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Motivation: Understand behavior of 20-mm
diameter tungsten arrays relevant to ICF

Marx Intermediate
Capacitor Storage MITLs Pulse :
Banks Capacitors Forming Lines 35 m
The Z facility is a “pulsed power” facility at Peak radiation powers have been
Sandia National Laboratories, Albuquerque, NM obtained using annular wire arrays:
19 MA peak load current 1-1.8 MJ x-ray energy yield
11.5 MJ stored energy (10-15% conversion efficiency)

40 TW electrical power to load 100-250 TW x-ray power



}Radiation after peak power pulse does

relatively little to aid capsule compression
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FIG. 7. Ideal Z-pinch x-ray power history and the running integral of the
radiated energy for required three-step pulse.

R.A. Vesey et al., Phys. Plasmas 14, 056302 (2007).
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uestion: Can we explain the main radiation pulse

solely on basis of JxB implosion kinetic energy?
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Previous work with Al arrays on
SATURN claimed that the total
radiation was 2-4x kinetic energy.

For 20 mm tungsten arrays on Z,
the main radiation pulse typically
contains ~50% of the total energy

K.G. Whitney et al., Phys. Plasmas 11, 3701 (2004).
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| will discuss single-array

data from three different mass arrays

o Studied 3 20-mm diameter, 10-
mm tall, 300-wire W arrays:

— 6.0 mg (11.5 pm wires,
100 ns implosion)

(7.4 ym wires,
81 ns implosion)

— 1.1 mg (5.0 ym wires,
66 ns implosion)

* Implosion time variation also
changed the peak current

 Goals:

— Study ablation dynamicsT

— Study radiation scaling'?

* ldentical hardware used each test

T D.B. Sinars et al., Phys. Plasmas 13, 042704 (2006).

Tt D.B. Sinars et al., this talk.
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s array mass decreased, so did FWHM of
main pulse, keeping powers relatively high

Average power + std. deviation
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Time (ns)
Average radiated powers were
comparable for the three arrays
(Dashed lines correspond to

array-on-rod tests to be

100
Time (ns)
The change in radiation pulse shape
with implosion time kept the powers
high even as the radiated energy

dropped
discussed later).
| Array| Emain (&) Erorar (k3)| Epod, (k3)| Epgfy ()| Timp (05)| 7riae (n3)| B/, (kJ/MA?)| P/I2,., (TW/MA?)|
1.1 mg 440+£28 832421 240 488 66 3.1 2.50£0.16 0.62+0.13
2.5 mg 532+46 1106+£106 306 667 81 3.6 2.0840.25 0.474+0.06
6.0 mg 692+66 12784239 428 804 100 4.3 1.85+£0.27 0.31£0.07
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ﬁe kinetic energy is usually estimated using the

peak current and the current convergence ratio

From Ryutov, Derzon, & Matzen,
Rev. Mod. Phys. 72, 167 (2000).
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i L »df r Q
Wiin = -0 / —In(— |at §
A Jo dt Ry =
5
For thin shells driven by a long pulse, this %
can be approximated by: D

. fro o Ro

I’I rIL'-'-E:ﬂ f— ﬂ. I?T?_.(II ]]]. RP

(f is a form factor incorporating
the current shape and circuit)

Since our E/I .2 ratio varies, we
need to assess whether it is due to
a variance in the convergence ratio
or if some other physics is at play

[ —— Analytic (f=0.76)

|||||||||||||||||||||||||||||

Thin-shell Model

llllllllllllllllllllllllllll

15
Conv. Ratio (Ro/Rp)

Comparison among a 0-D thin-shell
calculation, a rocket model calculationT,
and the analytic expression for the kinetic
energy shows agreement if f~0.76 is used

for all three masses
T D.B. Sinars et al., Phys. Plasmas 13, 042704 (2006).
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% Traditionally the convergence ratio is

estimated using x-ray self-emission imaging

(b) XRD:

110 115
Time (ns)

Energy (MJ)

We estimated the CR using:

(a) X-ray pinhole camera (>1 keV)

(b) Grazing-incidence streak (375-450 eV)
(c) Trans. Grating Spectrometer (~450 eV)

1.0

- — Analytic
N Thin-shell
e Ablation P e
0.6 —
04 g 7 TE ¥ T :
0.2 e z1097 (6.0 mg)_:
ny (1.1 mg+rod) 21099 (1.1 mg) |
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15
Conv. Ratio (Ro/Rp)

30

The soft x-ray emission characteristic of the
peak of the radiation spectrum is consistent
with CRs of 9-15.

