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 Abstract
Capability computer systems are designed, developed, and 
operated to provide the computational power to investigate 
and solve some of the most diffi  cult and compelling prob-
lems facing humanity.  Th ese unique resources can be ex-
tremely helpful in scientifi c endeavors, but present exciting 
challenges for the operators and customers who utilize their 
power.  While many of the diffi  culties in getting capability 
jobs run are inherent in the job itself, others intrude by way 
of operational issues. Consider Red Storm: in Jumbo mode, 
its largest confi guration, it provides 13,�80 dual-core pro-
cessors; over 30,000 links; 3,700 embedded Linux sensors;  
88 RAID controllers; 50 10GigE network connections; 
plus cooling, power, and environmental sensors. For each 
component, the only defi nitely known state is “down.” Th is 
overview looks at capability computing from the aspect of 
operations, but draws many conclusions about the eff ects of 
system design on the eff ectiveness of system operation.

Overview

Sandia National Laboratories has been building large systems 
for 15 years now. Prior to that, the Labs had been a pur-
chaser and operator of systems like the Paragon, Th inking 

Machines CM-�, and Cray vector systems. During that time, 
Sandians have designed, deployed, and operated the fi rst Terafl op 
system (ASCI Red), several of the fi rst large commodity clusters 
(CPLANT), and this week’s #� system Red Storm. Th e fi rst author 
joined Sandia several years ago, aft er working with the University 
of New Mexico and NCSA in standing up Los Lobos, one of the 
fi rst Linux clusters to break the Top 100. (Sandia’s CPLANT was 
another; HPTI built the third.) Today, Sandia also operates one 
of the largest Linux clusters in the world, Th underbird with 8,960 
processors. 

 Figure 1 maps several of many sets of infl uences on our think-

ing and on the subject of today’s talk. Solid lines indicate direct 
lines of descendants, from the MPP’s like the nCube and Para-
gon through ASCI Red to the Cray XT4 line, and from the fi rst 
Beowulf clusters through commercial off erings like Los Lobos to 
Th underbird.  Dashed lines indicate infl uences.

 Operating systems also play key a role, with the red lines 
trending the use of small, lightweight kernels, and the blue lines 
following variants of Linux. In 0�007, Cray is working to blend 
the red and blue lines, which might bring us to something like 
Cray Purple, but that name has already been taken! 

 Th e lower tier of Figure 1 reminds us that many systems have 
been designed, fewer have been built, and even fewer have be-
come ongoing commercial successes! 

 Th e systems named, of course, are only a handful of those 
involved in a great conversation. Th e topic concerns Exafl ops for 
science and engineering: how to achieve them, how to deliver 

them, how to apply them, and how to fund them. 
In 0�007, the next clear step is to a Petafl op, and 
from a theoretical Petafl op to a sustained, produc-
tion, delivered, multi-petafl op system. Th ere is no 
doubt that any of several vendors can construct 
a system with a PetaOp peak. What we’ve found, 
however, is that getting from the PetaOp peak to 
the sustained, pro duction mult-petaOp system will 
take sustained eff ort from a broad-based team hav-
ing diverse talents. 

 Isn’t it interesting that we don’t have a unit for 
sustained human eff ort? We need a unit that would 
signify honest attempts and would harmonize with 
Petafl ops and Exabytes, something like Giga-tries 
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or Peta-d’oh’s. One of the motivations for this paper, and one of 
the missions for organizations like CUG and LCI, is to reduce the 
number of wasted human cycles in building ever-more-compli-
cated systems.

But, lest we get too optimistic, let’s consider the following 
four very different pictures. Figure 2 shows ASCI Red. Red was 
notable for several reasons. It successfully deployed a Lightweight 
Kernel on compute nodes called Cougar. Cougar descended from 
SUNMOS — the Sandia/UNM OS — that ran on the nCube, and 
which became PUMA on the Paragon. Red also had an inte-
grated service (RAS) network that provided for system health 
and maintenance checks for all nodes. The RAS design on Red 
influenced both CPLANT and Red Storm. Finally, Red provided 
a simple mechanism to switch compute nodes from Unclassified 
to Classified processing and back gain. This red/black switching 
procedure allows Sandia to deploy capability computing on either 
network by sharing the compute partitions. The cost is relatively 
low: additional service and I/O nodes, and a mechanism for the 
switch. The duplicated I/O partitions have an additional benefit 
to operations, as well as a cost. The benefit is that during major 
upgrades, you can keep a portion of the system in production 
while other portions are being worked. Add to terms like scal-

ability, reliability, and operability another: versatility. The cost, of 
course, is the overhead of maintaining two installations. In that 
sense, Red Storm is like having twins.

