

# A practical method for reliability of dynamic systems under limited information

**Rich Field**

*Applied Mechanics Development*

*Sandia National Laboratories*

*Albuquerque, NM 87185-0847*

[rvfield@sandia.gov](mailto:rvfield@sandia.gov)

**Mircea Grigoriu**

*Civil & Environmental Engineering*

*Cornell University*

*Ithaca, NY 14853*

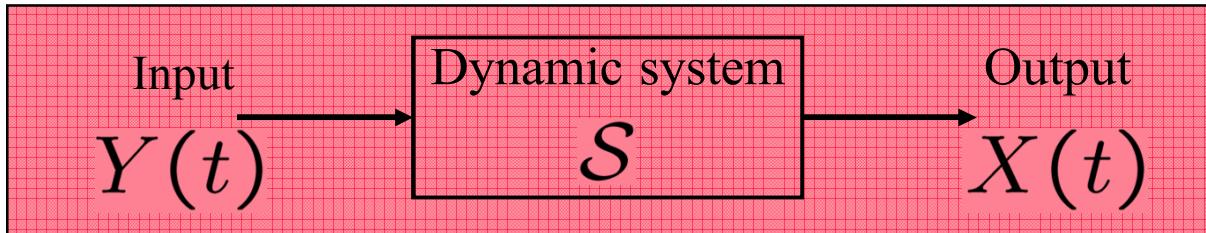
[mdg12@cornell.edu](mailto:mdg12@cornell.edu)

June 4, 2007



# Reliability of dynamic systems

---



- $Y(t)$  = stochastic input (excitation)
  - Examples: launch environments for satellites, re-entry of RBs
  - Can be Gaussian or non-Gaussian; stationary or non-stationary
- $S$  = dynamic system
  - Can be real hardware or model (e.g., Salinas FE model)
  - Can be linear or nonlinear
- $X(t)$  = stochastic output (response)
  - Examples: stress/accel in critical components
- Objective: calculate (time-dependent) probability that system output remains in safe set  $D$  during lifetime  $\tau$

Reliability:  $p_S(\tau) = P(X(t) \in D, 0 \leq t \leq \tau)$



# Current methods for reliability analysis

---

## Dynamic system, $S$

|              | Linear | Nonlinear |
|--------------|--------|-----------|
| Gaussian     | 1      | 2         |
| Input, $Y$   |        |           |
| Non-Gaussian | 3      | 4         |

Most methods require information typically not available for problems of practical interest

- Case 1 (classic linear random vibration)
  - Full probability law of output  $X$  is available
  - Reliability can be calculated directly
- Cases 2, 3, and 4
  - Reliability must be estimated
  - Techniques include path integral method, Fokker-Plank equation, perturbation, stochastic averaging, equivalent linearization, moment closure

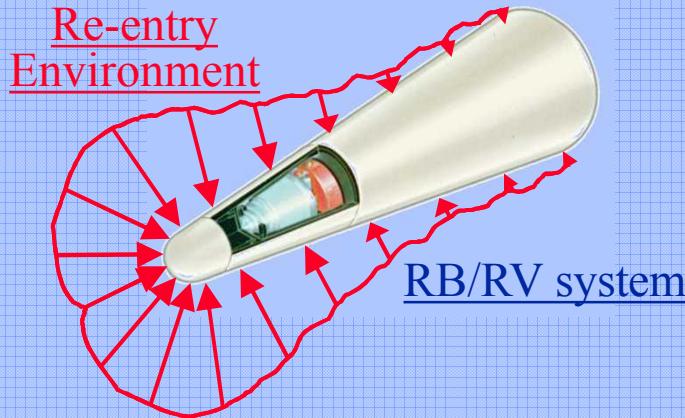
# Available information for practical problems

- 1) One or more samples of output  $X$  (required)
- 2) Knowledge of some properties of system  $S$  (optional)