The pinhole images (>1 keV) are consistent
with CRs of 16-22.

To get 421 kJ on 21099 requires a CR>30!



On three shots (1 per each mass), we
used a 1-mm diam. Al rod on the array axis

Purpose of the rod was twofold:

(1) A resistive voltage monitor

was attached to the rod to

measure voltage along wires

during initiation (failed)

(2) The rod provided a known

maximum convergence ratio and
would dampen any contributions
to the radiation power from MHD

instabilitiesT
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Tm=0: Rudakov et al., Phys. Rev. Lett. (2000).

Tm=1: Chittenden et al.,

Plasma Phys. Contr. Fusion (2004).
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adiography offers a second, independent
method for estimating the convergence

'}r'

Dist.(mm) Line Density (mg/cm)
-6 -5 4 3 2 -1 0 0 05 1.0
AT T mTTEl T =z 4 Obtained a beautiful
. ' | radiographona 1.1 mg +
é . E rod shot (z1611)
;:/ 2_ o 2 ; The mass density profile
A N i . A was obtained using an
N (a) ‘ 1(b) I Abel inversion
- . | EEEEE The timing of the
1.5 18 ~ 120 . .
?5“ _ 6 < XRD} radiograph relative to the
=10 - " & x-ray pulse is known (5
& 4 g S 0= Ns). and so estimates
= A Ly 2 ] | g can be made of the
; 0.5 ' P % | /L IS kinetic power using
s (d.) ’/ R a _(-C)r' IIIII 0 simple assumptions
-6 -5 4 -3 -2 -l 100 120 140
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>,
: It is plausible that the array+rod main radiation

pulse is solely due to implosion kinetic energy
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oL i \\‘* 0 bt I .“'\q 1 | the rod shot was due
12 116 120 124 11 116 120 124 | solely to implosion KE

Time (ns) Time (ns)
(a) The kinetic energy flux through r=0.7 mm (the radius of the soft x-ray
emission), calculated assuming constant velocities for the density profile from
21611, compared with the x-ray power measured on that test.
(b) The same calculations but now assuming an initial velocity of 400 km/s and a
constant acceleration of 60 um/ns? (equivalent to 14.1 MA at 3 mm radius).
ALEGRA calculations suggest that about 25% of the kinetic energy is lost to the
rod as shocks and internal heating. @ Sandia
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Assuming z1099 has a similar mass profile, it

remains difficult to explain 421 kJ in the main pulse
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One is still forced into the
conclusion that high current
convergence ratios are necessary
(due to MHD instabilities?T). Is
there evidence to support this?

Tm=0: Rudakov et al.,

Phys. Rev. Lett. (2000).

Tm=1: Chittenden et al.,

Plasma Phys. Contr. Fusion (2004).
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| Array| Emain (63)] Eporar (&1)] E2%, (k1) Bty (63| rimp 08)] 7rise (08)] E/Byu, (kJ/MA?)| P/, (TW/MA?)]
1.1 mg 440428 832+21 240 488 3.1 2.50+0.16 0.62+0.13
2.5 mg 532446 1106106 306 667 3.6 2.08£0.25 0.47+0.06
6.0 mg 692466 1278+239 428 804 4.3 1.8540.27 0.31+0.07
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| GS data and self-emission at 6151 eV are consistent

with small-area hlgh-temperature blackbody

2.5 1 AT TR
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§ I T1=149 eV, A1=8.6 mm2 | 3| .5 e-integ
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Pinches consistently have a high-energy tail well above that expected
from a single-planckian fit to the peak of the spectrum.

A two-planckian fit suggests that the tail could be from a small-area,
high-temperature blackbody radiating ~50% of total power.

