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ABSTRACT: At CUG 2006, a cache oblivious implementation of a two dimensional 
Lagrangian hydrodynamics model of a single ideal gas material was presented.  This 
paper presents further optimizations to this C++ application to allow packed, 
consecutive-element storage of vectors, some restructuring of loops containing 
neighborhood operations, and adding type qualifiers to some C++ pointer declarations 
to improve performance.  In addition to restructuring of the application, analysis of the 
compiler-generated code resulted in improvements to the latest PGI C++ compiler in the 
area of loop-carried redundancy elimination, resolution of pointer aliasing conflicts, and 
vectorization of loops containing min and max reductions. These restructuring and 
compiler optimization efforts by PGI and Sandia have resulted in application speedups of 
1.25 to 1.85 on the latest generation of x64 processors.  
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1. Introduction 
Although modern compilers do an admirable job of 

optimization when provided with nothing other than the  
“–fast” switch, many times there are still significant 
performance gains to be obtained with detailed analysis 
and applied expert knowledge of the application, the 
compiler, and the underlying processor architecture. The 
PGI compiler suite has been the mainstream compilation 
environment at Sandia National Laboratories for several 
years in its high performance computing initiatives. PGI 
compilers were used on the 32-bit x86 processor-based 
ASCI Red supercomputer deployed in 1997, and are used 
on the 64-bit AMD Opteron processor-based ASC Red 
Storm platform deployed in 2004. Throughout this period, 
there has been a continual effort to ensure that optimal 
performance is extracted and utilized on Sandia’s 
supercomputing platforms. Sandia’s Advanced Systems 
Group is continually evaluating new technologies and 
technological trends to determine the impact on its 
application base. One such trend is the growing use of  

 
 
vector or SIMD units to increase FLOP rates in general 
purpose processors. 

While first-generation AMD and Intel 64-bit x86 
(x64) processors contain 128-bit wide Streaming SIMD 
Extensions (SSE) registers, their 64-bit data paths and 
floating-point units limit the performance benefit of 
vectorizing double-precision loops.   New x64 processors 
from Intel, known as the “Woodcrest” or Core™ 2 Duo 
architecture, and a chip from AMD known as “Barcelona” 
or Quad-Core AMD Opteron™, contain 128-bit-wide data 
paths and floating-point arithmetic units.  

Vectorization is key to extracting maximum 
performance from floating-point intensive scientific and 
engineering codes on first-generation x64 processors, and 
is even more important on the latest generation of x64 
processors. In this paper we discuss coding to maximize 
vectorization, how these techniques were applied to a 
kernel from Sandia's ALEGRA shock physics code, some 
compiler improvements driven by this joint project 
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between Sandia and PGI, and the significant performance 
gains achieved on the latest generation of x64 processors. 

2. SSE Vectorization on First-generation 
x64 Processors 
Vectorization for x64 processors is used to identify 

and transform loops to take advantage of packed SSE 
instructions, which process two input operands of 128 bits 
of data per instruction.  Each operand contains two 64-bit 
double-precision values or four 32-bit single-precision 
values.  The result of the instruction is also a 128-bit 
packed result, of the same data type as the inputs.   

Diagram 1 below gives a logical representation of 
how packed double-precision operands are stored and 
computed in SSE registers. This logical representation, 
and indeed the corresponding x64 assembly code, gives 
the impression that the two double-precision floating-
point additions are performed concurrently.  In fact, while 
these operations are performed using a single packed SSE 
instruction, they are not necessarily performed 
concurrently. Rather, in previous generation x64 
processors they are simply pipelined in sequence through 
the 64-bit arithmetic unit. 

 
 
Diagram 1. Packed double-precision add using the 
addpd SSE instruction 

 
Likewise, x64 processors also possess SSE hardware 

support for a floating-point multiplier.  On the first-
generation AMD Opteron, the SSE adder is a separate 
functional unit from the SSE multiplier and both can work 
concurrently to enable one 64-bit multiply and one 64-bit 
add per cycle.  

