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ABSTRACT: At CUG 2006, a cache oblivious implementation of a two dimensional
Lagrangian hydrodynamics model of a single ideal gas material was presented. This
paper presents further optimizations to this C++ application to allow packed,
consecutive-element storage of vectors, some restructuring of loops containing
neighborhood operations, and adding type qualifiers to some C++ pointer declarations
to improve performance. In addition to restructuring of the application, analysis of the
compiler-generated code resulted in improvements to the latest PGI C++ compiler in the
area of loop-carried redundancy elimination, resolution of pointer aliasing conflicts, and
vectorization of loops containing min and max reductions. These restructuring and
compiler optimization efforts by PGI and Sandia have resulted in application speedups of
1.25 to 1.85 on the latest generation of x64 processors.
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1. Introduction

Although modern compilers do an admirable job of
optimization when provided with nothing other than the
“—fast” switch, many times there are still significant
performance gains to be obtained with detailed analysis
and applied expert knowledge of the application, the
compiler, and the underlying processor architecture. The
PGI compiler suite has been the mainstream compilation
environment at Sandia National Laboratories for several
years in its high performance computing initiatives. PGI
compilers were used on the 32-bit x86 processor-based
ASCI Red supercomputer deployed in 1997, and are used
on the 64-bit AMD Opteron processor-based ASC Red
Storm platform deployed in 2004. Throughout this period,
there has been a continual effort to ensure that optimal
performance is extracted and utilized on Sandia’s
supercomputing platforms. Sandia’s Advanced Systems
Group is continually evaluating new technologies and
technological trends to determine the impact on its
application base. One such trend is the growing use of

vector or SIMD units to increase FLOP rates in general
purpose processors.

While first-generation AMD and Intel 64-bit x86
(x64) processors contain 128-bit wide Streaming SIMD
Extensions (SSE) registers, their 64-bit data paths and
floating-point units limit the performance benefit of
vectorizing double-precision loops. New x64 processors
from Intel, known as the “Woodcrest” or Core™ 2 Duo
architecture, and a chip from AMD known as “Barcelona”
or Quad-Core AMD Opteron™, contain 128-bit-wide data
paths and floating-point arithmetic units.

Vectorization is key to extracting maximum
performance from floating-point intensive scientific and
engineering codes on first-generation x64 processors, and
is even more important on the latest generation of x64
processors. In this paper we discuss coding to maximize
vectorization, how these techniques were applied to a
kernel from Sandia's ALEGRA shock physics code, some
compiler improvements driven by this joint project
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between Sandia and PGI, and the significant performance
gains achieved on the latest generation of x64 processors.

2. SSE Vectorization on First-generation
x64 Processors

Vectorization for x64 processors is used to identify
and transform loops to take advantage of packed SSE
instructions, which process two input operands of 128 bits
of data per instruction. Each operand contains two 64-bit
double-precision values or four 32-bit single-precision
values. The result of the instruction is also a 128-bit
packed result, of the same data type as the inputs.

Diagram 1 below gives a logical representation of
how packed double-precision operands are stored and
computed in SSE registers. This logical representation,
and indeed the corresponding x64 assembly code, gives
the impression that the two double-precision floating-
point additions are performed concurrently. In fact, while
these operations are performed using a single packed SSE
instruction, they are not necessarily performed
concurrently. Rather, in previous generation x64
processors they are simply pipelined in sequence through
the 64-bit arithmetic unit.
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Diagram 1. Packed double-precision add using the
addpd SSE instruction

Likewise, x64 processors also possess SSE hardware
support for a floating-point multiplier. On the first-
generation AMD Opteron, the SSE adder is a separate
functional unit from the SSE multiplier and both can work
concurrently to enable one 64-bit multiply and one 64-bit
add per cycle.

On first-generation Intel x64 processors (Xeon
EM64T), only one SSE floating-point instruction can be
issued per cycle. These first-generation Intel x64
processors run at much higher clock rates than first-
generation AMD64 processors to provide similar peak
SSE vector performance, but are generally less efficient
on scalar floating-point code because of the single
operation per cycle limitation.

The underlying hardware is free to implement these
instructions given the usual constraints of silicon real
estate, power, etc. In first generation x64 processors, the
throughput of these operations could be modelled as:

Cycle i: [A1IAO] [B1IBO]
o

Cyclei+1: [A1IAO] [B1IBO]
\ /

Cycle i+p-1: ...