Time-integrated self-emission at 6151 eV has an area and brightness

comparable to what is expected from such a blackbody @ o

Laboratories



Summary

* Light (short 7, ) arrays produced high powers given reduced |.,. The
radiation pulse rise times are proportional to t;,,, and the powers could be
consistent with I .,.2/t; .7 scaling [as in Stygar et al., Phys. Rev. E (2004).].

* The CR of the self-emission varies with photon energy:

— ~450 eV emission has CRs of 9-15

— >1 keV emission has CRs of 16-22

— 6.15 keV emission (time-integrated!) has CRs ~40-50

— 1.1 mg bare-axis array requires CRs >30 to explain the energy in the main pulse.
— Total energy radiated is another ~2x higher.

« Array-on-rod shot main radiation pulse can be explained solely in terms of JxB
energy of implosion (self-emission, radiography). Bare-axis shots appear to

require average CRs >20 for the current to explain the main radiation pulse.
The total radiation emission certainly requires a non-kinetic source to explain.

« Electrical circuit analysist (not discussed) suggests average current radius is
very large (CR=6.7 at end of main radiation pulse for 1.1 mg array). But
problems there, e.g., current at R=6.6 mm on z1611 when mass is 2-4 mm.

T E. Waisman et al., Phys. Plasmas (2004).
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Lighter masses are more efficient

at extracting the available energy!

* The 1.1 mg arrays are 50% more
efficient at extracting energy and
100% more efficient at extracting
power from the available current
pulse than 6 mg arrays

- Ratio of rad. energy to |__ 2

— 1.85%0.27 kJ/MAZ2 (6 mg)

— 2.08%0.25 kJ/MA? (2.5 mg)

— 2.50%0.16 kJ/MAZ2 (1.15 mg)
- Ratio of peak power to | __ 2

— 0.31%0.07 TW/MAZ (6 mg)

— 0.47+0.06 TW/MAZ2 (2.5 mg)

— 0.62+0.13 TW/MAZ? (1.15 mg)

-l'u' I]T]HH

drmrs
Two implosions with the same
functional dependence of current
with time (i.e., similar normalized
currents) should occur in a similar

fashion if T is the same. [Ryutov,
Derzon, & Matzen (2000).]

1=

T, =6.47; M, =6.85; M, , =6.84

By this metric, each of these
arrays should have behaved
similarly. Why didn’t they?
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Aaling of 7,4 With 17, , suggests power has a 7,

imp
dependence. Is this P a | 2/t or a (I ., /t)1>, or ??

* For these three highest-power » Let’s ask the question: What if we
shots, there remain strong normalize the powers to | _ 2/t"-5?
differences in their radiation - Ratio of peak power to |__ 2/715
power efficiencies _ 388 TW-ns'5/MA2 (21097)

- Ratio of rad. energy to |__ 2 _ 376 TW-ns'5/MA2 (z1049)

— 2.22 kJ/IMAZ (21097)
— 2.03 kJ/MAZ (21049)
— 2.61 kJ/MAZ (21099)
- Ratio of peak power to | 2
— 0.41 TW/MA2? (z1097)
— 0.50 TW/MAZ2 (z1049)
— 0.71 TW/MA2 (z1099)

— 379 TW-ns15/MA2 (z1099)
— Coincidence?

- Ratio of peak powerto | _ 2/t1°
— Here tis from Cuneo method
— 31568 TW-ns'-5/MAZ2 (6 mg)
— 342+47 TW-ns'-5/MA2 (2.5 mg)
— 336+62 TW-ns'-5/MAZ2 (1.1 mg)

Cuneo noted last year that low-inductance mass scan data consistent with @ S
Pa(l . /t)°. Here 1395+280 (6 mg); 13561249 (2.5); 1407+374 (1.1)

Laboratories
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Ohms?
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Example Circuit Analysis:

21611 (1 1 mg array + rod)

Shot z1 611
10 1 T T T T T 7T T ]
r resistance? —14
L load current i
0.8 — { 12
o
0.6 — ]
L _p
0.4 6
- tablation=2.492e-6 -,
02— E
I ! 2
0.0 i \-\%ﬂnl\n Al ] | 1 Jo
2.44 2.46 248 2.50 2.52 2.54
Time x1E-6

After an initial resistance phase,
“resistance” has settled down.
Assume everything after
tablation is due to array motion.

