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Workshop Overview

• Day 1

– Introduction/Overview (8:00 – 8:30)

– Code Organization (8:30 – 9:00)

– Presto (9:00 – 9:30)

– Break

– Numerical Issues ( 10:00 – 12:00)

– Lunch

– CTH (1:00 – 5:00)



Material Modeling Workshop – Sandia National Laboratories – June 12-13, 2007

Workshop Overview

• Day 2

– LAME and Model Implementation (8:00 – 10:00)

– Break

– Running Presto (10:15 – 12:00)

– Lunch

– Examples (1:00 – 5:00)
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Workshop Overview

• The schedule is flexible

– What would you like to see?

– What are your problems?
• Current design/implementation is driven by our problems

• Does the design work for your problems?

– We want this to be interactive
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Solid Mechanics Codes

• Sandia National Laboratories has a long history of 
mechanics code development

– Shock Physics

– Transient Dynamics

– Quasi-Static

• Solve engineering problems for nuclear weapons 
program

– Design, manufacturing and use (normal, abnormal and 
hostile environments)
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Solid Mechanics Codes

• Types of codes

– Description
• Lagrangian (material)

• Eulerian (spatial)

– Physics
• shock physics

• transient dynamics

• quasi-static

– Numerical Method
• finite difference

• finite element

Presto is a Lagrangian, transient 
dynamic, finite element code

CTH is an Eulerian, shock 
physics, finite difference code

Adagio is a Lagrangian, quasi-
static, finite element code
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Solid Mechanics Codes

• Concentration will be on Lagrangian (material) 
descriptions for Presto

– Natural description for constitutive models

• CTH – Shane Schumacher

– Equation of state, strength and damage models

• Presto

– Strength models

– Equation of state and damage models also exist
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Solid Mechanics Codes

• Presto has a third party library for constitutive models

– Particularly simple to do for a Lagrangian code

• Library of Advanced Materials for Engineering 
(LAME)

– Gabriel Lamé – 1795-1870
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Solid Mechanics Codes

• LAME – Library of Advanced Materials for 
Engineering

– Interfaces with Presto/Adagio through Strumento

LAME

Adagio Presto

Strumento

CTH

shared routines
• elements
• constitutive models

SIERRA

Calore
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Solid Mechanics Codes

• Another twist...

– Some aspects of Presto are export controlled

– These are kept in a product called Vivace

– Allows us to have a non-ITAR version of Presto

LAME

Presto

Strumento

Vivace

ITAR
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Solid Mechanics Codes

• Why was LAME created?

analysts

constitutive
models

application code
developers

constitutive model
developers
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Solid Mechanics Codes

• Ease of implementation for model developers

• Constitutive models are independent of the host code 
(e.g. Presto)

• A single repository for constitutive models in 
Engineering Sciences

• LAME can be thought of as a logical extension of the 
MIG concept (Brannon and Wong)



Material Modeling Workshop – Sandia National Laboratories – June 12-13, 2007

Solid Mechanics Codes

• Is LAME finished? – NO

– LAME is currently used by Presto and Adagio

– LAME is not used by CTH – there is still work to do

– LAME defines an interface – a host code must use that 
interface

– The interface will be flexible
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Solid Mechanics Codes

• What still needs to be addressed in LAME

– Documentation

– Support for F90

– EOS model support

– Structural model support (truss/beam, 
membrane/plate/shell)

– Kinematics and thermal strains

– Material model driver

– Improved application code interface

– Support for coordinate systems
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Code Overview

LAME

Adagio Presto

Strumento

CTH

SIERRA

Calore

Vivace

ITAR
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Code Overview

• There are a number of code products that appear

– Sierra

– Presto / Adagio

– Strumento

– LAME

– Vivace

– CTH
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Code Overview

• Sierra – framework

– data structures

– parallel issues

– load balancing

– re-meshing

– a lot of CS

• Constitutive modeling is many layers below Sierra 
framework
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Code Overview

• Presto / Adagio

– Solid mechanics codes
• transient dynamics (f = ma - hyperbolic)

• quasi-static (f = 0 - elliptic)