Cyclei+p: ...

[C11CO]

where the adder pipeline depth p varied depending on
the x64 processor implementations from AMD and Intel.

Just as double-precision floating-point adds and
multiplies are pipelined in sequence on first-generation
x64 processors, likewise single-precision packed floating-
point add and multiply instructions pipeline data through
the SSE arithmetic units. However, as the arithmetic
units are 64-bits wide, they are able to perform two 32-bit
operations concurrently. This effectively doubles the
throughput for single-precision packed SSE operations
compared to double-precision packed SSE operations.

One obvious question is, if the underlying hardware
only supports 64-bit operations, why is vectorization so
important on first-generation x64 processors?

Processor and compiler vendors have been promoting
vectorization as equally important on single- or double-
precision data, but in fact it has been much more
important for single-precision codes. On first-generation
x64 processors, highly-vectorized single-precision codes
can often achieve speed-ups of nearly 2X over a scalar
(non-vectorized) version. With double-precision data it is
more common to see at most 20% - 30% speed-ups, and
sometimes no speed-up at all. The gains for double-
precision codes come not from doing more operations per
cycle, but rather from:
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1. Doing the same number of arithmetic operations in
fewer instructions, increasing instruction efficiency.

2. More efficient utilization of the floating-point
arithmetic unit pipelines.

3. Fewer instructions required to move data between
SSE registers and memory.

4. More efficient utilization of memory and cache
bandwidth by leveraging the alignment of vector data
to cache line boundaries.

5. Other vectorization benefits: loop re-ordering,
optimal unrolling, software prefetching, etc.

Note that for a loop to vectorize, the compiler must
determine that it contains no loop-carried dependence
cycles. This is traditionally easiest to do in Fortran
programs, which tend to operate on well-defined arrays.
It is more difficult in C and C++, where pointers are
frequently used in ways that result in real or potential data
dependencies that cannot be resolved by the compiler. As
we will see below, coding in C and C++ with an eye
toward vectorization can pay significant performance
dividends. If the compiler determines that a loop can be
vectorized, it can often be auto-parallelized. So, coding to
maximize vectorization will also maximize the potential
for automatic parallel speed-up on multi-core processors,
a topic which is not specifically addressed in this paper.

3. SSE Vectorization on the Latest
Generation x64 Processors

In the latest generation of x64 processors, the SSE
floating-point adder and multiplier have been widened to
128-bits. This basically doubles the potential throughput
of these arithmetic units. The new hardware can be
modelled performing double-precision packed floating-
point adds as follows:

Cycle i: [A1IAO] [B1IBO]
N
[A1+B1IA0+B0]

Cycle i+1:

Cycle i+p:

[A1+B11A0+B0]
o
[C1ICO0]

Double-precision floating-point operations are now
performed two-at-a-time, and likewise the throughput of
single-precision calculations has been increased to four-
at-a-time through the 128-bit SSE floating-point units.
Thus, the other stages in the pipeline are available for
other calculations. While this is clearly a significant
improvement in the theoretical peak performance of the
processors, it also increases the need to move data from
memory or cache to the SSE registers as efficiently as
possible.

The most efficient way to move data to the SSE
registers is through use of the movapd and movaps
instructions.  These perform “move aligned packed
double” and “move aligned packed single” operations
respectively. Each instruction moves 128-bits of data
from cache or memory into an SSE register. For the
compiler to be able to generate these instructions, it must
know the source data is aligned on a 128-bit (16 byte)
boundary. If a move aligned instruction is issued on data
that is not aligned, the processor will issue an instruction
fault.

Generally, if the source data is not aligned the
compiler will still vectorize a loop but must use less
efficient sequences of instructions to load up the SSE
registers. The PGI compilers go to great lengths to
maximize the number of aligned move instructions used
in vectorized loops. By default, the compilers generate
alternate versions of a loop (known as “altcode™) to
handle different alignment possibilities, and frequently
add "peeling" to perform one or more iterations of a loop
in scalar fashion before falling into a vectorized loop
where the remaining data in one or more vectors is
aligned on a 16-byte boundary.

Also, to maximize the efficiency of SSE
vectorization, like data should be stored in sequential
vectors to minimize the amount of packing and shuffling
of data required by the compiler to vectorize loops. In
general, compilers are fairly sophisticated in the amount
of "irregular" data packing and vectorization they can
support, but these operations are typically inefficient on
x64 SSE units. We will see how important this can be in
the sections that follow, where we describe the
restructuring performed on ALEGRA data structures.

