
A practical method for reliability of 
dynamic systems under limited 

information

Rich Field
Applied Mechanics Development

Sandia National Laboratories
Albuquerque, NM  87185-0847

rvfield@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Mircea Grigoriu
Civil & Environmental Engineering

Cornell University
Ithaca, NY  14853

mdg12@cornell.edu

June 4, 2007

SAND2007-3402C

mailto:rvfield@sandia.gov


Reliability of dynamic systems

• Y(t) = stochastic input (excitation)
– Examples: launch environments for satellites, re-entry of RBs
– Can be Gaussian or non-Gaussian; stationary or non-stationary

• S = dynamic system
– Can be real hardware or model (e.g., Salinas FE model)
– Can be linear or nonlinear

• X(t) = stochastic output (response)
– Examples: stress/accel in critical components

• Objective: calculate (time-dependent) probability that 
system output remains in safe set D during lifetime 

Dynamic systemInput Output

Reliability:



Current methods for reliability analysis

• Case 1 (classic linear random 
vibration)

– Full probability law of output X is 
available

– Reliability can be calculated 
directly

• Cases 2, 3, and 4

– Reliability must be estimated

– Techniques include path integral 
method, Fokker-Plank equation, 
perturbation, stochastic averaging, 
equivalent linearization, moment 
closure
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Most methods require information 
typically not available for 

problems of practical interest



Available information for practical problems

Experimentalist
Measurements at a few 
internal locations for a few 
flights

Analyst
Small number of runs of 
complex FE model

Salinas RB model

Environment model

Response at base of 
AF&F

1) One or more samples of output X (required)

2) Knowledge of some properties of system S (optional)

Example: re-entry random vibration

RB/RV system

Re-entry 
Environment



Outline

• Our approach is consistent with the types of information 
available for problems of practical interest
– Response data and, if available, additional knowledge on 

system properties

• Two methods are used for analysis
– Method 1: output statistics

– Method 2: non-Gaussian translation processes
• Additional knowledge can only be used by Method 2

– Both make use of crossing theory of stochastic processes

– Coefficient of variation provides measure of accuracy

• Applications
– Simple dynamic systems with known solutions



Crossing theory of stochastic processes

N = 1
N = 0
N = 2



Reliability estimates by crossing theory

• Safe set:

• Assumptions

– System is safe at t = 0

– Failure events are rare

• Reliability

• Probability of failure

Failure

Safe

Accurate estimates of pF require accurate estimates of 



Method 1: Output statistics

• Available information: one sample of system response

– Assume X is stationary/ergodic

– Assume t = tk – tk-1 is constant and sufficiently small

• Statistical estimator for (a), the mean rate at which X
upcrosses level a

• Accuracy

– Depends on a, n, and correlation length of X

– Quantified by estimates of C.O.V.[Vn(a)]



• Available information
– One sample of system response

– Knowledge of system properties (optional)
• Examples: (i) X takes values on bounded interval [a, b]; (ii) the 

distribution of X is symmetric about zero

• Assume response can be represented by a non-Gaussian 
translation process:

– G is a zero-mean, unit-variance, stationary Gaussian process

–  is the CDF of a N(0,1) random variable

– XT is strictly stationary with marginal CDF Fn

Method 2: Translation model (1 of 2)



• Choose Fn based on available sample and any additional 
information on the properties of X

– Examples: (i) if X is bounded, use beta distribution; (ii) if X
is unbounded and symmetric, use student-t distribution

– Calibrate parameters of CDF Fn using available data

– Without any additional information, use:

• Estimator for (a)

Method 2: Translation model (2 of 2)



Application: linear oscillator

t

One sample of X(t)
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Estimates of (a) for linear oscillator

Case 1 Case 2 Case 3

• Case 1: short sample, no additional information

– Both methods perform poorly; no information provided for a > 3.5

• Case 2: short sample, X is known to have a symmetric distribution

– Method 2 improves and provides information for any a

• Case 3: long sample, X is known to have a symmetric distribution

– Both methods are adequate when sample is long



Application: nonlinear (Duffing) oscillator
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Results for Duffing oscillator
Estimates of 2(a) C.O.V. of each estimate

• X is known to have a symmetric distribution

• Method 1

– Poor performance; no information for a > 2.5

• Method 2

– Adequate performance for all a

– C.O.V. estimates demonstrate Method 2 is less sensitive to particular 
sample used



Summary

• Developed method to assess reliability of dynamic systems 
under limited information

• Available information is consistent with practical problems
– One sample of system output (required)

– Knowledge of system properties (optional)

• Features
– No requirement that system be linear

– Output can be experimental data or from mathematical model

– Special class of non-stationary output is considered

• Simple dynamic systems
– Linear and nonlinear Duffing oscillators; MEMS dynamics

• Complex dynamic systems
– RB re-entry random vibration


