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 Solution-mined caverns in salt have provided a means to 
safely store liquid and gas hydrocarbons in the USA for 
more than 60 years.

 In the Gulf Coast, salt domes have become excellent 
hosts for numerous storage caverns due to their 
favorable geologic properties. 

 To develop new caverns, companies are increasingly 
turning toward marginal locations near the peripheries of 
domes where geologic uncertainty increases. 

 Thus the sizes of caverns have increased and cavern 
fields have expanded towards the lateral edge of dome.

 This paper attempts to model further expansion of the 
SPR cavern field at Big Hill and addresses the resulting 
performance and stability issues.  

Background
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Location of Big Hill SPR Site

 Big Hill SPR facility located near Winnie, TX. 
 The storage capacity of the Big Hill facility is currently 170 million 

barrels of oil. 
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Big Hill Salt Dome, Texas

Vertical Section

Plan View
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 The standoff distance (SD) is considered a key parameter 
for checking the structural integrity of the caverns in the 
dome. 

 If the salt in the SPR facility forms discontinuities due to 
unstable stresses, oil might be released to the porous 
sandstone surrounding the salt dome. 

 To estimate how many more caverns can be constructed 
in the existing salt dome, it is necessary to define the 
allowable SD for a cavern to the edge of the dome based 
on mechanical integrity of the cavern. 

Why SD?
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Objectives of Analysis

 To determine the allowable standoff distance 
based on mechanical integrity of the salt and 
caverns,

 Evaluate the structural stability of the salt dome

• By checking the minimum compressive stress
distribution

• By checking the minimum safety factor against 
dilatant damage
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Stratigraphy and Thickness of Each Layer
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Cavern Layout
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Mesh and Boundary Conditions
(31 Caverns, 5 Drawdowns by Leaching)
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Solver

 JAS3D, 3D FEM structural analysis code, is 
used for this study

 “Power Law Creep Model” is used for the salt 
dome

 “Elastic Model” is used for overburden (sand),  
caprock 1 (gypsum and limestone), and 
lithologies surrounding the dome (sandstone)

 “Soil and Foams Model” is used for caprock 2 
(anhydrite)
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Model History

 Overall
 The simulated caverns are assumed to be leached 

to full size over a one year period.

 The caverns are filled with petroleum at one year

 The caverns are allowed to creep for 20 years.

 Starting at 21 years, and subsequently every 5 
years, the caverns were instantaneously leached to 
produce a volume increase of 16% during each 
leach.

 Leaching was assumed to occur uniformly along 
the entire height of the caverns but was not 
permitted in the floor or roof of the caverns

 Simulation lasts 46 years (5 leaches)
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Model History

 Internal Pressure in the Caverns
 Both normal cavern operating conditions and workover 

conditions are simulated.

 For normal operating conditions, the cavern pressure 
is based on a wellhead pressure of 6.24 MPa.

 For workover conditions, zero wellhead pressure is 
used.

 Workover durations are 3 months.

 This workover cycle is repeated for every 5 year.
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Thermal Condition

 The FEM model includes a depth-dependent 
temperature gradient which starts at 24.8ºC
(76.7ºF) at the surface and increases by
0.0257ºC/m of depth.

 The temperature profile is based on the average 
temperature data from well logs from Big Hill 
prior to leaching.

 The second order temperatures (radial 
temperature gradients) were not considered in 
the analyses.
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Material Properties of Salt used in the Analyses

Parameter Unit Value Reference

Young’s modulus (E) GPa 31 Kreig, 1984

Density (ρ) kg/m3 2300 Kreig, 1984

Poisson’s ratio (ν) - 0.25 Kreig, 1984

Elastic modulus reduction factor (RF) - 12.5 Magorian & Krieg, 
1990

Bulk modulus (K) GPa 1.653 from E and ν

Two mu (2μ) GPa 1.984 from E and ν

Structure factor (A) Pa-4.9/s 5.79×10-36 Kreig, 1984

Structure multiplication factor (SMF) - 1.5 Park et al., 2005 

Calibrated creep constant Pa-4.9/s 8.69×10-36 Park et al., 2005

Stress exponent (n) - 4.9 Kreig, 1984

Activation energy (Q) cal/mol 12000 Kreig, 1984

Universal gas constant (R) cal/(mol∙K) 1.987 -

Input thermal constant (Q/R) K 6039 -
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Material Properties of Lithologies around Salt Dome 

Unit
Overburden

(Sand)
Caprock 1

(Limestone)
Caprock 2
(Anhydrite)

Surrounding 
Rock

(Sandstone)
Young’s modulus GPa 0.1 21 75.1 70

Density kg/m3 1874 2500 2300 2500

Poisson’s ratio - 0.33 0.29 0.35 0.33

Bulk modulus GPa N/A N/A 83.44 N/A

Two mu GPa N/A N/A 55.63 N/A

A0 MPa N/A N/A 2338 N/A

A1 - N/A N/A 2.338 N/A

A2 - N/A N/A 0 N/A
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 Structural Stability of Salt Dome:

 Tensile failure

 Dilatant damage

Failure Criteria

(psi)00034.0
2

15.13201746(psi) IeJ 

InvariantsStress, 12 IJ
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Storage Loss
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Subsidence vs. Distance from Central
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 A larger SD yields a larger subsidence.
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Subsidence vs. Time
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 A larger SD also yields a larger subsidence with time
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Minimum Compressive Stress

 The minimum compressive 
stresses are approximately 
5 MPa for all cases.

 The caverns are, therefore, 
stable against tensile failure 
for all SDs over time.

 This implies SD has little 
effect on the formation of 
tensile stresses. 

 Shorter SDs yield smaller 
minimum compressive 
stresses when a workover is 
not in progress. 
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Minimum Safety Factor Histories against Dilatant Damage
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 The standoff distance does 
not have much influence on 
the dilatancy factor (DILFAC) 
from an overall point of view.

 A larger SD yields a lower 
safety factor during 
workover, while a larger SD 
yields a higher safety factor 
during normal operating 
conditions.

 The safety factor is greater 
than the failure criterion, 1.0. 
Thus, the caverns should be 
stable against dilatancy 
damage 
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Dilatant Safety Factor Contours during Workover of Each Cavern

Vertical section view Plan view
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 Three dimensional FEM model for 31 caverns and five 
drawdowns with associated leaching was constructed 

 The analyses includes a recently derived damage criterion 
obtained from testing of Big Hill salt cores. 

 The smaller SD yields structurally weaker web between 
the outmost cavern and the edge of the dome. 

 However, the SD has little effect on the formation of 
tensile stresses and the dilatancy in the salt around the 
caverns. 

 From the structural stability of the modeled cavern array, 
it appears that many additional caverns can be added 
safely to the existing Big Hill facility. 

Concluding Remarks

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy under contract DE-AC04-94AL85000.
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Far-field Boundary
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