We coded up a simple multiply-add operation,
sufficiently unrolled to enable peak processor
performance, to illustrate differences in efficiency
between scalar operations, unaligned vector operations,
and aligned vector operations.

Table 1 compares first-generation x64 processors
against the latest generation, in units of "utilization of
latest generation peak performance". The first row of
Table 1 illustrates performance of scalar (non-packed)
SSE floating-point operations in a loop that contains no
memory references. The second row illustrates
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performance of vector (packed) SSE floating-point
operations in a loop that contains no memory references.

All remaining rows use packed vector arithmetic
instructions including some number and type of memory
accesses. In each successive pair of rows, we've added
code to load multiples of 8 bytes (one double operand) per
each multiply-add operation (since the processors can do
two multiply-adds per cycle at peak, this is actually 16
bytes per cycle). We've used both optimal aligned
loads/stores in the first row of each pair, and the less-
efficient sequences required when data is potentially
unaligned in the second row of each pair. All memory
references in this test accessed data known to be resident
in the L1 data cache. The range of efficiency for the
unaligned cases results from measurements using several
different possible unaligned load/store instruction
sequences. The most efficient instruction sequence for
unaligned vector data accesses typically differs between
x64 processor families, and sometimes from generation-
to-generation even within a family.

Percentage of Peak versus Latest-Generation x64 Processors

AMD Intel

Test First-Gen Latzi;-DG €N | First-Gen LatT:tt(;(IBen

AMDG4 Opteron EM64T Core 2
register-
:‘;'gi stor 50% 50% 25% 50%
scalar
register-
:‘;'gi stor 50% 100% 50% 100%
vector
2@{::3 50% 100% 50% 100%
ﬁnbg’"tgﬁe | 2548% 50-90% 28% 38-40%
;ﬁgafgs 47% 90% 38% 50%
lﬁaﬁ?’gtﬁz | 2225% 25-65% 17-20% 25%
gl‘i‘g?]fgs 33% 65% 27% 33%
ﬁ;‘aﬁ?’gtﬁz o | 1322% 17-65% 12-20% 17-25%
2%9%53 24% 50% 20% 25%
Sﬁatf?/gtﬁz g | 10-14% 13-50% 10-13% 12-17%

Table 1. Percentage of latest-generation x64 SSE peak
performance realized by various x64 processors

At 100% efficiency, the latest generation of
processors can do four double precision floating point
operations per cycle (two multiplies and two adds),
meaning a Core 2 Duo processor-based laptop running at
2GHz is theoretically capable of 8 GFLOPS. The
achievable peak vector double-precision performance is
twice that of first-generation x64 processors, and twice
that of scalar code, assuming that the data re-use is
sufficiently high.

What should be of interest to performance-oriented
programmers is the tail-off in achievable performance as
the operations require more data, and when the data is
fetched into the SSE registers in a sub-optimal
(unaligned) manner. Even when the data resides in L1
cache, the gains of vector over scalar, and latest-
generation over previous, may be limited for memory-
intensive loops. Thus, it is extremely important to
structure code in ways that maximize opportunities for
aligned accesses and re-use of data within the SSE unit in
order to avoid memory-related performance bottlenecks.

4. Optimizing the ALEGRA Kernel

The ALEGRA computational kernel and dataset used
in this study represent a two-dimensional Lagrangian
hydrodynamics model of a single ideal gas material. The
code uses a cache oblivious implementation, by David
Hensinger of Sandia, from work developed by Frigo and
Strumpen. The cache oblivious implementation was
presented in a paper at CUG in 2006, and provides cache
locality by recursively walking through multiple time
steps over subsets of the spatial data domain. Because of
the cache oblivious implementation, memory bandwidth
becomes less of an issue and the code is a good candidate
to take advantage of the vectorization gains outlined
above.

The kernel is written in C++. The original kernel
stored data as an "array of structs", where variables
representing acceleration, velocity, and force are
interleaved in a node structure, and at each time step an
element depends on all adjacent elements and nodes at the
previous time step. While this may be optimal on direct-
mapped or low-set-associativity caches, for x64 SSE
vectorization it is suboptimal because it prevents the
compiler from generating efficient packed aligned loads
to move data into the SSE unit.