On first-generation Intel x64 processors (Xeon 
EM64T), only one SSE floating-point instruction can be 
issued per cycle.  These first-generation Intel x64 
processors run at much higher clock rates than first-
generation AMD64 processors to provide similar peak 
SSE vector performance, but are generally less efficient 
on scalar floating-point code because of the single 
operation per cycle limitation. 

The underlying hardware is free to implement these 
instructions given the usual constraints of silicon real 
estate, power, etc.  In first generation x64 processors, the 
throughput of these operations could be modelled as: 

 
Cycle i: [A1|A0]     [B1|B0] 
                                \         / 

          A0+B0 
                                ..... 
                                ..... 
 
Cycle i+1: [A1|A0]     [B1|B0] 

         \          / 
          A1+B1 
          A0+A0 
          ..... 

 
Cycle i+p-1:           ..... 

          A1+B1 
          A0+B0 
                 \ 
           [..|C0] 

 
Cycle i+p:            ..... 

           ..... 
                                A1+B1 
                                   / 
                               [C1|C0] 
 
where the adder pipeline depth p varied depending on 

the x64 processor implementations from AMD and Intel.   
Just as double-precision floating-point adds and 

multiplies are pipelined in sequence on first-generation 
x64 processors, likewise single-precision packed floating-
point add and multiply instructions pipeline data through 
the SSE arithmetic units.  However, as the arithmetic 
units are 64-bits wide, they are able to perform two 32-bit 
operations concurrently. This effectively doubles the 
throughput for single-precision packed SSE operations 
compared to double-precision packed SSE operations.   

One obvious question is, if the underlying hardware 
only supports 64-bit operations, why is vectorization so 
important on first-generation x64 processors? 

Processor and compiler vendors have been promoting 
vectorization as equally important on single- or double-
precision data, but in fact it has been much more 
important for single-precision codes.  On first-generation 
x64 processors, highly-vectorized single-precision codes 
can often achieve speed-ups of nearly 2X over a scalar 
(non-vectorized) version.  With double-precision data it is 
more common to see at most 20% - 30% speed-ups, and 
sometimes no speed-up at all.  The gains for double-
precision codes come not from doing more operations per 
cycle, but rather from: 
 

127           64 63            0 
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127           64 63            0 

 A1      |      A0 

  add 

  add 

127           64 63            0 

 C1      |      C0 
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1. Doing the same number of arithmetic operations in 
fewer instructions, increasing instruction efficiency. 

2. More efficient utilization of the floating-point 
arithmetic unit pipelines. 

3. Fewer instructions required to move data between 
SSE registers and memory. 

4. More efficient utilization of memory and cache 
bandwidth by leveraging the alignment of vector data 
to cache line boundaries. 

5. Other vectorization benefits: loop re-ordering, 
optimal unrolling, software prefetching, etc. 

 
Note that for a loop to vectorize, the compiler must 

determine that it contains no loop-carried dependence 
cycles.  This is traditionally easiest to do in Fortran 
programs, which tend to operate on well-defined arrays.  
It is more difficult in C and C++, where pointers are 
frequently used in ways that result in real or potential data 
dependencies that cannot be resolved by the compiler.  As 
we will see below, coding in C and C++ with an eye 
toward vectorization can pay significant performance 
dividends.  If the compiler determines that a loop can be 
vectorized, it can often be auto-parallelized. So, coding to 
maximize vectorization will also maximize the potential 
for automatic parallel speed-up on multi-core processors, 
a topic which is not specifically addressed in this paper. 

                            

3. SSE Vectorization on the Latest 
Generation x64 Processors 
In the latest generation of x64 processors, the SSE 

floating-point adder and multiplier have been widened to 
128-bits.  This basically doubles the potential throughput 
of these arithmetic units.  The new hardware can be 
modelled performing double-precision packed floating-
point adds as follows: 

 
Cycle i: [A1|A0]     [B1|B0] 

    \     \         /    / 
 [A1+B1|A0+B0] 
 ..... 
 ..... 