Figure 3 shows the end of ASCI Red. Red was #1 on the Top 
500 list for 3.5 years; 7 lists! Red was decommissioned last year, 
not because it wasn’t useful, but because we could no longer af-
ford to keep it running. When it was turned off, there were still 
jobs on the mesh and more jobs in the queue. ASCI Red served 
production cycles for over 9 years from its initial operation until 
its retirement. That’s a long time in supercomputer years! Of 
course there were upgrades along the way which took advantage 
of the rapid pace of technology maturation. Processors, memory, 
network interconnect, and disk storage were all upgraded.

The Clock of the Long Now

Figure 4 shows a prototype of the Clock of the Long Now — an 
attempt to build a computer, and a very engineered artifact — that 
will continue to deliver cycles and be both maintainable and 
understandable for 10,000 years [4]. The cuckoo did come out 
the first time, seven years ago, and the clock struck twice: once 
for each millennium c.e. You might also be interested in Brian 
Eno’s study of the bells for the clock; they are based on a 10-digit 
permutation so that each day the clock will sound a unique bell 
sequence! Of course, that sequence will eventually wrap around, 
in a bit over 10,000 years.

The Tacoma Narrows Bridge

Figure 5 shows the Tacoma Narrows Bridge, or “Galloping Gertie”. 
Bridge builders have had a history of building new structures that 
creatively used new materials and new designs that pushed the 
envelope of bridge engineering. Just as regularly, on a well-docu-
mented 30-year cycle, bridges were built and collapsed. This cycle 
was originally noticed by Sibley, and is documented in Henry 
Petroski’s “Engineers of Dreams” [12].

The amazing thing about the Tacoma Narrows Bridge is not 
that it was built, or that it fell down, but that the original archi-
tecture was carefully studied and engineered, and then built even 
when there were open questions about its stability. The width to 

Figure 3: ASCI Red, 02006

Figure 5: Tacoma Narrow BridgeFigure 4: Clock of the Long Now

“I want to build a clock that ticks once a year. The century hand ad-
vances once every one hundred years, and the cuckoo comes out on the 
millennium. I want the cuckoo to come out every millennium for the 
next 10,000 years. If I hurry I should finish the clock in time to see the 
cuckoo come out for the first time.”		
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span ratio of the deck was 1:76, while the next most comparable 
bridge (the Golden Gate) at the time had a width to length ratio 
of 1:46.5. Tacoma Narrows was truly a “stretch goal”.

Bridges have a lot in common with supercomputers; they cost 
a lot, take a long time to build, carry a lot of traffic, and are only 
missed when they are gone. Like bridges, building a supercom-
puter often starts with a need and a vision. From those seeds 
begins lengthy rounds of funding negotiations, politics, further 
negotiations, and redesigns. Stretch goals and new technologies 
often determine the design of the system. Finally, if the team is 
lucky, the system is built and jobs start running.

Computer engineers tend not to lose the same number of 
workmen to death, accident, or caisson disease as the bridge 
builders, but we may lose the same number of systems in the end. 
How many of our prototypes become commercially successful? 
How many are maintainable very far into the future? And what 
can we do to make our efforts more successful?

The role of disaster in engineering needs to be acknowledged. 
Petroski, and many others, are far more articulate on this point 
than time allows. Stretch goals always involve risk, and at the 
edge of the known, the risk can be considerable. How then, can 
we continue to stretch while mitigating the risks and avoiding 
truly catastrophic disasters? “To boldly go where no one has gone 
before,” to quote Gene Rodenberry.

To paraphrase Petroski (by substituting computers for bridges)
Must we thus expect, if not allow, a bridge (supercomputer) 
failure to occur now and then? The history and promise of 
bridges (supercomputers) suggest that we must, for reasons 
that have to do with neglect of the past and its relevance for 
the future. Neglect of the past is often embodied in a short-
term historical memory, thinking, with hubris, that one’s 
own generation’s engineering science and technology have 
progressed so far beyond what they were a generation or two 
earlier that the bridges (supercomputers) of one’s professional 
progenitors, and even ones mentors, make pretty pictures but 
not examples or models for modern engineering.