– Timescales
• Presto – s – ms

• Adagio – s – decades

– Solution procedures are different for both codes
• Presto – integrate using central difference

• Adagio – iterative solvers

• Both codes use constitutive models



Material Modeling Workshop – Sandia National Laboratories – June 12-13, 2007

Code Overview

• Strumento

– Some common code to Presto / Adagio
• Elements

• Constitutive models

• Effective moduli

– What’s not in strumento
• Contact

• Constitutive models in strumento are being put into 
LAME (Interface to LAME)
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Code Overview

• LAME
– Constitutive models are being placed here

– Simplifies model implementation
• Most constitutive modelers are “part-time” code developers

• Sierra code development environment is difficult for “part-time” 
developers (C++/OOP, dynamic code development environment)

– Mitigate code development problems with a well designed 
code library

• LAME provides a stable platform for implementation 
of constitutive models
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Code Overview

• Vivace

– International Traffic in Arms Regulations (ITAR)
• State Department – Arms Export Control

– EOS models are subject to ITAR

– We want ITAR and non-ITAR versions of Presto

– Vivace contains our ITAR code
• We have similar code products for other customers (e.g. CRADA 

partners)

• Vivace will be able to support LAME models
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Code Overview

• CTH

– Eulerian, finite difference, shock physics code

– In the process of being coupled with Presto

– Shane Schumacher
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Fitting the Pieces Together

• Except for CTH, all of these code pieces are under the 
SNTools (Sierra/Nevada tools) code development 
environment

• SNTools has “systems”

– Sierra is a system

• The systems have “products”

– Presto, Adagio, Strumento, LAME and Vivace are products

– CTH is not a product of the Sierra system (or any system)
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Fitting the Pieces Together

• Products in the Sierra system have dependencies

– On other products

– On Third Party Libraries

• Presto depends on the following products:

– contact, equationsolver, FETI-DP, framework, imprint, 
lame, MPIH, strumento and utility
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Fitting the Pieces Together

• Right now LAME does not depend on any other 
products or TPL’s

– We want to avoid depending on other products

– Dependencies on TPL’s could be supported

– LAME is “like” a TPL

• Why is LAME in the Sierra system

– Porting to supported platforms

– Easier to compile and link with Presto and Adagio

– ASC requires us to run on many platforms across the labs
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Fitting the Pieces Together

• There are many ways to look at how the pieces fit 
together

• It is important that you have the “big” picture in mind

– It is very likely that LAME will not meet your exact needs

– Knowing the bigger picture allows us to decide where it is 
best to make changes

– Current example: kinematics and objectivity
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Fitting the Pieces Together

• Kinematics and Objectivity

– Enforcing objectivity depends on kinematics
• We enforce a Green-McInnis stress rate

– In a finite element code, kinematics are done in the element

– Does this restrict us?
• Can we use a hyperelastic model?

• Can we use a Jaumann stress rate?

Application
Code

LAME




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Numerical Issues

• Constitutive models are relatively simple

• But they are not that simple

– They can be difficult to integrate

– They require many things from a code

– They provide many things to a code

 , ,ij ij kl mn qf    
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Numerical Issues

• One way to look at constitutive models...

• Two types:

– Hyperelastic – strain

– Hypoelastic – strain rate

– Strain and strain rate are loaded terms...

– Requires good continuum mechanics to handle safely!
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Numerical Issues

• Strains

– Different strain measures
• small strain

• Green-Lagrange strain

• Logarithmic strain

• Seth-Hill family of strains

• But all strains measure the same thing – what is it?
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Numerical Issues

• Strain Rates

– With different strains come different strain rates...

– PLUS we seem to like to call the rate of deformation a 
strain rate, even though it isn’t!

• Does this all matter?
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Numerical Issues

• From a constitutive modeling point of view it does 
matter

– This is a matter for constitutive modelers to consider

• From a code development point of view kinematics 
for constitutive modeling can pose a problem

– What do we supply?