 
Cycle i+1:         

 ..... 
 [A1+B1|A0+B0] 
 ..... 

 
Cycle i+p:         

 ..... 
 ..... 
 [A1+B1|A0+B0] 
         \       / 
       [C1|C0] 

                            
Double-precision floating-point operations are now 

performed two-at-a-time, and likewise the throughput of 
single-precision calculations has been increased to four-
at-a-time through the 128-bit SSE floating-point units.  
Thus, the other stages in the pipeline are available for 
other calculations.  While this is clearly a significant 
improvement in the theoretical peak performance of the 
processors, it also increases the need to move data from 
memory or cache to the SSE registers as efficiently as 
possible.   

The most efficient way to move data to the SSE 
registers is through use of the movapd and movaps 
instructions.  These perform “move aligned packed 
double” and “move aligned packed single” operations 
respectively.  Each instruction moves 128-bits of data 
from cache or memory into an SSE register.  For the 
compiler to be able to generate these instructions, it must 
know the source data is aligned on a 128-bit (16 byte) 
boundary.  If a move aligned instruction is issued on data 
that is not aligned, the processor will issue an instruction 
fault.   

Generally, if the source data is not aligned the 
compiler will still vectorize a loop but must use less 
efficient sequences of instructions to load up the SSE 
registers. The PGI compilers go to great lengths to 
maximize the number of aligned move instructions used 
in vectorized loops.  By default, the compilers generate 
alternate versions of a loop (known as “altcode”) to 
handle different alignment possibilities, and frequently 
add "peeling" to perform one or more iterations of a loop 
in scalar fashion before falling into a vectorized loop 
where the remaining data in one or more vectors is 
aligned on a 16-byte boundary. 

Also, to maximize the efficiency of SSE 
vectorization, like data should be stored in sequential 
vectors to minimize the amount of packing and shuffling 
of data required by the compiler to vectorize loops.  In 
general, compilers are fairly sophisticated in the amount 
of "irregular" data packing and vectorization they can 
support, but these operations are typically inefficient on 
x64 SSE units.  We will see how important this can be in 
the sections that follow, where we describe the 
restructuring performed on ALEGRA data structures. 

We coded up a simple multiply-add operation, 
sufficiently unrolled to enable peak processor 
performance, to illustrate differences in efficiency 
between scalar operations, unaligned vector operations, 
and aligned vector operations.  

Table 1 compares first-generation x64 processors 
against the latest generation, in units of "utilization of 
latest generation peak performance". The first row of 
Table 1 illustrates performance of scalar (non-packed) 
SSE floating-point operations in a loop that contains no 
memory references. The second row illustrates 
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performance of vector (packed) SSE floating-point 
operations in a loop that contains no memory references.  

All remaining rows use packed vector arithmetic 
instructions including some number and type of memory 
accesses.  In each successive pair of rows, we've added 
code to load multiples of 8 bytes (one double operand) per 
each multiply-add operation (since the processors can do 
two multiply-adds per cycle at peak, this is actually 16 
bytes per cycle).  We've used both optimal aligned 
loads/stores in the first row of each pair, and the less-
efficient sequences required when data is potentially 
unaligned in the second row of each pair.  All memory 
references in this test accessed data known to be resident 
in the L1 data cache.  The range of efficiency for the 
unaligned cases results from measurements using several 
different possible unaligned load/store instruction 
sequences.  The most efficient instruction sequence for 
unaligned vector data accesses typically differs between 
x64 processor families, and sometimes from generation-
to-generation even within a family. 
 