The Principles
Looking back over our past successes (and failures!), Sandia teams 
have come up with the following principles for building reliable 
platforms that can serve both today’s users and tomorrow’s de-
signs. These principles have been drawn from numerous systems, 
including those mentioned in Figure 1. Naturally, our attention is 
presently drawn to the most recent systems: Thunderbird and Red 
Storm. Where possible, we have tried to frame the lessons so that 
they might be memorable.

Seek First to Emulate
Learn from the past
Simulate the future

Learn from the past
This first principle is a restatement of Petroski’s arguments for the 
use of historical precedent in the 
design of new structures. It was 
phrased succinctly in a quote by 
John Guale:

 “A complex system that works 
is invariably found to have 
evolved from a simple system 
that works.”

Both Thunderbird and Red 
Storm are complex systems 
evolved from simpler systems. 
Thunderbird, a 4,480 node 
InfiniBand Linux Cluster from 
Dell,  is a straightforward exten-
sion of the Linux clusters that 
came before. Its scale, and to 
some extent the choices dictated 
by budget and time frame posed the newer problems. The design 
question that faced the Tbird team was not whether it could be 
made to work, but how to get it to work efficiently at scale. This 
was not a trivial problem; the system debuted at 38.27 TF, and 
through system tuning and changes to the software stack it de-
livered 53 TF a year later. What is interesting about this result is 
that TBird only managed to hold on  to its #6 ranking, even with 
a 38% speedup!

Simulate the Future

Red Storm is based on the architecture proven in ASCI Red. In 
fact, a design goal of the Red Storm team was to ensure that ap-
plications which ran on Red would run on Red Storm with only 
a recompile. Red Storm has many differences: including a richer 
mesh, more complex I/O systems, and a new interconnect. Yet the 
basic architecture of the MPP remains constant. This architecture 
has since propagated into 16 other sites and almost 30 systems 
around the world, of varying sizes and interconnect topologies.

Looking forward, it will also be important to emulate in sense 
of computer architectures: we need to spend more time simulat-
ing new architectures in order to build larger machines that have 
well-understood characteristics. With technology moving as 
fast as it is, there’s little time available to figure out how a sys-
tem works after it has been built. Once operational, the clock of 

•
•

Red Storm Thunderbird
Stance Red + Black Black
Service Nodes 320 + 320
Compute Nodes 12,960 4,480
Compute Cores 25,960 8,960
Segments 3360/6240/3360
Interconnect SeaStar Mesh Infiniband
Disk 170TB + 170TB 46TB + 420TB shared
OS Linux + Catamount Linux

Figure 6: Red Storm 02006

Figure 7: Thunderbird
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obsolescence is ticking. Simulation, at all scales, is a partial view 
that can help to predict the behavior of the system before (and as) 
it is constructed. Work at Sandia looks at simulation both at the 
hardware [15] and software levels [13], enabling design teams to 
test alternative designs efficiently and with low cost.

The big bang only worked once�

Nobody ever builds just one system, even when deploying 
just one system
Globalize agility; localize fragility
Deploy test platforms early and often
Only dead systems never change

Nobody ever builds just one system 

The nice thing about the big bang is that you only have to accom-
plish it once, and then the Universe is up and running. There is 
no such luck with large systems. Even when they are ostensibly 
off-the-shelf, each installation ends up with unique requirements. 
On top of that, as long as the software or hardware is improving, 
you will end up rebuilding the system.

This fact has several important implications. First, the admin-
istrator, will end up reconfiguring and reinstalling software. Any 
process that is time-consuming, awkward, or error prone once, 
will over time, become totally unwieldy. Error prone processes are 
especially disastrous in this situation, since the rebuild process is 
almost always executed under stress.

Second, any configuration process should support some 
form of consistency checking. All systems have some basic rules 
for configuration; being able to validate a configuration against 
those rules insures against some forms of error. During the early 
bring-up of Los Lobos, the management tool provided was XCAT. 
XCAT drove off a set of flat text files, but there was notion of 
consistency checking. It was easy to change one file, not change 
another, and induce a mysterious failure.

In the absence of consistency checking, one can instead adopt 
something like “pair programming” for system administration. 
One of the major effects of pair programming is that the code 
being written is undergoing immediate and constant review. This 
technique can easily be applied to system administration, if only 
the system administrators could be convinced to adopt it. The 
problem, though, is that consistency checking should be both au-
tomated and on-line so that any errors are recognized in real-time.