## Example: re-entry random vibration

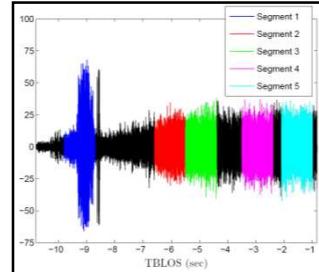
### Experimentalist

Measurements at a few internal locations for a few flights



### Analyst

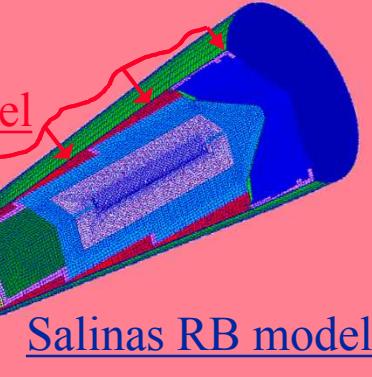
Response at base of AF&F



### Analyst

Small number of runs of complex FE model

### Environment model



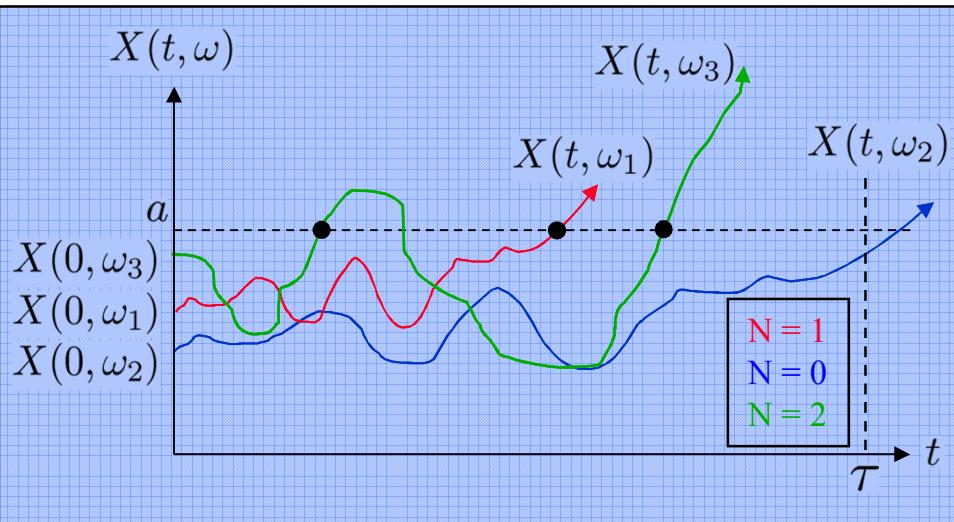


# Outline

---

- Our approach is consistent with the types of information available for problems of practical interest
  - Response data and, if available, additional knowledge on system properties
- Two methods are used for analysis
  - Method 1: output statistics
  - Method 2: non-Gaussian translation processes
    - Additional knowledge can only be used by Method 2
    - Both make use of crossing theory of stochastic processes
    - Coefficient of variation provides measure of accuracy
- Applications
  - Simple dynamic systems with known solutions

# Crossing theory of stochastic processes

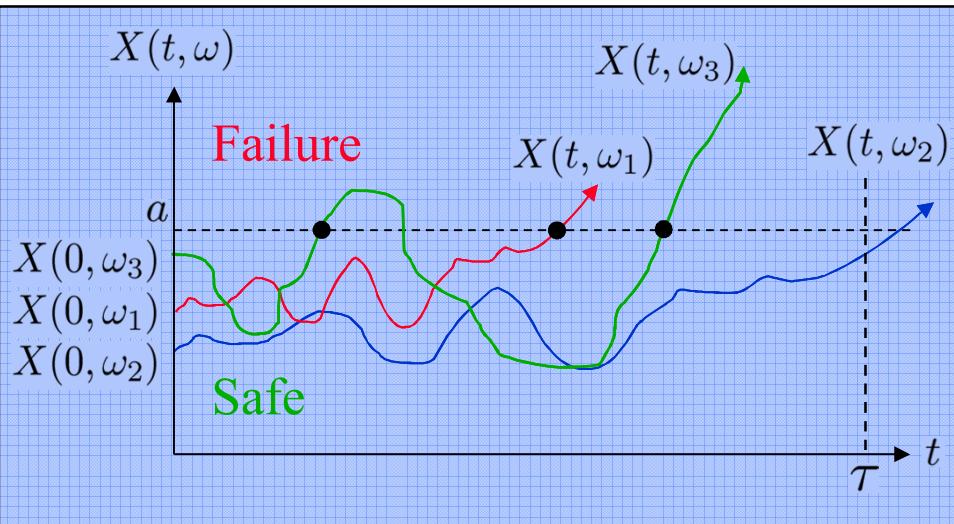
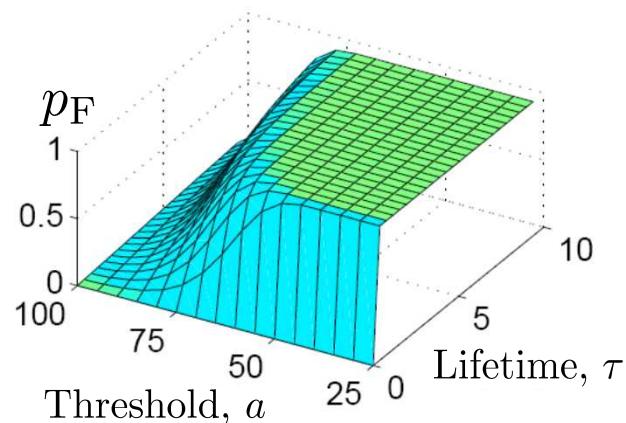