Percentage of Peak versus Latest-Generation x64 Processors 

 AMD Intel 

Test First-Gen 
AMD64 

Latest-Gen 
AMD 

Opteron 

First-Gen 
EM64T 

Latest-Gen 
Intel  

Core 2 

register-
to-
register 
scalar 

50% 50% 25% 50% 

register-
to-
register 
vector 

50% 100% 50% 100% 

8 bytes 
aligned 50% 100% 50% 100% 

8 bytes 
unaligned 25-48% 50-90% 28% 38-40% 

16 bytes 
aligned 47% 90% 38% 50% 

16 bytes 
unaligned 22-25% 25-65% 17-20% 25% 

24 bytes 
aligned 33% 65% 27% 33% 

24 bytes 
unaligned 13-22% 17-65% 12-20% 17-25% 

32 bytes 
aligned 24% 50% 20% 25% 

32 bytes 
unaligned 10-14% 13-50% 10-13% 12-17% 

 
Table 1. Percentage of latest-generation x64 SSE peak 
performance realized by various x64 processors 
 

At 100% efficiency, the latest generation of 
processors can do four double precision floating point 
operations per cycle (two multiplies and two adds), 
meaning a Core 2 Duo processor-based laptop running at 
2GHz is theoretically capable of 8 GFLOPS.  The 
achievable peak vector double-precision performance is 
twice that of first-generation x64 processors, and twice 
that of scalar code, assuming that the data re-use is 
sufficiently high. 

What should be of interest to performance-oriented 
programmers is the tail-off in achievable performance as 
the operations require more data, and when the data is 
fetched into the SSE registers in a sub-optimal 
(unaligned) manner.  Even when the data resides in L1 
cache, the gains of vector over scalar, and latest-
generation over previous, may be limited for memory-
intensive loops.  Thus, it is extremely important to 
structure code in ways that maximize opportunities for 
aligned accesses and re-use of data within the SSE unit in 
order to avoid memory-related performance bottlenecks. 

4. Optimizing the ALEGRA Kernel 
The ALEGRA computational kernel and dataset used 

in this study represent a two-dimensional Lagrangian 
hydrodynamics model of a single ideal gas material.  The 
code uses a cache oblivious implementation, by David 
Hensinger of Sandia, from work developed by Frigo and 
Strumpen.  The cache oblivious implementation was 
presented in a paper at CUG in 2006, and provides cache 
locality by recursively walking through multiple time 
steps over subsets of the spatial data domain.  Because of 
the cache oblivious implementation, memory bandwidth 
becomes less of an issue and the code is a good candidate 
to take advantage of the vectorization gains outlined 
above. 

The kernel is written in C++.  The original kernel 
stored data as an "array of structs", where variables 
representing acceleration, velocity, and force are 
interleaved in a node structure, and at each time step an 
element depends on all adjacent elements and nodes at the 
previous time step.  While this may be optimal on direct-
mapped or low-set-associativity caches, for x64 SSE 
vectorization it is suboptimal because it prevents the 
compiler from generating efficient packed aligned loads 
to move data into the SSE unit. 

So, the first and most significant change to the kernel 
was to change the storage ordering.  For instance, all like 
accelerations were collected into one vector, all like 
velocities, etc.  This presents data to the compiler in a 
way that enables packed aligned memory accesses. From 
a coding standpoint, most of the changes were localized to 
loop setups where pointers where initialized, and required 
changes to the scaling and offsetting by the x, y, and 
struct data dimensions.  The total amount of data stored 
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remained unchanged, as did the cache oblivious 
techniques in the code. 

Once the code restructuring was complete, tests with 
the PGI C++ compiler ensued.  The major goal was to get 
every loop in the computational kernel to vectorize.  As it 
turned out, this required some compiler work besides just 
rewriting the application code. 

The first section of the kernel contains a loop over 
elements to accumulate forces to nodes.  This contains 
some special code for boundary conditions, but is mainly 
a 2x2 neighborhood operation, where a portion of the 
work is redundant from the previous iteration.  PGI 
compilers implement an optimization called loop-carried 
redundancy elimination (LRE) to improve performance of 
such loops, but it was not occurring in C++ codes for 
reasons we won’t detail here.  Modifications to the 
compiler enabled loop-carried redundancy elimination for 
C++, and it is now on by default using the –fast compiler 
option. Occurrences of this optimization, and many 
others, can be seen using the –Minfo compiler option:  
 
741, 4 loop-carried redundant expressions      
    removed with 8 operations and 12 arrays 
783, 4 loop-carried redundant expressions  
    removed with 8 operations and 12 arrays 