– What should we supply?
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Numerical Issues

• Most models we implement are hypoelastic

– Our architecture is set up to handle hypoelastic models

– Objectivity – Green-McInnis stress rate

ˆ ( , )

;

ij ij ik kj ik kj ij kl m

ij ik jk ij ik kj ik kj

ij ji

f D
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        
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
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Numerical Issues

• Why do we care about objectivity?

– Want constitutive model to be independent of rigid body 
rotations

f

 f f

 f f
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Numerical Issues

• How can we integrate the Green-McInnis rate?

– Un-rotated configuration

 

ij ki kl lj

ij ki kl km ml km ml lj

T R R

T R R



  



    
continuum

discretized 1 ,

n n n n
ij ki kl lj

n n
ij ij ij kl m

ij ki kl lj

T R R

T T tf d

d R D R






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Numerical Issues

• How do we implement the discretized algorithm?

• We need the rotation tensor
• The constitutive equation needs 
the un-rotated rate of deformation
• It may need other quantities un-
rotated
• There is no indication of what 
rotation is used for the rate of 
deformation1 (we use the current 
rotation)

 1

1 1 1 1

,

n n n n
ij ki kl lj

n n
ij ij ij kl m

ij ki kl lj

n n n n
ij ik kl jl

T R R

T T tf d

d R D R

R T R









   



  





1. Flanagan and Taylor, 1987
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Numerical Issues

• Rate of deformation – two methods

– Midpoint (strong objectivity)1

– Strong incremental objectivity2

1. Hughes and Winget, 1980  ;  2. Rashid, 1994

1/ 21/ 2
1/ 2 1/ 2

1/ 2 1/ 2

1 1
;

2 2
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j n n ni
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j i

vv
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 

 
        

 1 1ˆ ˆ; lnn n
i ij jdx F dx

t
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
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Numerical Issues

• With either method, we can assume that the code 
calculates a rate of deformation

• Why do we use two?

– Strong incremental objectivity is closer to what we want

– Midpoint rate of deformation is faster to calculate

– For most applications, however, there is no appreciable 
difference

• Guideline: SIO has the most benefit in quasi-static 
analyses – large incremental deformations
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Numerical Issues

Strong incremental objectivity for cyclic simple shear



max 0.01 

31,870 psiE 

max1 cycle goes between 

max

2
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0 10
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
 

 
  

 
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Numerical Issues

• Normal stress grows 
with Incremental 
Objectivity

• Non-zero stress due 
to implementation of 
finite deformation 
constitutive model



Material Modeling Workshop – Sandia National Laboratories – June 12-13, 2007

Numerical Issues

• Growth rate depends 
on size of increments

• Need for Strong 
Incremental Objectivity 
may depend on problem
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Numerical Issues

• We also need the rotation – two methods

– Midpoint – integrate a rate equation

– Strong incremental objectivity – polar decomposition

• What is the difference between the two?
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Numerical Issues

• Midpoint1,2

start with: ,n n
ij ijV R

compute: ,ij ijD W

compute: ij ikj k  

 
1

tr

ij ikj k

n
i ikj jm mk
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z D V






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

     ω w I V V z

1

solve:

1 1

2 2
n
kj

n
ik ik ik ik kjRt t R    
         
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1. Flanagan and Taylor, 1987 ; 2. Hughes and Winget, 1980
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Numerical Issues

• Midpoint

  n n
ij ik ik kj ik kjV D W V V   

1 n
ij

n
i ijjV V tV    

This is acceptable if the deformation over a time step is small
e.g. Presto

There may be significant errors if the deformation is large
e.g. Adagio
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Numerical Issues

• Strong Incremental Objectivity

start with: ,n n
ij ijV R

1

1

1

1

compute:
ˆ

i
ij ij n

j

i
ij ij n

j

u
F

x

u
F

x














 




 



We do this because it is 
easy to calculate the 
gradient in the current 
configuration
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Numerical Issues

• Strong Incremental Objectivity

1 1 1 1

1
ˆ ˆ ˆ ˆi
ij ij ij ki kjn

j

u
F B F F

x
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


   



11 1ˆ ˆln ln
2 t t

  
   

