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Reliability of dynamic systems

* Y(¢¥) = stochastic input (excitation)
— Examples: launch environments for satellites, re-entry of RBs
— Can be Gaussian or non-Gaussian; stationary or non-stationary

e § = dynamic system
— Can be real hardware or model (e.g., Salinas FE model)
— Can be linear or nonlinear

 X(¢) = stochastic output (response)
— Examples: stress/accel in critical components

» Objective: calculate (time-dependent) probability that
system output remains in safe set D during lifetime t

Reliability: ps(t) =P(X(t)e D, 0<t <7) @ oot
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Current methods for reliability analysis

 Case 1 (classic linear random
vibration)

— Full probability law of output X 1s
available

— Reliability can be calculated
directly

» Cases 2, 3, and 4

— Reliability must be estimated

— Techniques include path integral
method, Fokker-Plank equation,

Most methods require information
typically not available for
problems of practical interest

perturbation, stochastic averaging,
equivalent linearization, moment
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Available information for practical problems

1) One or more samples of output X (required)

2) Knowledge of some properties of system S (optional)

Example: re-entry random vibration

Response at base of
AF&F
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 Our approach is consistent with the types of information
available for problems of practical interest

— Response data and, if available, additional knowledge on
system properties

* Two methods are used for analysis
— Method 1: output statistics

Outline

— Method 2: non-Gaussian translation processes
» Additional knowledge can only be used by Method 2

— Both make use of crossing theory of stochastic processes
— Coefficient of variation provides measure of accuracy

» Applications
— Simple dynamic systems with known solutions
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Crossing theory of stochastic processes

e X (t) = stationary, scalar stochastic
process (can be generalized)

e N, (7) =random # of times X
“upcrosses” a during [0, 7|

e v(a)= %E [N,(7)] is mean

upcrossing rate of X
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Reliability estimates by crossing theory

 Safe set: D = (—o0,a)
» Assumptions
— System 1s safe at £ =0
— Failure events are rare
 Reliability
ps(t) =P(X(t)e D, 0<t <)

—v(a)T

~ e

* Probability of failure
pr(7) =1 —ps(7)
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Method 1: Output statistics

 Available information: one sample of system response
X1=X(t),Xo = X(t2),..., Xn = X(t,)
— Assume X is stationary/ergodic
— Assume At = t, —t,_; 1s constant and sufficiently small

« Statistical estimator for v(a), the mean rate at which X
upcrosses level a

1

— —nAt ZI(XZ < a, Xz'—i—l > CL)

=1

Vi(a)

» Accuracy

— Depends on a, n, and correlation length of X
— Quantified by estimates of C.O.V.[V (a)]
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Method 2: Translation model (1 of 2)

 Available information
— One sample of system response
X1 = X(t1), Xo = X(t2), ..., X = X(t)
— Knowledge of system properties (optional)

» Examples: (1) X takes values on bounded interval [a, b]; (i1) the
distribution of X is symmetric about zero

« Assume response can be represented by a non-Gaussian
translation process:

Xr(t) = F, " 0 @[G(1)] = hy[G(1)]
— (7 1s a zero-mean, unit-variance, stationary Gaussian process
— @ 1s the CDF of a N(0,1) random variable
— X 1s strictly stationary with marginal CDF F,
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Method 2: Translation model (2 of 2)

* Choose I, based on available sample and any additional
information on the properties of X

— Examples: (1) 1f X is bounded, use beta distribution; (11) if X
1s unbounded and symmetric, use student-¢ distribution

— Calibrate parameters of CDF F, using available data

— Without any additional information, use:
1 mn
F,(x) = — 1(X; <
()= K<

 Estimator for v(a)

Vrn(a) = Stdg[i(t)] e—1/2[ht @)
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Application: linear oscillator

X(t)+2Cwo X(t) +w2 X(t) =W (t), t >0

5 One sample of X(¢)
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Estimates of v(a) for linear oscillator

Case '1 Case .2 Clase 3

0.2

0.2

0.2

— 0,

Exact
- = =Vala)

Trrenn ‘4'-1"_,,(11‘)
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Application: nonlinear (Duffing) oscillator

Xt)+eXt)+wg X [1+eX@®)?] =W(t), t>0

One sample of X(¢)
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Results for Duffing oscillator

] Estimates of 2v(a) 2C.O.V. of each estimate
| — Exact | | ,’
oo - - = =V .:
= N ~ IfT‘ﬂ(&) !/
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* Developed method to assess reliability of dynamic systems
under limited information

Summary

 Available information 1s consistent with practical problems
— One sample of system output (required)
— Knowledge of system properties (optional)
* Features
— No requirement that system be linear
— Output can be experimental data or from mathematical model
— Special class of non-stationary output 1s considered
e Simple dynamic systems
— Linear and nonlinear Duffing oscillators; MEMS dynamics
* Complex dynamic systems
— RB re-entry random vibration @ ok
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