Material({

public data and methods
* accessible by outside code
* interface to host code

protected:

<

private:

protected data and methods
» accessible by derived classes
* not seen by host code

private data and methods
* accessible only by this class
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Material.h

 public methods

public:
Material () ;
virtual ~Material() ;

Constructor and destructor for the base class

e acts as the interface for creating and destroying the derived
class

* constructor sets a few initial variables

o destructor 1s virtual to ensure that the destructor for the
derived class is called
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Material.h

 protected data

protected:
double * properties;
double * p data;

int num material properties;
int num_scratch_vars;
int num_state_vars ;

properties — a pointer to a material property array

p_data —not used

num material properties —number of material properties
num scratch vars —number of scratch variables — not used
num state wvars —number of state variables
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Material.h

e public methods (again)

public:

int getNumStateVars () {
return num state vars;

}i

int getNumScratchVars () {
return num scratch vars;

}

void setScratchPtr( double * p vars) {
p data = p vars;

};

These methods are used by the host code to allocate memory
getNumStateVars () - returns the number of state variables needed

getNumScratchVars () and setScratchPtr () —not used
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Material.h

 public methods

public:
virtual
virtual
virtual
virtual
virtual

int
int
int
int
int

initialize( matParams * p ),
getStress( matParams * p ) ;
loadStepInit( matParams * p ),
getConsistentTangent ( matParams * p );
pcElasticModuli ( matParams * p );

These methods define most of the interface

einitialize () — initializes the model

« getStress () — returns the updated stress

« loadStepInit () — initializes variables at the beginning of a load step

« getConsistentTangent () — will be used with Adagio (unimplemented)
 pcElasticModuli () —used with Adagio
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Material.h

 public methods

public:
virtual
virtual
virtual
virtual
virtual

int
int
int
int
int

initialize( matParams * p ),
getStress( matParams * p ) ;
loadStepInit( matParams * p ),
getConsistentTangent ( matParams * p );
pcElasticModuli ( matParams * p );

Each of these methods, 1f needed, will be implemented in a derived class —
i.e. a specific material model.

The getStress () method must be implemented for each material model
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Material.h

 public methods

public:
virtual
virtual
virtual
virtual
virtual

int
int
int
int
int

initialize( matParams * p ),
getStress( matParams * p ) ;
loadStepInit( matParams * p ),
getConsistentTangent ( matParams * p );
pcElasticModuli ( matParams * p );

This 1s the meat of the interface

Notice that everything is passed using a structure: matParams. This

make the interface very easy to modify. If a model needs some information
that 1s not in matParams, we can add it.
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Material.h

e matParams

struct matParams{
int nelements;
int nintg;
double dt;
double time;

}

nelements — number of elements (material points) to be processed
nintg — number of integration points

dt — time increment

time — current solution time, 7, . |
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Material.h

e matParams

struct matParams { d. = R]?_“ Dkl R;?H
ij i j

double * strain_rate ;
double * stress_old;

double * stress new; p P
ij = 1,0 1\,
}
strain rate — un-rotated strain rate
stress old —un-rotated stress at time ¢,
stress new — un-rotated stress at time 7, | ]z_]?“ — R,’;HG;;H RZ’]?+ !
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Material.h

e matParams

struct matParams{

double

* state old;
double * state new; &,H_l
double * temp old;
double * temp new;

}

state old - state variables at time ¢,
state new - state variables at time 7, ,,

temp old — temperature at time ¢,

n+l1

temp new — temperature at time ¢,,;

Material Modeling Workshop — Sandia National Laboratories — June 12-13, 2007



Material.h

e matParams

struct matParams{

double * 1eft_stretch;
double * rotation;

left stretch - left stretch tensor at time 7, . 1
» . . +
rotation —rotation tensor at time 7, < R;

other variables in matParams are either not fully implemented or
used for certain quasi-static solution procedures
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Material.h

 protected methods

protected:
int getNumberProps( string name,
const MatProps & props);
double getMaterialProperty( string name,
const MatProps & props,
int n);

getNumberProps () — for a given property, it determines how many entries exist
getMaterialProperty () — retrieves the n property
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Material.h

 protected data

protected:
static materials::function::function * p function;
static materials::lame::app interface * p host;

These pointers are used to access the host code:
p_function - evaluate functions
p_host —report information/errors.
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Material.h

« protected data and methods

protected:
map<string,int> state variable map;
int set state varlable alias(string name,
int pos);

The host code allocates memory for state variables, but you must keep track
of which variable is which inside of your model.