  
D B V

1ˆPerform a spectral decomposition on 

i.e. find the eigenvalues and eigenvectors

B
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Numerical Issues

• Strong Incremental Objectivity

1 1 1 1

1
i

ij ij ij ki kjn
j

u
F B F F

x
   




   



 
1/ 21 ; T   V B R V F

1Perform a spectral decomposition on B

Note that BOTH methods of computing the rotation also 
find the left stretch
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Numerical Issues

2 

Finite Uniaxial Stretch 
simple problem

0 0

0 1 0

0 0 1

 
   
  

V

Solve this using 1 to 100 steps
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Numerical Issues
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Numerical Issues

1 

Small Stretch / Finite Rotation

 

 

2 2

2 2

cos sin 1 cos sin 0

1 cos sin cos sin 0

0 0 1

     

     

  
 

   
 
  

V

Solve this for one full revolution using 
80 time stepsFinal  1.001 
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Numerical Issues

1.0010

1.0013

Analytical  

Integrated  

xx

xx

V

V




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Numerical Issues

• So, with the rate of deformation and the rotation, we 
have two ways to calculate them
– Incremental objectivity and strong incremental objectivity

– Integrated and polar decomposition

• We are also passing un-rotated stress and un-rotated 
rate of deformation
– But what if we are using a hyperelastic model?

– What if we want to use a Jaumann stress rate?
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Numerical Issues

• Hyperelastic
– We have the rotation and left stretch

– We must pass back the un-rotated stress

• Jaumann stress rate
– We do not have a well defined way to do this with our 

current code design – but there are ways to do it
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Numerical Issues

• Effective moduli

– Effective moduli for a constitutive model are used in many 
places

– It is a way to make all constitutive model look the same –
isotropic

 ˆˆ ˆ
ijkl ij kl ik jl il jkL         
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Numerical Issues

• Effective moduli – calculation

– Look at increments in stress and strain

1n n
ij ij ij    

ij ijtD  

Actually – we use the un-rotated versions of these.
It is easy to show that the results are not dependent on rotation.
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Numerical Issues

• Effective moduli – calculation

 ˆ ˆvolumetric 3 2kk kk      
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3
deviatoric
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  
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Numerical Issues

• Effective moduli – calculation

ˆˆ ˆ3 3 2 kk

ll

K


 
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
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
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
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
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effective bulk modulus

effective shear modulus

effective dilatational modulus  1ˆ ˆˆ ˆ2 2 2
3

K    
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Numerical Issues

• Effective moduli – problems

– Two issues
• Softening

• Negligible strain rate

– A lot of logic is in place to handle these cases
• Is the logic robust?

ˆˆ ˆ ˆ0 0 2 0K      

kk ije    
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Numerical Issues

• Critical time step

– Courant stability limit

– Element by element

– Uses effective dilatational modulus to calculate sounds 
speed

ˆ ˆ2
c

 




 ˆ d

t
c

 
characteristic 
element 
dimension
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Numerical Issues

• Critical time step

– Value is modified for artificial bulk viscosity

 2

2

ˆ 1

ˆ

1

t t

t

 

 

    




 

Presto

EPIC

0  unless there is a shock �



Material Modeling Workshop – Sandia National Laboratories – June 12-13, 2007

Numerical Issues

• Hourglass control

– Underintegrated elements have zero-energy modes

– These are resisted by fictitious hourglass forces

– Stiffness used to compute hourglass forces is proportional 
to the effective moduli
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Numerical Issues

• Shape functions for 
hexahedron
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Numerical Issues

• Rigid body and uniform strain modes (x-direction)

shear

rotation
I

I1 I3

I2
y-direction
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Numerical Issues

• Hourglass modes

I1

I4

I2

I3
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Numerical Issues

mode 4

mode 1 mode 2 mode 3

• Hourglass modes are not all the same

• Hourglass modes 
that contribute to 
gradient operator

• Hourglass mode 
that does not 
contribute to 
gradient operator
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Numerical Issues

• Hourglass forces are proportional to the effective 
moduli

maxi iQ K q 

hourglass
force

hourglass
mode

maximum element
stiffness (effective moduli)
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Numerical Issues