Third, some form of revision control over configurations is re-
quired, both for debugging and for disaster recovery. And fourth, 
there needs to be some form of regression testing after each con-
figuration change, just to find the places where things break.

The authors continue to be amazed at the optimism of design-
ers who expect to build a system (once) and have it work pretty 
much out of the box. Hardware designers are good at prototypes. 
The Clock of the Long Now is on its third working prototype, but 
then they have a schedule that allows time to learn. Software de-
velopers know what it means to see a prototype crash. In fact, you 
might claim that the software developers only have prototypes! 

“Globalize Agility; Localize Fragility”

This quote comes from Tom Hunter, the President of Sandia. It 
certainly applies to the creation and deployment of large systems!

�	 Once in theory, for this Universe.

•

•
•
•

For starters, its hard to predict just how the system will work. 
It is harder, still, to predict just how the system will be configured 
when it is broken, or during an upgrade, or whenever. Building 
systems that can run fast, but still be effectively understood and 
debugged, is still an art.

An example of globalizing agility comes from tools that are 
built to handle non-uniform deployments. Many management 
tools, for instance, will assume that every node in a cluster will 
run the same kernel. Yet with specialized nodes, and occasion-
ally inconsistent driver sets, this is a very optimistic assumption. 
Just because you can run different kernels doesn’t mean that you 
should; inconsistency in large systems is our nemesis. However, 
the conscientious admin will always want the capability to change 
a kernel sometimes.

Deploy test platforms early and often

Test platforms allow for many activities, both before the main 
system is delivered and after. ASCI Red had numerous supporting 
systems used for software test and checkout, configuration testing, 
and application support. These activities are often mutually exclu-
sive: its really hard to test a new scheduler configuration when the 
system software team is trying out the latest kernel, and the appli-
cation teams get side-swiped in either case. Hardware testing, and 
testing at ‘semi-scale’ are also important. Teams are now focussing 
on Petascale systems and beyond; but as operations people we’d 
recommend starting smaller — say only 100 TF!

Test platforms give you space to run those regression tests 
mentioned above, as well as the place to develop, tune, and aug-
ment the regression testing. Right now, on Red Storm, much of 
our regression testing is by hand. Thunderbird, on the other hand, 
uses a more automatic testing model, especially when repairing 
hardware nodes.

Only dead systems never change

Once you do get it working, and running, and in production, 
what comes next? With Red Storm its a software upgrade, or a 
hardware upgrade, or an expansion. Sometimes you get all three, 
simultaneously. This implies that the operations team has to start 
all over again, using similar tools and techniques as the prior 
round. Or, you might have reached a point where new tools and 
techniques have to be invented.

For Red Storm, this happened when the system was upgraded 
from 41 TF to 124 TF. New dual-core processors replaced the 
single-cores. New networking hardware required a software 
upgrade. A fifth row was added. The system became twice as fast 
injecting packets into the mesh. The Lustre file systems grew to 
use all available I/O disk nodes. Same system? Same paint, though.

Only after the initial sanity tests did a deep problem surface: 
the I/O was stumbling due to networking issues. It took Cray and 
Sandia several weeks to discover that the original routing algo-
rithms were no longer sufficient for the speed and volume of data 
being passed. Part of that time went into developing new tools to 
access deep data previously hidden in the system, including some 
very handy traffic counters. Access to those counters is now avail-
able for all XT administrators.

The new tools deployed as a result of this marathon debug-
ging session remind us that systems have to grow smarter as they 
continue to operate. Systems learn because administrators and 



�

vendors continually add bits of code to ensure that, once recog-
nized, problems and responses are not forgotten. A fundamental 
reason for architecting malleability into a system is to make it as 
simple as possible for this kind adaptation to take place. Building 
extension mechanisms into the software means that the learning 
can occur, and acts as a reminder that no one person or organiza-
tion can ultimately predict all of the useful ways that the system 
might be used (or might fail!).

Moral: be prepared. When change ceases to happen, your sys-
tem is ready for its next phase.

