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Nonlinear damping is important in MEMS 

Motivation:
• Micro plates are very important in many microsystems applications. 
• Squeezed-film damping determines the dynamics of plates moving a few microns 

above the substrate. Examples abound in
• MEMS accelerometers.
• MEMS switches.  
• MEMS gyroscopes. 

• Measurement of damping in MEMS has not been as extensively explored as the 
modeling. 

• Published measurements have not addressed the nonlinearity inherent to the 
variation of the thickness of the squeezed film gap throughout the oscillation 
cycle. 

• Methods for measuring nonlinear dynamic responses are not sensitive enough to 
measure damping nonlinearity. 

Objective:
• Provide experimental method to measure time-varying damping on MEMS.
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Squeezed fluid film damps oscillation.
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Plate oscillates freely at fequency .

The squeezed fluid between the plate and the substrate creates damping force that reduces the 
oscillation with time.  
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The oscillating plate can be modeled as SDOF.

   pbpbp zzczzkzm  

Equation of motion

Squeeze-film damping was theoretically 
predicted to be nonlinear. 

Free vibration of the plate resembles a 
decaying sinusoid. 

Higher when plate is closer to substrate.
Lower when plate is farther from substrate. 

Textbook log-decrement method cannot 
capture nonlinear damping. 
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Non-linear damping gives different decay 
envelope than linear damping. 

   0n0 cosexp)(   ttAtx dlin

   00 )(cos),(exp)(   tttxAtx nnonlin

Displacement of a linearly damped free 
oscillation: 

Displacement of a damped non-linear 
oscillation: 

Damping ratio is constant

• Damping ratio varies with time, 
displacement, etc. 

• Decay envelope has time-varying 
exponent. 

Due to the squeezed film, nonlinear damping 
distorts the oscillation from pure sinusoids. 
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Hilbert transform gives decay envelope. 

    


 
 






d

t

v
tvtv

)(1
)(~ H

)(~j)()( tvtvtV 

 tAtV n0 exp)( 

The Hilbert transform of a signal v(t) is 

• is an imaginary signal that is 90o lagging from phase from the real signal v(t). )(~ tv

• The vector sum of the real signal and the imaginary signal is the amplitude 

)(~)()( 22 tvtvtV 

• The amplitude of a decaying sinusoid is the envelope

)(~ tv

v(t)
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Decay envelope can be curve-fit for linear 
parameters. 
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• product of
• linear damping
• natural frequency

Curve fitting of the envelope gives

• initial amplitude
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Signal phase can be curve-fit for linear 
parameters. 
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Oscillation frequency is time derivative of signal phase  
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Linear: 

)(t
dt

d
 is a function of t. 

Non-linear: 

Signal phase can be obtained from the Hilbert transform 

v(t)
    tvtvt /~tan)( 1Curve fitting of the signal phase gives

• initial phase

• oscillation frequency

Natural frequency is

ddn   21/

Therefore, damping  can be obtained as = n / n

n was obtained from envelope curve fitting.
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Test structure is oscillated through its supports. 

1. Substrate is 
shaken up and 
down. 

2. Plate moves up 
and down. 

3. Springs flex. 

4. Air gap is compressed and expanded by 
plate oscillation. 

Air gap between plate 
and substrate. Mean 

thickness = 4.1 m. 

• A laser Doppler vibrometer (LDV) measured the plate velocity v(t).  
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Measurement uses LDV and vacuum chamber.

Microscope

Vacuum 
chamber

Laser beam
Die under test
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• Piezoelectric actuator  shakes 
the substrate (base). 

• Structure oscillates. 
• Base excitation is then cut out 

abruptly. 
• Structure’s oscillation rings 

down. 
• Scanning Laser Doppler 

Vibrometer (LDV) measures 
velocities at several points on 
MEMS under test. 
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Preliminary experimental modal analysis gave natural 
frequency, mode shapes, linear damping. 

Measured deflection shape, first mode. Higher modes are not considered.

16910Hz. Up-and-down. 

27240Hz

33050Hz
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Test data were the ring-down portion of free 
response. 

Response Velocity for 2.9Torr

Discrete Fourier Spectra of Raw and 
Filtered Response Velocities.

Oscillation was built up and then 
rung down. 

High-pass filtering removed DC 
offset, and suppressed low-
frequency drifts. 
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Hilbert transform gave the decay envelope. 

Analytic Representation of the Free Decaying Velocity.
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Nonlinear damping was orders of magnitude 
lower than linear damping. 

Amplitude as a Function of Time: 
Fit Values Versus Measured Data.

Total Damping Ratio as a Function of Time. 

Linear fit matched the envelope very closely. 
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Nonlinear damping was captured as a function 
of displacement and velocity. 

Nonlinear Damping Ratio as a Function of Displacement. Nonlinear Damping Ratio as a Function of 
Velocity. 

The method extracted the nonlinear part of the damping ratio, even 
though that part was orders of magnitude smaller than the linear part. 

The nonlinear damping appears to be a function of velocity rather than displacement. 
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Conclusions:

• The measurement and data processing technique resulted in accurate estimates of
oscillation frequency and linear damping ratios.

• Linear damping ratio can be obtained by curve-fitting the decay envelope.
• The method extracted the nonlinear part of the damping ratio, even though that

part was orders of magnitude smaller than the linear part.
• The nonlinear damping appears to be a function of velocity rather than

displacement.
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Classic Experimental Modal Analysis also gave 
natural frequency, damping and mode shapes

• Frequency response function (FRF) from 
base displacement to gap displacement: 
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• LDV measured transmissibility at 17 
points on the plate and springs. 

are curve-fit simultaneously using standard 
Experimental Modal Analysis (EMA) process. 

• Commercial EMA software gave natural frequency, damping, and mode shapes. 
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Differentiation can result in large noise. 

Then the oscillation frequency can be obtained as the analytical derivative of that 
representation. 

Differentiation with time resulted in unacceptably large noise.

Curve fitting of the signal phase 
can be done to obtain a very close 
representation of the phase angle 
as an analytical function of time.