• Cantilever beam – pressure load

Pressure chosen
so that 0.01
with a beam theory
solution

 

Beam dimensions are
20 x 1 x 4

610 10

0.3

E



 



Material Properties

Quasi-static - ADAGIO

Can we get coarse 
mesh accuracy?
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Numerical Issues

• Cantilever beam – pressure load

Element aspect ratios:

(1) 1:1:1

(2) 1:2:2

(3) 1:4:4

Elements through thickness

(1) 2

(2) 4

(3) 8
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Numerical Issues

• Hourglass results

– Mesh refinement is the only real guarantee of accuracy

– Choice of hourglass stiffness combined with element aspect 
ratio determines “coarse mesh accuracy”

– Coarse mesh accuracy can only be attained if we have an 
accurate approximation to maximum element stiffness – i.e. 
accurate tangent (effective) moduli
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Numerical Issues

• Tangent moduli

– For Newton methods in quasi-static problems – Adagio

– We primarily use iterative methods (Nonlinear 
Preconditioned Conjugate Gradient)

– We have not used tangent moduli in our codes
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Numerical Issues

• Uses for tangent moduli in addition to forming a 
stiffness matrix

– Replacing/augmenting effective moduli routines

– Stability calculations

– Two moduli of interest
• Instantaneous tangent – effective moduli, stability calculations

• Consistent tangent – stiffness matrix
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Numerical Issues

• Augmented Lagrange

– Used in quasi-static solution procedure – Adagio
• Incompressible materials

• Multiple materials stiff/soft

– Solves a series of (easier) model problems that converge to 
the true solution

– Especially useful for iterative solvers

– AL strategies depend on constitutive models
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Numerical Issues

• There are many numerical issues associated with 
constitutive models

– Constitutive model type

– Kinematics

– Transient dynamic / quasi-static

– Element design

– Solution strategy

• Handling these issue will define an interface
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LAME Design

• C++/OOP interface

– Not an expert in C++/OOP

– Modelers are not expected to be experts either

– Blind leading the blind?

• Problems with OOP (...as I see it)

– Not the way we normally solve problems
• Objects and relationships vs. sequential thinking

– Way more rope than we need to hang ourselves!
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LAME Design

• So why use C++/OOP? – Design an interface

LAME

Adagio Presto

Strumento

• Base class provides 
the interface through 
the Material class

• Host code has a 
Material object, it 
could be an elastic 
material, and elastic-
plastic material,...

Material
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LAME Design

• A material model calculates the stress given a strain

– This design is great!
• Host code: “Hey, Material, here’s a strain, what’s the new stress?”

• Material: “Hold on...  Here it is.”

• But there is more to it than that...

– What strain (strain rate) does the material need?

– If the material uses a stress rate, what stress rate is it?

– How do we get output from the material other than stress?

– How does the material affect the numerical method?

– ....
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LAME Design

• A well designed interface needs to handle a wide 
range of material models and capabilities

– variable length inputs

– update and output state variables
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Material.h

• The Material base class – line by line

class Material{
public:

...
protected:

...
private:

...
};

public data and methods
• accessible by outside code
• interface to host code

protected data and methods
• accessible by derived classes
• not seen by host code

private data and methods
• accessible only by this class
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Material.h

• public methods

public:
Material();
virtual ~Material();

Constructor and destructor for the base class
• acts as the interface for creating and destroying the derived 
class
• constructor sets a few initial variables
• destructor is virtual to ensure that the destructor for the 
derived class is called
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Material.h

• protected data
protected:

double * properties;
double * p_data;

int num_material_properties;
int num_scratch_vars;
int num_state_vars;

properties – a pointer to a material property array
p_data – not used
num_material_properties – number of material properties
num_scratch_vars – number of scratch variables – not used
num_state_vars – number of state variables
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Material.h

• public methods (again)

public:
int getNumStateVars(){

return num_state_vars;
};
int getNumScratchVars(){

return num_scratch_vars;
};
void setScratchPtr( double * p_vars){

p_data = p_vars;
};