- $X(t)$  = stationary, scalar stochastic process (can be generalized)
- $N_a(\tau)$  = random # of times  $X$  “upcrosses”  $a$  during  $[0, \tau]$
- $\nu(a) = \frac{1}{\tau} \mathbb{E}[N_a(\tau)]$  is mean upcrossing rate of  $X$

- Example:  $X$  = Gaussian process with mean  $\mu$  and variance  $\sigma^2$

$$\nu(a) = \frac{\text{Std}[\dot{X}(t)]}{2\pi\sigma} \exp\left[-\frac{1}{2}\left(\frac{a-\mu}{\sigma}\right)^2\right]$$

# Reliability estimates by crossing theory



- Safe set:  $D = (-\infty, a)$
- Assumptions
  - System is safe at  $t = 0$
  - Failure events are rare
- Reliability

$$p_S(\tau) = P(X(t) \in D, 0 \leq t \leq \tau) \approx e^{-\nu(a) \tau}$$

- Probability of failure

$$p_F(\tau) = 1 - p_S(\tau)$$

Accurate estimates of  $p_F$  require accurate estimates of  $\nu$



# Method 1: Output statistics

---

- Available information: one sample of system response

$$X_1 = X(t_1), X_2 = X(t_2), \dots, X_n = X(t_n)$$

- Assume  $X$  is stationary/ergodic
- Assume  $\Delta t = t_k - t_{k-1}$  is constant and sufficiently small
- Statistical estimator for  $v(a)$ , the mean rate at which  $X$  upcrosses level  $a$

$$V_n(a) = \frac{1}{n \Delta t} \sum_{i=1}^n \mathbf{1}(X_i \leq a, X_{i+1} > a)$$

- Accuracy
  - Depends on  $a$ ,  $n$ , and correlation length of  $X$
  - Quantified by estimates of C.O.V. [ $V_n(a)$ ]



## Method 2: Translation model (1 of 2)

---

- Available information
  - One sample of system response
$$X_1 = X(t_1), X_2 = X(t_2), \dots, X_n = X(t_n)$$
  - Knowledge of system properties (optional)
    - Examples: (i)  $X$  takes values on bounded interval  $[a, b]$ ; (ii) the distribution of  $X$  is symmetric about zero
- Assume response can be represented by a non-Gaussian translation process:

$$X_T(t) = F_n^{-1} \circ \Phi[G(t)] = h_n[G(t)]$$

- $G$  is a zero-mean, unit-variance, stationary Gaussian process
- $\Phi$  is the CDF of a  $N(0,1)$  random variable
- $X_T$  is strictly stationary with marginal CDF  $F_n$



## Method 2: Translation model (2 of 2)

---

- Choose  $F_n$  based on available sample and any additional information on the properties of  $X$ 
  - Examples: (i) if  $X$  is bounded, use beta distribution; (ii) if  $X$  is unbounded and symmetric, use student- $t$  distribution
  - Calibrate parameters of CDF  $F_n$  using available data
  - Without any additional information, use:

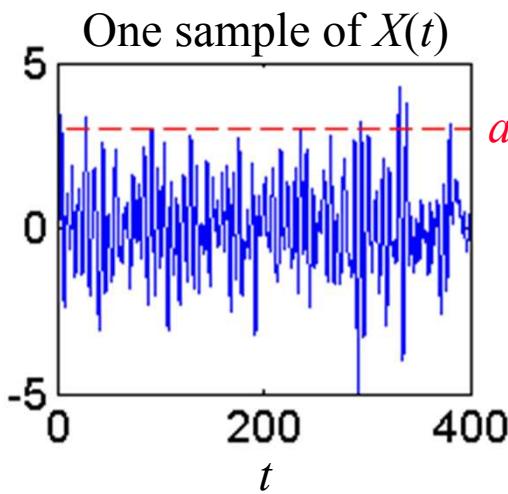
$$F_n(x) = \frac{1}{n} \sum_{i=1}^n 1(X_i \leq x)$$