The state variable alias is a name associated with a specific variable in the
state variable array — this 1s used for output
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Material.h

 public methods

public:
void setFunctionPtr(...);
static materials: :function: :function * getFunctionPtr ()
static void reportError() ;

These pointers are used to access the host code:
p_function - evaluate functions
p_host —report information/errors.
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Material.h

« private methods

private:
Material ( const Material & );
Material & operator= ( const Material & );

The copy constructor and assignment operator are
private and unimplemented to prevent use
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Elastic Model

* Elastic model

— This 1s the simplest constitutive model we have

— Three files:
e lame/include/models/Elastic.h
e lame/src/models/Elastic.C

e lame/src/models/elastic.F

— Header file, implementation file, FORTRAN file
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Elastic Model

e lame/include/models/Elastic.h

#ifndef ELASTIC H
#define ELASTIC H

#include <models/Material.h>
#include <Lame Fortran.h>

namespace materials {
namespace lame {

#endif
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Elastic Model

e lame/include/models/Elastic.h

namespace materials {
namespace lame {
class Elastic : public Material({

A

};

All models are derived from Material
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Elastic Model

e lame/include/models/Elastic.h

class Elastic : public Material({
public:
Elastic( MatProps * props );
~Elastic () ;

int initialize( matParams * p );
int getStress( matParams * p );

};

Note that there is no loadStepInit method for the Elastic model
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Elastic Model

e lame/include/models/Elastic.h

class Elastic : public Material({
private:
Elastic( const Elastic & ) ;
Elastic & operator=( const Elastic & );

};

This is a good coding practice — all models will have it

Material Modeling Workshop — Sandia National Laboratories — June 12-13, 2007



Elastic Model

e lame/include/models/Elastic.h

extern "C" wvoid
LAME FORTRAN (elastic get stress)
( const int & npts,
const double & dt,
const double * props,
double * strain rate,
double * stress old,
double * stress new );

extern "C" wvoid
LAME FORTRAN (elastic initialize)
( const double * props ),

These allow for
calls to the
FORTRAN
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Elastic Model

e lame/src/models/Elastic.C

#include <models/Elastic.h>

namespace materials {
namespace lame {
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Elastic Model

e lame/src/models/Elastic.C

Elastic: :Elastic( MatProps props ) {
num material properties = 2;

properties = new double[num material properties];

properties[0] getMaterialProperty ("YOUNGS MODULUS",

props) ;
properties[l] = getMaterialProperty ("POISSONS RATIO",

props) ;

The Elastic model needs two material properties
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Elastic Model

e lame/src/models/Elastic.C

Elastic: :Elastic( MatProps props ) {
num material properties = 2;

properties = new double[num material properties];

properties[0] getMaterialProperty ("YOUNGS MODULUS",

props) ;
properties[l] = getMaterialProperty ("POISSONS RATIO",

props) ;

Allocate memory for the material properties
THIS MUST BE FREED LATER!
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Elastic Model

e lame/src/models/Elastic.C

Elastic: :Elastic( MatProps props ) {
num material properties = 2;

properties = new double[num material properties];

properties[0] getMaterialProperty ("YOUNGS MODULUS",

props) ;
properties[l] = getMaterialProperty ("POISSONS RATIO",

props) ;

The property array is filled
Note that C++ starts counting at 0
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Elastic Model

e lame/src/models/Elastic.C

Elastic: :~Elastic() {
delete [] properties;
properties = NULL;

}

The memory allocated for the material properties is freed when the
destructor 1s called
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Elastic Model

e lame/src/models/Elastic.C

int Elastic::initialize( matParams * p ) {
LAME FORTRAN (elastic initialize) (properties);

return 0;

The 1nitialization for the Elastic model 1s called

* the pointer to the struct matParams comes from the host code
* properties is a pointer that is owned by this model
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Elastic Model

e lame/src/models/elastic.F

subroutine elastic_initialize( prop )
character *80 message

dimension prop (2)

youngs modulus prop (1)
poissons_ratio = prop(2)

return
end

This subroutine
will only do
error checking

Material Modeling Workshop — Sandia National Laboratories — June 12-13, 2007



Elastic Model

e lame/src/models/elastic.F

if (youngs modulus.lt.zero) then
write (message,101)
call lame report error(3,message)
endif

101 format(‘Youngs modulus is less than zero’)
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Elastic Model

e lame/src/models/Elastic.C

int Elastic::getStress( matParams * p ) {

LAME FORTRAN (elastic get stress) (
p->nelements,
p->dt,
properties,
p->strain rate,
p->stress old,
p->stress new);

return 0;

The updated stress 1s found
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