 
As indicated in these compile-time informational 

messages, the compiler has actually eliminated 8 floating-
point operations and 12 memory references from the body 
of the loops at lines 741 and 783.  LRE is an extremely 
effective optimization when it can be applied.  A hint for 
programmers: to enable LRE to kick in, it is important to 
code all of the work for a given iteration in the loop, 
including the redundant parts, and let the compiler find 
the redundancies itself.  Don't try to code it yourself, 
using temporaries that carry around to the next iteration of 
the loop.  Hand optimizations like this, similar to 
excessive manual loop unrolling, can obscure the true 
structure of a loop and result in undue memory pressure 
due to overuse of local temporary variables. 

A second important modification to the PGI C++ 
compiler was the addition of support for a “restrict” type 
qualifier.  In C99, the restrict type qualifier is a part of 
the language specification.  It serves as a "no alias" hint to 
the compiler on a pointer-by-pointer basis.  The C++ 
language has nothing similar, but several C++ compilers 
include support for the extension __restrict, which 
carries the same meaning.  The code was modified by 
adding __restrict type qualifiers to most of the 
pointers where they were declared and assigned locations 
within the x-y grid.  This change provides the compiler 
information it needs to disambiguate potential loop-
carried dependencies, removing a barrier to vectorization.   

The last loop of the kernel contains a loop over the 
elements to update material properties before the next 
time step.  To vectorize this loop, coding changes and 

compiler changes were needed.  The original code looked 
as follows: 
 
{ 
  real sound_speed = sqrt(gxgm1 * edata[ENER]); 
  real local_ts = ar/sound_speed; 
 
  if (local_ts/min_ts < 0.9999) min_ts=local_ts; 
  edata[AVmPR] = gamma_minus_one * edata[DENS]          
                 * edata[ENER]; 
  if(tr_deformation_rate < 0.0) { 

 edata[AVmPR] += edata[DENS] * ar  
     * tr_deformation_rate * 
     * (linear * sound_speed - quadratic * ar  
        * tr_deformation_rate); 
  } 
} 
 

and was rewritten to look as follows: 
 
{ 
  real sound_speed = sqrt(gxgm1 * edataENER[i]); 
  if (ar/sound_speed < local_ts) 
    local_ts = ar/sound_speed; 
 
  edataAVmPR[i] = -gamma_minus_one  
                  * edataDENS[i] * edataENER[i]; 
  real tdrate = (tr_deformation_rate < 0.0) ?    
    tr_deformation_rate : 0.0; 
  tdrate *= ar; 
  edataAVmPR[i] += edataDENS[i] * tdrate  
                   *  (linear * sound_speed  
                       - quadratic * tdrate); 
} 
if (local_ts/min_ts < 0.9999) min_ts=local_ts; 

 
There are several changes here, and it is useful to go 

over them one-by-one to understand how they enable 
more loops to vectorize. 

First, the change from edata[ENER] to 
edateENER[i] is a result of the  restructuring of the 
storage order, so that like-data is vectored into sequential 
locations in memory rather than being split across 
multiple C structs. 

Second, the computation of local_ts is different.  
The purpose of this bit of code is so the function can 
return the minimum computed time step, but only if that 
minimum (local_ts) is somewhat less than the timestep 
passed in to the function (min_ts).  For this kernel, 
somewhat less is defined as  

 
  (local_ts/min_ts < 0.9999) 

 
This creates a loop-carried dependence.  If the condition 
is true, min_ts is updated, and it MUST be available for 
the computation in the next iteration. 

As it turns out, there is also a slight subtlety in this 
computation and it is not exactly what the author 
intended.  If min_ts does get updated  to a value of 
local_ts, there is a chance that another later value of 
local_ts could be less than min_ts, but not enough 
less to update the min_ts value.  So, as originally 
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written, the function may return a new min_ts, but not 
necessarily the minimum local_ts as computed over all 
elements. 