- Estimator for  $v(a)$

$$V_{T,n}(a) = \frac{\text{Std}[\dot{G}(t)]}{2\pi} e^{-1/2 [h_n^{-1}(a)]^2}$$

# Application: linear oscillator

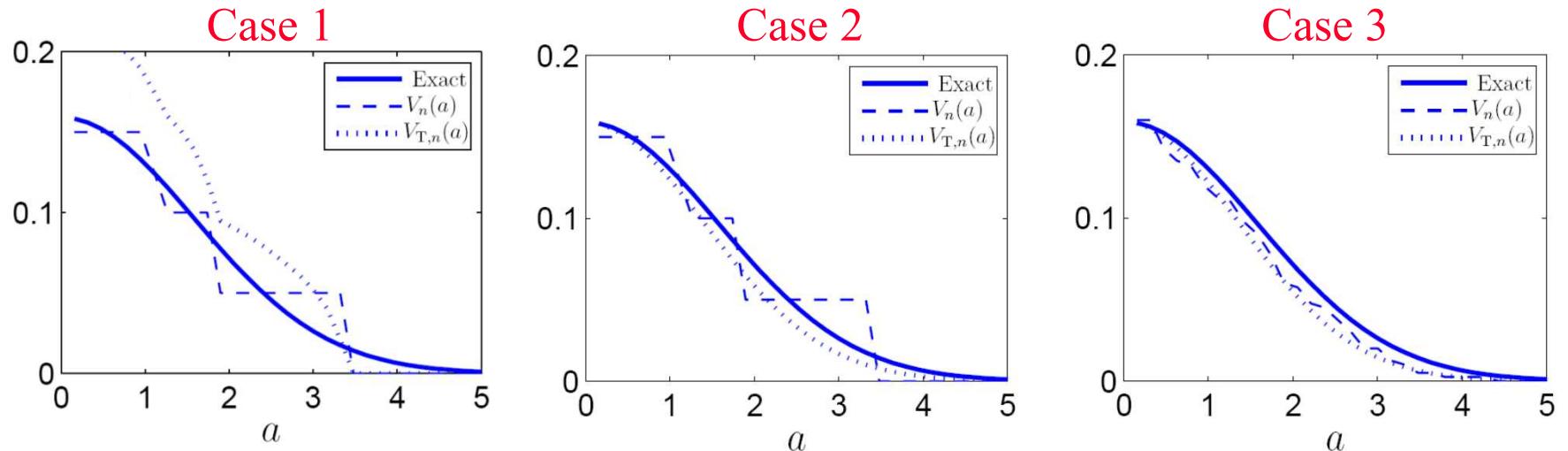
$$\ddot{X}(t) + 2\zeta\omega_0\dot{X}(t) + \omega_0^2 X(t) = W(t), \quad t \geq 0$$



- $\omega_0, \zeta$  = natural frequency and damping ratio
- $W$  = stationary, zero-mean, Gaussian white noise with one-sided PSD  $1/\pi$
- Initial conditions:  
$$X(0) \sim N(0, \sigma) \text{ and } \dot{X}(0) \sim N(0, \omega_0 \sigma),$$
where  $\sigma^2 = 1/(4\zeta\omega_0^3)$
- $X$  = stationary, zero-mean, Gaussian process with variance  $\sigma^2$
- Exact solution for mean  $a$ -upcrossing rate of  $X$ :

$$\nu(a) = \frac{\omega_0}{2\pi} \exp\left(-\frac{a^2}{\sigma^2}\right)$$

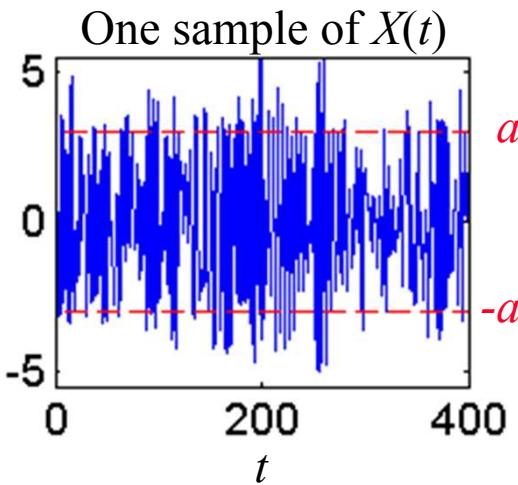
# Estimates of $v(a)$ for linear oscillator