So, the first and most significant change to the kernel
was to change the storage ordering. For instance, all like
accelerations were collected into one vector, all like
velocities, etc. This presents data to the compiler in a
way that enables packed aligned memory accesses. From
a coding standpoint, most of the changes were localized to
loop setups where pointers where initialized, and required
changes to the scaling and offsetting by the x, y, and
struct data dimensions. The total amount of data stored
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remained unchanged, as did the cache oblivious
techniques in the code.

Once the code restructuring was complete, tests with
the PGI C++ compiler ensued. The major goal was to get
every loop in the computational kernel to vectorize. As it
turned out, this required some compiler work besides just
rewriting the application code.

The first section of the kernel contains a loop over
elements to accumulate forces to nodes. This contains
some special code for boundary conditions, but is mainly
a 2x2 neighborhood operation, where a portion of the
work is redundant from the previous iteration. PGI
compilers implement an optimization called loop-carried
redundancy elimination (LRE) to improve performance of
such loops, but it was not occurring in C++ codes for
reasons we won’t detail here. Modifications to the
compiler enabled loop-carried redundancy elimination for
C++, and it is now on by default using the —fast compiler
option. Occurrences of this optimization, and many
others, can be seen using the —Minfo compiler option:

741, 4 loop-carried redundant expressions
removed with 8 operations and 12 arrays

783, 4 loop-carried redundant expressions
removed with 8 operations and 12 arrays

As indicated in these compile-time informational
messages, the compiler has actually eliminated 8 floating-
point operations and 12 memory references from the body
of the loops at lines 741 and 783. LRE is an extremely
effective optimization when it can be applied. A hint for
programmers: to enable LRE to kick in, it is important to
code all of the work for a given iteration in the loop,
including the redundant parts, and let the compiler find
the redundancies itself. Don't try to code it yourself,
using temporaries that carry around to the next iteration of
the loop. Hand optimizations like this, similar to
excessive manual loop unrolling, can obscure the true
structure of a loop and result in undue memory pressure
due to overuse of local temporary variables.

A second important modification to the PGI C++
compiler was the addition of support for a “restrict” type
qualifier. In C99, the restrict type qualifier is a part of
the language specification. It serves as a "no alias" hint to
the compiler on a pointer-by-pointer basis. The C++
language has nothing similar, but several C++ compilers
include support for the extension  restrict, which
carries the same meaning. The code was modified by
adding  restrict type qualifiers to most of the
pointers where they were declared and assigned locations
within the x-y grid. This change provides the compiler
information it needs to disambiguate potential loop-
carried dependencies, removing a barrier to vectorization.

The last loop of the kernel contains a loop over the
elements to update material properties before the next
time step. To vectorize this loop, coding changes and

compiler changes were needed. The original code looked
as follows:

real sound speed = sqrt(gxgml * edatal[ENER]);
real local ts = ar/sound_speed;

if (local ts/min_ts < 0.9999) min_ts=local_ts;
edata[AVmPR] = gamma minus_one * edata[DENS]
* edatal[ENER];
if (tr _deformation rate < 0.0) {
edata[AVmPR] += edata[DENS] * ar
* tr_deformation_rate *
* (linear * sound speed - quadratic * ar
* tr deformation rate);

}

and was rewritten to look as follows:

{
real sound speed = sqgrt(gxgml * edataENER[i]);
if (ar/sound_speed < local ts)
local ts = ar/sound_speed;

edataAVmPR[i] = -gamma minus_one

* edataDENS[i] * edataENER[i];
real tdrate = (tr deformation rate < 0.0) ?

tr deformation rate : 0.0;

tdrate *= ar;
edataAVmPR[1i] += edataDENS[i] * tdrate

* (linear * sound_ speed

- quadratic * tdrate);

}
if (local ts/min_ts < 0.9999) min_ts=local_ ts;

There are several changes here, and it is useful to go
over them one-by-one to understand how they enable
more loops to vectorize.

First, the change from edata[ENER] to
edateENER[i] is a result of the restructuring of the
storage order, so that like-data is vectored into sequential
locations in memory rather than being split across
multiple C structs.

Second, the computation of local ts is different.
The purpose of this bit of code is so the function can
return the minimum computed time step, but only if that
minimum (local ts) is somewhat less than the timestep
passed in to the function (min ts). For this kernel,
somewhat less is defined as

(local ts/min_ts < 0.9999)

This creates a loop-carried dependence. If the condition
is true, min_ts is updated, and it MUST be available for
the computation in the next iteration.