The rewritten code always locates the min_ts value.  
In addition, the rewritten code removes the loop-carried 
dependence.  Why?  Because as it is now written, it finds 
the minimum of an array of values (ar/sound_speed), 
which is just a reduction, similar to a sum reduction.  An 
improvement was made to the PGI compilers to enable 
vectorization of these min and max reductions, leveraging 
the hardware support for min and max operations in the 
x64 SSE unit.  SSE min and max instructions have similar 
characteristics to adds and multiplies – with scalar & 
packed variants, support for the various data types, 
appropriate pipeline lengths, etc. 

Once the vectorized reduction recognition was in 
place in the compiler, it enabled a rewrite of the original 
conditional at the end of this section of code.  We noted 
that a temporary, tdrate, could be set to the min of 
tr_deformation_rate and 0.0.  Assuming tdrate is 
zero, the final update just becomes a wasted operation 
(aka a “nop”).  It may seem like a very expensive nop, but 
if it facilitates vectorization it is worthwhile. 

There were a few other minor issues which could 
easily have been avoided with a re-work of the source 
code, but instead we took the opportunity to enhance the 
PGI C++ compiler to automatically eliminate these 
barriers to vectorization.  The new optimization features 
presented above are all available in the commercial 
release of the PGI 7.0 PGC++ compiler.  Work is 
continuing on PGC++ performance, and another set of 
improvements will be available in PGI 7.1. 

4. Results 
On first-generation x64 processors containing 64-bit 

wide floating-point units, the speedup attained is roughly 
1.25x over the previous version of ALEGRA kernels.  On 
the latest generation x64 processors containing 128-bit 
wide floating point units we have tested on thus far, the 
speedup attained is roughly 1.85x due to these code 
transformations and compiler enhancements which 
maximize the effectiveness of double-precision 
vectorization.   

While performance improvements will obviously 
vary from application to application, these results 
highlight the need to structure code to maximize 
vectorization now and into the future. 
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Diagram 2. First-generation x64 ALEGRA kernel 
performance before/after restructuring for double-
precision vectorization 
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Diagram 3. Latest-generation x64 ALEGRA kernel 
performance before/after restructuring for double-
precision vectorization 

 

5. Conclusions 
Although many application developers rely on just 

applying the “–fast” switch to optimise their code, 
significant performance gains may still be possible and it 
is important to apply classic performance analysis and 
tuning techniques to realize some of the untapped 
performance modern processor architectures can provide. 
However, this requires expert knowledge from not only 
the application developer, but also the compiler team, 
which in many instances has an expert knowledge of the 
underlying architecture and how to best utilize it for a 
given application’s particular needs. In this case, it was 
possible to achieve a near 2x performance improvement. 

Results derived from this work will benefit users of 
ALEGRA on current and future DOE and DoD 
computing resources. In addition, the compiler techniques 
developed have been integrated into the generally 
available PGI compiler suite to benefit all C/C++ codes 
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with similar source code structure. The coding practices 
that we outlined will also help other programmers in 
applying the same techniques and tools for their particular 
application. Finally, the cooperation between Sandia’s 
application developers and the Portland Group product 
development and support teams is shown to be a model 
for future joint endeavours. 

6. Future Work 
As the trend to multiple cores per processor 

continues, it is anticipated that a similar trend will be 
observed in the number of floating-point math units per 
processor. This will most likely come about with an 
increase in the size of each core’s vector unit to 256 bits, 
512 bits or maybe even larger. Perhaps architectures will 
utilize multiple vector units per core? Or maybe even 
chain vector units from separate cores into a single virtual 
vector unit?  And then there is the general purpose GPU 
trend with the potential for streaming multiple vector 
units together. Whatever the outcome, it will become 
increasingly important to revisit techniques abandoned 
with the advent of the cache based microprocessor in 
order to extract the full potential of the next generation of 
processors for science and engineering applications. 

We will continue to examine the application 
programming and compiler techniques required to support 
larger vector operations that are most likely to appear in 
future sequential and parallel architectures deployed by 
the commercial processor vendors. 
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