- Case 1: short sample, no additional information
  - Both methods perform poorly; no information provided for  $a > 3.5$
- Case 2: short sample,  $X$  is known to have a symmetric distribution
  - Method 2 improves and provides information for any  $a$
- Case 3: long sample,  $X$  is known to have a symmetric distribution
  - Both methods are adequate when sample is long

# Application: nonlinear (Duffing) oscillator

$$\ddot{X}(t) + c \dot{X}(t) + \omega_0^2 X(t) [1 + \epsilon X(t)^2] = W(t), \quad t \geq 0$$



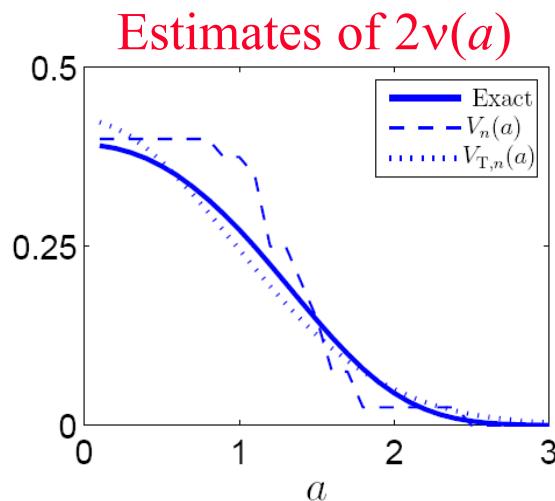
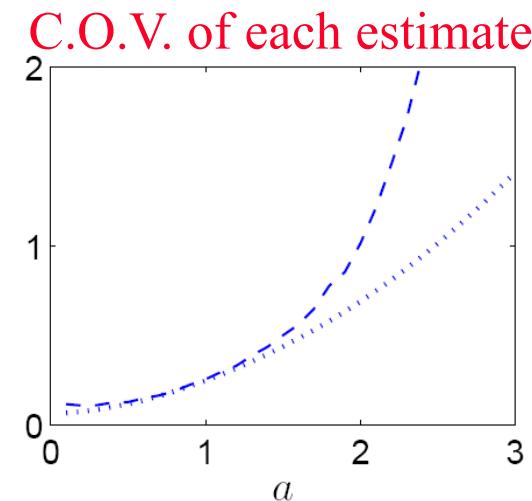
- $\omega_0, c$  = initial frequency and damping coefficient
- $\epsilon$  = degree of nonlinearity
- $W$  = stationary, zero-mean, Gaussian white noise with one-sided PSD  $1/\pi$
- $X$  = non-Gaussian process with stationary marginal PDF:

$$f(x) = \frac{\sqrt{2\epsilon} \exp\left(-\frac{c\omega_0^2}{4\epsilon}\right)}{K_{1/4}\left(\frac{c\omega_0^2}{4\epsilon}\right)} \exp\left[-c\omega_0^2\left(x^2 + \frac{\epsilon}{2}x^4\right)\right]$$

- Exact solution for mean  $(-a, a)$ -outcrossing rate of  $X$ :

$$2\nu(a) = \frac{1}{\sqrt{c\pi}} f(a)$$

# Results for Duffing oscillator



- $X$  is known to have a symmetric distribution
- Method 1
  - Poor performance; no information for  $a > 2.5$
- Method 2
  - Adequate performance for all  $a$
  - C.O.V. estimates demonstrate Method 2 is less sensitive to particular sample used



# Summary

---

- Developed method to assess reliability of dynamic systems under limited information
- Available information is consistent with practical problems
  - One sample of system output (required)
  - Knowledge of system properties (optional)
- Features
  - No requirement that system be linear
  - Output can be experimental data or from mathematical model
  - Special class of non-stationary output is considered
- Simple dynamic systems
  - Linear and nonlinear Duffing oscillators; MEMS dynamics
- Complex dynamic systems
  - RB re-entry random vibration