As it turns out, there is also a slight subtlety in this
computation and it is not exactly what the author
intended. If min ts does get updated to a value of
local ts, there is a chance that another later value of
local ts could be less than min ts, but not enough
less to update the min ts value. So, as originally
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written, the function may return a new min_ts, but not
necessarily the minimum local ts as computed over all
elements.

The rewritten code always locates the min_ts value.
In addition, the rewritten code removes the loop-carried
dependence. Why? Because as it is now written, it finds
the minimum of an array of values (ar/sound speed),
which is just a reduction, similar to a sum reduction. An
improvement was made to the PGI compilers to enable
vectorization of these min and max reductions, leveraging
the hardware support for min and max operations in the
x64 SSE unit. SSE min and max instructions have similar
characteristics to adds and multiplies — with scalar &
packed variants, support for the various data types,
appropriate pipeline lengths, etc.

Once the vectorized reduction recognition was in
place in the compiler, it enabled a rewrite of the original
conditional at the end of this section of code. We noted
that a temporary, tdrate, could be set to the min of
tr deformation rate and 0.0. Assuming tdrate is
zero, the final update just becomes a wasted operation
(aka a “nop”). It may seem like a very expensive nop, but
if it facilitates vectorization it is worthwhile.

There were a few other minor issues which could
easily have been avoided with a re-work of the source
code, but instead we took the opportunity to enhance the
PGI C++ compiler to automatically eliminate these
barriers to vectorization. The new optimization features
presented above are all available in the commercial
release of the PGI 7.0 PGC++ compiler. Work is
continuing on PGC++ performance, and another set of
improvements will be available in PGI 7.1.

4. Results

On first-generation x64 processors containing 64-bit
wide floating-point units, the speedup attained is roughly
1.25x over the previous version of ALEGRA kernels. On
the latest generation x64 processors containing 128-bit
wide floating point units we have tested on thus far, the
speedup attained is roughly 1.85x due to these code
transformations and compiler enhancements which
maximize the effectiveness of double-precision
vectorization.

While performance improvements will obviously
vary from application to application, these results
highlight the need to structure code to maximize
vectorization now and into the future.

o g++ before
PGC++ before
g++afler

— PGC++ after

Time in seconds

Test#

Diagram 2. First-generation x64 ALEGRA kernel
performance before/after restructuring for double-
precision vectorization
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Diagram 3. Latest-generation x64 ALEGRA kernel
performance before/after restructuring for double-
precision vectorization

5. Conclusions

Although many application developers rely on just
applying the “—fast” switch to optimise their code,
significant performance gains may still be possible and it
is important to apply classic performance analysis and
tuning techniques to realize some of the untapped
performance modern processor architectures can provide.
However, this requires expert knowledge from not only
the application developer, but also the compiler team,
which in many instances has an expert knowledge of the
underlying architecture and how to best utilize it for a
given application’s particular needs. In this case, it was
possible to achieve a near 2x performance improvement.

Results derived from this work will benefit users of
ALEGRA on current and future DOE and DoD
computing resources. In addition, the compiler techniques
developed have been integrated into the generally
available PGI compiler suite to benefit all C/C++ codes
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with similar source code structure. The coding practices
that we outlined will also help other programmers in
applying the same techniques and tools for their particular
application. Finally, the cooperation between Sandia’s
application developers and the Portland Group product
development and support teams is shown to be a model
for future joint endeavours.

6. Future Work

As the trend to multiple cores per processor
continues, it is anticipated that a similar trend will be
observed in the number of floating-point math units per
processor. This will most likely come about with an
increase in the size of each core’s vector unit to 256 bits,
512 bits or maybe even larger. Perhaps architectures will
utilize multiple vector units per core? Or maybe even
chain vector units from separate cores into a single virtual
vector unit? And then there is the general purpose GPU
trend with the potential for streaming multiple vector
units together. Whatever the outcome, it will become
increasingly important to revisit techniques abandoned
with the advent of the cache based microprocessor in
order to extract the full potential of the next generation of
processors for science and engineering applications.

We will continue to examine the application
programming and compiler techniques required to support
larger vector operations that are most likely to appear in
future sequential and parallel architectures deployed by
the commercial processor vendors.
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