These methods are used by the host code to allocate memory
getNumStateVars() – returns the number of state variables needed

getNumScratchVars() and setScratchPtr() – not used
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Material.h

• public methods

public:
virtual int initialize( matParams * p );
virtual int getStress( matParams * p );
virtual int loadStepInit( matParams * p );
virtual int getConsistentTangent( matParams * p );
virtual int pcElasticModuli( matParams * p );

These methods define most of the interface
• initialize() – initializes the model
• getStress() – returns the updated stress
• loadStepInit() – initializes variables at the beginning of a load step
• getConsistentTangent() – will be used with Adagio (unimplemented)
• pcElasticModuli() – used with Adagio
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Material.h

• public methods

public:
virtual int initialize( matParams * p );
virtual int getStress( matParams * p );
virtual int loadStepInit( matParams * p );
virtual int getConsistentTangent( matParams * p );
virtual int pcElasticModuli( matParams * p );

Each of these methods, if needed, will be implemented in a derived class –
i.e. a specific material model.

The getStress() method must be implemented for each material model
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Material.h

• public methods

public:
virtual int initialize( matParams * p );
virtual int getStress( matParams * p );
virtual int loadStepInit( matParams * p );
virtual int getConsistentTangent( matParams * p );
virtual int pcElasticModuli( matParams * p );

This is the meat of the interface

Notice that everything is passed using a structure: matParams.  This 

make the interface very easy to modify.  If a model needs some information 
that is not in matParams, we can add it.
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Material.h

• matParams

struct matParams{
int nelements;
int nintg;
double dt;
double time;
...

}

nelements – number of elements (material points) to be processed
nintg – number of integration points
dt – time increment
time – current solution time, tn+1
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Material.h

• matParams

struct matParams{
...
double * strain_rate;
double * stress_old;
double * stress_new;
...

}

strain_rate – un-rotated strain rate
stress_old – un-rotated stress at time tn

stress_new – un-rotated stress at time tn+1

1 1n n
ij ki kl ljd R D R 

1 1 1 1n n n n
ij ki kl ljT R R   

n n n n
ij ki kl ljT R R
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Material.h

• matParams

struct matParams{
...
double * state_old;
double * state_new;
double * temp_old;
double * temp_new;
...

}

state_old – state variables at time tn

state_new – state variables at time tn+1

temp_old – temperature at time tn

temp_new – temperature at time tn+1

nξ

1nξ

n

1n 
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Material.h

• matParams

struct matParams{
...
double * left_stretch;
double * rotation;
...

}

left stretch – left stretch tensor at time tn+1

rotation – rotation tensor at time tn+1

other variables in matParams are either not fully implemented or 

used for certain quasi-static solution procedures

1n
ijV 

1n
ijR 

ij ik kjF V R
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Material.h

• protected methods

protected:
int getNumberProps( string name,

const MatProps & props);
double getMaterialProperty( string name,

const MatProps & props,
int n);

}

getNumberProps() – for a given property, it determines how many entries exist
getMaterialProperty() – retrieves the nth property
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Material.h

• protected data

protected:
static materials::function::function * p_function;
static materials::lame::app_interface * p_host;

These pointers are used to access the host code:
p_function – evaluate functions
p_host – report information/errors.
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Material.h

• protected data and methods

protected:
map<string,int> state_variable_map;
int set_state_variable_alias(string name,

int pos);

The host code allocates memory for state variables, but you must keep track 
of which variable is which inside of your model.

The state variable alias is a name associated with a specific variable in the
state variable array – this is used for output
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Material.h

• public methods

public:
void setFunctionPtr(...);
static materials::function::function * getFunctionPtr()
static void reportError();

These pointers are used to access the host code:
p_function – evaluate functions
p_host – report information/errors.
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Material.h

• private methods
private:

Material( const Material & );
Material & operator= ( const Material & );

The copy constructor and assignment operator are 
private and unimplemented to prevent use
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Elastic Model

• Elastic model

– This is the simplest constitutive model we have

– Three files:
• lame/include/models/Elastic.h

• lame/src/models/Elastic.C

• lame/src/models/elastic.F

– Header file, implementation file, FORTRAN file
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Elastic Model

• lame/include/models/Elastic.h

#ifndef _ELASTIC_H_
#define _ELASTIC_H_

#include <models/Material.h>
#include <Lame_Fortran.h>

namespace materials {
namespace lame {

...
}

}

#endif



Material Modeling Workshop – Sandia National Laboratories – June 12-13, 2007

Elastic Model

• lame/include/models/Elastic.h

namespace materials {
namespace lame {

class Elastic : public Material{
...