Build descalable scalable systems
Don’t forget that you have to get it running first
Build scaffolding that meets the structure
Leave the support structures (even non-scalable ones) in 
working condition

Don’t forget that you have to get it running first

Scalability is a key to building systems like the largest clusters, 
or Purple, or Red Storm. It is also an elusive feature. At 100,000 
components, a minor variation may be enough to trigger an im-
balance. Moreover, any statistical argument will rapidly be stress 
tested due to the large numbers of events in the system. Once in a 
thousand years for a single component failure translates to once a 
month for Red Storm.

Conscientious designers, focussed on stretch goals, will com-
promise operability for scalability. Without a focus on scalability, 
the full system will not be scalable. While one must design for 
absolute speed, efficiency, and scalability, if you don’t also build in 
structures that allow you to test, inspect, debug, and reconfigure 
the system, that day of full-scale, flat-out production gets post-
poned. And postponed again. We must find ways to build systems 
that can be “gracefully descaled” when the ultimately scalable 
solution falls over. Its also necessary to make sure that the descal-
ing will work when needed.

In the quest for ever faster HPC systems, it is easy to rational-
ize away many intrusive debugging structures in the quest for 
absolute efficiency. Sandia’s approach to MPP systems exacerbates 
the problem because Sandia deeply believes that less is more, 
especially when it comes to the amount of code in the main line. 
In return, it is common to assume that hardware and lower layers 
will work as specified.

What happens when the lower levels fail? At that point, one 
needs to have had all of those hooks installed so that we can turn 
back on the debugging code that was probably needed in the first 
place. And if there’s a timing condition, and a dreaded Heisenbug 
appears, then one gets new insight as well.

The difficulty with building a scalable system is that you can 
so easily break the scaling aspects. For example, a minor piece of 
code that works well for small numbers of processors can affect 
the scalability of the application for large numbers of processors. 
Such failures typically appear as the system size increases by a 
power of two plus 1 (2N+1).

Tom Gardiner, one of the Cray computational scientists work-
ing on Red Storm, uncovered the following behavior with Alegra, 
a Sandia-written application for computing magneto-hydrody-
namics. The code scaled well out to about 8000 processors, but 
around 8000 processors there was a sharp drop in efficiency. The 

•
•
•

Alegra team rounded up all the usual suspects: I/O, MPI collec-
tives, etc. But as one of my collaborators would say, “Blessed are 
they who read the code.” Tom found a piece of debugging code 
that was properly wrapped in conditional compilation directives 
everywhere except in the MPI rank 0 node. Rank 0 would oblig-
ingly pause and poll each process in the job, not once, but twice, 
for debugging output. The other nodes, of course, had no data 
to report. At 8,000 processes, that quick check would put rank 0 
several seconds behind the rest of the processes.

Assumptions about global knowledge or behavior can also 
affect the scalability of the system, as can any built-in constants. 
Linear lookups and O(n3) algorithms hurt!

Build scaffolding that meets the structure

Two key questions before any acquisition are:
Is the build/test/benchmark infrastructure in place first?
Will it effectively support the installation team, the users, 
and operations?

The scaffolding that you need to support debug and test needs 
to meet both internal and external requirements. The internal 
requirement is the need to debug in terms of the inherent design 
abstractions and functions. This may seem obvious, but quite 
often the development and debugging teams end up on hardware 
or software that is not the same as the production system.

Externally, the scaffolding needs to meet the constraints of the 
operational environment. For example, it may not be possible to 
perform all debugging on an unloaded system. Or it may be nec-
essary to allow multiple workers onto a single system. The early 
Cray XT systems had a very strong design constraint of only hav-
ing a single software install on a single hardware installation. This 
complicated life both for developers (whose install gets used?) 
and for debugging (how to install a different release for a day?). 
Cray software is becoming more flexible in this regard.

Until recently, though, it was difficult to divvy up a single XT3 
cabinet for multiple users, a capability that the initial lab systems 
provided, but that the production systems have lost. This turns 
out as a good example of useful scaffolding that has fallen into 
disrepair.

Leave the support structures in working condition

Of course, there are many examples of bit rot that we can all cite; 
code not exercised is always buggy. Support code, when not ex-
ecuted for long periods, will be the most out of compliance with 
the current code base. This means that one should regularly test 
the support code even though such code maintenance appears to 
be overhead. Programmers are at heart optimists. Support code is 
(or should be) dead code, after all.

You’ll need to debug someday.
Like yesterday.