Current (MA)

Radius (cm)

Shot z1 61 1

1.0_ e LI I L L L L R L B AL :50
_ r~3.7 mm at ;
08 end of maini™
pulse!lliq
O.G_ 3 E
- rcentroid/r0 305
" Van XRD 21611 H
04— . %
i At time of 20
02k radiograph, )
[ r~6.6 mm!!! 5
0.0 aia it b e " o
2.50 2.51 252
Time x1E-6

Inductance inferred from changes in
load inductance implies that current
stays out at very large radius.

If resistance is also present, the
inductive radius goes farther out!
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Summary of single-array “mass scan” tests

TABLE I: Summary of the tests described in the manuscript. All tests used 300-wire, 20-mm diameter, 10-mm tall tungsten
wire arrays inside identical raised, 30-mm diameter, 9-slotted return-current canisters with 8.0-mm wide slots (except for z0987
and z0988 which used 7.5-mm wide slots). A l-mm diameter Al 5056 rod was placed on axis during tests 21222 and z1257.
The peak load current prior to stagnation and the value at the time of peak x rays are listed. Parameters for the radiation
pulses measured with 4-pm Kimfol{polyvimide )-filtered XEDs or 1-pm Vanadium(V)-filtered XRDs are listed. The energy up

to the peak radiation power (as measured by the Kimfol-filtered XRD) is listed along with the energy within and prior to the
FWHM of the KimXRD signal.

Test Array Wire| Timp I Lpeak NED Power NRD rise XRD twhm | Epear| Emain| Eiotal
No.| Mass (mg)| (pm)| (ns)| (MA)| (MA)] Kim/V (TW)| Kim/V (ns)| Kim/V (ns)| (k) (k1) (kJ)
z0987 6.0 115 103.9( 17.7 14.6 92/87 3.8/3.8 7.1/8.1 285 589 863
z1097 6.1 11.6 | 100.3] 18.6 16.3 142/120 3.8/3.9 5.7/6.9 453 769 1556
z1098 6.1 11.6 | 99.3 19.1 17.6 107,/92 4.5/4.1 6.9/8.1 353 725 1396
z1175 5.9 11.4| 99.6 19.9 17.6 124/109 4.1/3.9 6.0/7.4 382 709 1330
z1176 5.9 11.4 99.3 20.3 18.1 140/121 4.5/4.5 5.1/6.5 450 T24 1359
z1195 6.0 11.5| 1013 20.6 17.8 94/85 4.4/4.1 7.4/13.2 384 637 1165
z1257% 6.0 11.5 96.1 20.8 19.0 T9,/73 5.1/5.3 5.3/6.6 275 428 804
z1055 3.4 8.7 86.3 17.7 17.0 101,98 4.1/3.9 8.4/8.8 378 725 1072
z(988 2.5 7.4 81.1 - - 114/100 3.1/3.1 4.3/5.3 286 481 1054
21049 2.6 7.5 80.5 16.2 15.6 131/115 3.3/3.8 4.2/5.1 287 532 1056
z1051 2.6 7.5 80.8 14.7 13.0 123/113 3.4/3.4 4.4/5.1 287 536 1104
z1054 2.6 7.5 80.8 16.4 15.5 118/108 3.5/3.4 4.4/5.0 255 479 968
z1192 25 7.4 82.7 16.8 15.2 122,/99 4.1/3.6 5.1/6.1 409 589 1190
z1194 2.5 7.4 78.6 16.9 16.1 119,/96 4.1/3.6 4.9/6.0 347 573 1263
21222% 2.5 7.4 T6.7 17.2 16.5 65,57 4.0/4.1 4.7/5.9 197 306 G667
z1099 1.1 5.0 65.7 12.7 12.2 115/87 2.9/4.6 4.3/6.7 224 421 846
z1177 1.2 5.1 67.4 13.9 13.2 102/85 3.2/3.3 4.7/7.6 199 460 817
z1611* 1.2 5.1 7.2 14.4 13.9 77?,/52 ?7.2/3.3 7.7/3.9 108 240 488
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