};
...

}
}

All models are derived from Material
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Elastic Model

• lame/include/models/Elastic.h

class Elastic : public Material{
public:

Elastic( MatProps * props );
~Elastic();

int initialize( matParams * p );
int getStress( matParams * p );

};

Note that there is no loadStepInit method for the Elastic model
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Elastic Model

• lame/include/models/Elastic.h

class Elastic : public Material{
private:

Elastic( const Elastic & );
Elastic & operator=( const Elastic & );

};

This is a good coding practice – all models will have it
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Elastic Model

• lame/include/models/Elastic.h

extern "C" void
LAME_FORTRAN(elastic_get_stress)
( const int & npts,

const double & dt,
const double * props,
double * strain_rate,
double * stress_old,
double * stress_new );

extern "C" void
LAME_FORTRAN(elastic_initialize)
( const double * props );

These allow for 
calls to the 
FORTRAN
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Elastic Model

• lame/src/models/Elastic.C

#include <models/Elastic.h>

namespace materials {
namespace lame {

...
}

}
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Elastic Model

• lame/src/models/Elastic.C

Elastic::Elastic( MatProps props ){
num_material_properties = 2;

properties = new double[num_material_properties];

properties[0] = getMaterialProperty("YOUNGS_MODULUS",
props);

properties[1] = getMaterialProperty("POISSONS_RATIO",
props);

}

The Elastic model needs two material properties
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Elastic Model

• lame/src/models/Elastic.C

Elastic::Elastic( MatProps props ){
num_material_properties = 2;

properties = new double[num_material_properties];

properties[0] = getMaterialProperty("YOUNGS_MODULUS",
props);

properties[1] = getMaterialProperty("POISSONS_RATIO",
props);

}

Allocate memory for the material properties
THIS MUST BE FREED LATER!
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Elastic Model

• lame/src/models/Elastic.C

Elastic::Elastic( MatProps props ){
num_material_properties = 2;

properties = new double[num_material_properties];

properties[0] = getMaterialProperty("YOUNGS_MODULUS",
props);

properties[1] = getMaterialProperty("POISSONS_RATIO",
props);

}

The property array is filled
Note that C++ starts counting at 0



Material Modeling Workshop – Sandia National Laboratories – June 12-13, 2007

Elastic Model

• lame/src/models/Elastic.C

Elastic::~Elastic(){
delete [] properties;
properties = NULL;

}

The memory allocated for the material properties is freed when the
destructor is called
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Elastic Model

• lame/src/models/Elastic.C

int Elastic::initialize( matParams * p ){

LAME_FORTRAN(elastic_initialize)(properties);

return 0;
}

The initialization for the Elastic model is called

• the pointer to the struct matParams comes from the host code
• properties is a pointer that is owned by this model
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Elastic Model

• lame/src/models/elastic.F

subroutine elastic_initialize( prop )

character *80 message

dimension prop(2)

youngs_modulus = prop(1)
poissons_ratio = prop(2)

...

return
end

This subroutine
will only do
error checking



Material Modeling Workshop – Sandia National Laboratories – June 12-13, 2007

Elastic Model

• lame/src/models/elastic.F

...
if (youngs_modulus.lt.zero) then

write(message,101)
call lame_report_error(3,message)

endif
...
101 format(‘Youngs modulus is less than zero’)
...
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Elastic Model

• lame/src/models/Elastic.C

int Elastic::getStress( matParams * p ){

LAME_FORTRAN(elastic_get_stress)(
p->nelements,
p->dt,
properties,
p->strain_rate,
p->stress_old,
p->stress_new);

return 0;
}

The updated stress is found