Make the lights green, then recheck the connections
Software reports reality as it sees it
Parallel tools for parallel systems

Software reports reality as it sees it

Software systems that rely on a single, internal, coherent view of 
their world are doomed to failure. For example, how many of you 
would volunteer to administer a file system without the equiva-

•
•

•
•
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lent of fsck? But how many of us have been delivered tools that 
assume that their internal structures are correct, consistent, and 
which can’t be compared to the existing system?

One of the key aspects of Jim Laros’ work on management sys-
tems [20] is that the software is always capable of three important 
tasks:

It can explore the system to see what is out there, and make 
that information part of the internal view. For example, Red 
Storm’s disk management tool can map the controllers and 
determine attributes like model numbers and firmware 
levels that can become part of the tool’s data base.
It can make the system reflect its internal view. The same 
disk tool can be used to update firmware revisions by in 
order to make the controllers reflect the internal data.
It can also provide us with a comparison of the internal 
structures and the external reality.

These are not wishful goals; they are the bedrock of managing 
and debugging a system that consists of many more components 
than human operators can recall. Yet, why do we trust the soft-
ware? For that matter, why do we trust the hardware? As voltages 
lower, and as chips become denser, the probability (inevitability?) 
of soft logic errors increases.

One firm recommendation is that any software that maintains 
state about an operational system needs a way to compare that 
state to the current situation, and have ways to recover when the 
view diverge. It will also be important to provide online/real-time 
consistency checking.

Parallel tools for parallel systems

Engineers of parallel systems sometimes neglect to use parallel-
ism themselves. For example, Red Storm has an integrated RAS 
network that is powered by network of embedded Linux proces-
sors: 3715 altogether in the Jumbo configuration. It is true that 
this hierarchical network has a single root. But this is really no 
different than a … Linux Cluster. It seems just right for exploiting 
locality, multiprocessing, parallelism, and all sorts of well-known 
techniques. Unfortunately, our experience has been that many 
tools are designed to run on a single processor. Sometimes with 
multiple threads, but still a single processor.

Version 1 of the Cray management tool for Red Storm was de-
livered with a simple facility to dump the state of the machine. It 
uses the RAS network. Of course, when we needed it, the system 
was in Jumbo mode: 10,368 compute nodes. System had crashed; 
advice was to gather a dump. Our estimate was that it would have 
taken over 3 days to complete the dump.

As a counter example, both Jim Laros and Ballance have writ-
ten libraries that fan out work to available processors in a Linux 
Cluster. Jim’s was for CPlant, Ballance’s for Los Lobos. These 
libraries make it simple to start a task on any node (and especially 
on an admin node), and then use the power of the cluster to do 
the work. Many others have written similar tools. These tech-
niques, together with an extreme focus on scalability, have to be 
the cornerstone of any large machine.

Even Tiger Woods has a coach
Don’t assume you know/understand it all
Observers help
Never underestimate your blind spots

•

•

•

•
•
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Don’t assume you know/understand it all

One of the issues with designing/building/running a large system 
is that a complete understanding of all the pieces is beyond the 
scope of any single individual, and possibly beyond the scope of 
many teams. System interactions can be as small as the electron 
level within a chip or cable, and as large as the local power grid 
or an ensemble of 12,000 nodes. Simple, replicated components 
make this easier. Complexity is a cost.

A good end-to-end example is the I/O subsystem in Red Storm, 
which involves Lustre file systems with 161 Linux-based servers, 
41 raid controllers, fibers, and lots of moving disks. Being able 
to trace a performance problem through the multiple layers, and 
across the many sibling processes, requires the full attention of 
many experts: CFS, Cray, DDN, OS specialists, and sometimes 
even the routing experts.

During the upgrade of Red Storm to Version 2.1 SeaStar chips, 
our test plan exposed a routing issue that had probably been 
present in Red Storm from its first deployment. The growth of 
the Lustre file systems, their distribution across the I/O sections, 
and the new speed of the network exposed a routing failure that 
resulted in extreme network congestion. It took several weeks of 
intense effort, and two new routing algorithms, to iron out the 
issues.

One of the good things about the distributed team was that 
one member was working from England. The time zones were in 
our favor: we could run tests and ship results during the daytime 
in North America while that team member slept, and in return 
the New Mexico team would awake to a new patch for testing and 
logging.

Observers help

This effort also illustrates the second point: observers help. The 
Red Storm project depends extensively on e-mail, e-mail lists, and 
teleconferences. It was a newcomer to a teleconference who sug-
gested the definitive test which isolated the routing problem.

Another excellent example of openness has been the ongoing 
series of Red Storm Quarterly meetings. These meetings started 
as a way to communicate about the project and design to its 
stakeholders. Along the way, it has also grown to include prospec-
tive owners and operators of XT systems. Today, CUG and other 
groups are taking over this communication arena. But at the onset 
of the project, it served us well to expose the designs and to pub-
licly discuss the issues and the trade-offs.

Transparency of process is important: the open source move-
ment has long held this as an axiom. This is true not only of code, 
but hardware and system design. The rise of Web 2.0 augments 
this process by providing tools to support distributed collabora-
tive relationships. Right now, the tools are available; and many 
teams use them both for code development and systems opera-
tions. The capacity management teams at Sandia are a good 
example; using Jabber and Trac, they have moved most of their 
configuration management discussions into Web 2.0. What we 
need, though, are for the vendors to open up their own processes 
into similar forums.

Never underestimate your blind spots

Declan Rieb of Sandia calls this “Playing with mental blocks.” 
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Blind spots are the inverse of the false positives of the green 
lights; you can’t see, or reason about, what you aren’t measuring. 
Even when you collect data, it takes careful analysis — visual and 
statistical — to draw the conclusions. In a sense, we are asking of 
systems the same questions that were defi ned by Kaplan and Gar-
rick [9] for any risk analysis situation: 

  What can go wrong? 
 How likely is it to happen? 
 What are the consequences? 

  Let’s add a fourth: 

 How will we know it has happened?  

  End-to-End arguments apply 
  Within large systems 
 Within teams 

  Th e original phrasing of the end-to-end argument had to do with 
the placement of functions in a network. Simply stated, the end-
to-end argument states that one should not build into the network 
core any functionality that cannot be completely implemented 
within the network [5]. 

 End-to-end arguments are similar to the arguments for RISC: 
building a complex function into a network implicitly optimizes 
the network for one set of uses while substantially increasing the 
cost of a set of potentially valuable uses that may be unknown 
or unpredictable at design time.   Reducing   the complexity of the 
core allows for future fl exibility while reducing cost. Th e general-
ity in the network that comes from avoiding over commitment to 
a specifi c set of functions allows for new solutions to arise. And 
applications don’t have to rely upon, or work around, complicated 
core structures that are themselves potentially unreliable. 

 End to end arguments do not imply a blind allegiance to 
placement dogma, but to a careful consideration of the impacts of 
placing functionality within a network.

 Within large systems

  Is a supercomputer a network? No doubt.  
 Another example from Red Storm: complication and infl ex-

ibility in the core. We’ve recently had the experience of being 
fl ooded by error messages when a component in the system fails. 
In our case, it was triggered by Lustre. Th e fl ood can easily create 

•
•
•

•
•

millions of messages and gigabytes of output. Cray’s initial imple-
mentation had the following characteristics: 

  No way to throttle messages; all or none 
 No way to tune the message handling 

  Th e end-to-end placement failed in each direction. What could 
have been core network functionality (fl ow control of log mes-
sages) was not present in the network core. What could have been 
edge-defi ned behavior (message selection and processing activi-
ties) was implemented in the core, and so we could not adequately 
infl uence the behavior of the system. 

Within teams

 Does the team working on a supercomputer comprise a network? 
It does, and the management of the communications in the 
network is a worthy study. Review your communications mecha-
nisms, and also the role of each individual in the overall commu-
nications. Revisit your own role. (Play with those mental blocks: 
see below) Does your team’s communications infrastructure 
support their tasks and interaction styles? Does everyone have 
access to necessary information sources? Multi-hundred Gigabyte 
log fi les transmit slowly over the Net. Decisions can bottleneck at 
the decider. 

       Successful technology transitions require people transforma-
tions 

 Have you ever tried to teach your spouse or your parents to use 
PC, or a cell phone, a Palm, Blackberry, or even a VCR? 

 Jared Diamond, in Guns, Germs, and Steel [7] points out many 
times in the history of humanity that groups have successfully ad-
opted a new technology, and other times when technologies were 
rejected. An example of the fi rst was the adoption of horses by 
the Native Americans. Horses came from the Old World via the 
Spanish, but within a century their use, and their care, had spread 
throughout the West. Th eir owners changed in the process of 
course: they learned to ride and fi ght on horseback; they learned 
to care for large domesticated animals; they survived and devel-
oped immunities to new diseases. 

 Conversely, guns spread to Japan in 01453 ce, but aft er 01600 
fi rearms were systematically rejected by the ruling Samurai class. 
Th e culture reverted to a gun-free society until 01853. 

 Closer to home, Sandia experienced some of the same issues 
in exporting the ASCI Red architecture to Cray. Overall, the 
transfer was successful, but turbulent. We might have improved 
the transfer process by fi nding ways to draw the communities into 
closer contact, up to and including co-locating some of the ASCI 
Red veterans with the design teams at Cray. Th is strategy worked 
well at Bell Labs in the 01970’s when experienced telephone 
switching center operators were brought into the development 
teams in order to infuse the No. 1ESS project with a perspective 
for operations.  

 With any new technology, it is easy to transfer the physical or 
digital artifacts. What’s hard to transfer is the insight and under-
standing of how to best use the new tools. Th is where the sensei 
arrives. Th ere are several useful roles that need to be fi lled: 

  Philosophers understand the end-to-end issues, the func-
tioning of the big system, and where a specifi c subsystem 
fi ts in. Several of those Bell Telephone advisors stayed on 
with the project for many years, Several of them remained 

•
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Figure 8: The Role of Operations

“Th e most important benefi t of the end to end arguments is that they 
preserve the fl exibility, generality, and the openness of the Internet.”  [5]
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with the project for multiple generations of designers, and 
ended up as senior architect-philosophers.
Historians understand how the previous system evolved, 
and can cite not just the working solutions, but the dead 
ends involved. Evolution, after all, proceeds by exploration. 
All those dead ends are interesting, sometimes as points to 
avoid, and sometimes as starting places when the technol-
ogy changes and makes an old approach viable once more.
Tilt meters (another phrase owed to Michael Levine of PSC) 
are the canaries in the coal mines. However, their goal is 
not to die, but to say “What?”. They are continually compar-
ing the evolving design of a system against its goals, and try 
to ensure that the path to success remains open. A single 
person can, of course, fulfill many of these roles.

If there is a theme in these comments, it is that the architect must 
understand the end-to-end issues in the system, and communi-
cate those issues to the specialists who are building components. 
Understanding the end-to-end issues depends on experience 
with prior systems, and depends as well on the ability to forecast 
behavior as systems scale to previously untested sizes.

Begin with the End in Mind

“Beginning with the end in mind’’ is the only viable approach to 
system design and deployment at this level.

The cast of contributors to developing any new high-end 
system is shown in Figure 8. Five groups of “personality types’’ ap-
pear. A sixth category, the funding officers and agencies, does not 
appear directly on this map. Like all maps, this one simplifies in 
order to make a point. In reality, many individuals migrate among 
the quadrants or play different roles within their career. In some 
ways, these categories correspond to “actors” in object-oriented 
design [6].

System builders are drawn from computer scientists, com-
puter engineers, and system architects. This group lives to 
build new, innovative, and much-needed systems.
System software and library implementors are drawn largely 
from the same backgrounds as the builders. As a group, 
they implement the lower-level software required by ap-
plications. Many of the people included in this category are 
trained software developers.
Application developers, unlike the system software devel-
opers, tend to have a strong scientific focus, with skills in 
software development derived from practice rather than 
extensive training. They also overlap with the end user seg-
ment of the population.
End users actually use the high-end systems to achieve 
their goals. End users value predictable systems, job 
throughput, high operation rates, memory bandwidth, and 
high-bandwidth, low-latency networks. To the degree that 
they are also application developers, they also value ease of 
programming. However, not all end-users are application 
developers; many are users of applications developed by 
other groups.
System operators and engineers get to make it all work. 
Sometimes, as with vendor-supported systems, they have 
the help of the vendor. Other times, as with commodity 
clusters, they have only their community of like-minded 
system administrators. They are the first to hear about and 

•

•

•

•

•

•

•

deal with user confusion and user dissatisfaction, and often 
are driven to create the tools they need to keep a system 
operational and in production.

High-end system development typically proceeds clockwise, 
beginning with the system builders. By the time an implementa-
tion reaches the lower half of the diagram, many design decisions 
are irrevocable and many resources are already committed. By the 
time the system reaches operations we are down to Perl scripts, 
SNMP, human ingenuity, and the (tested) good will of the system 
administrators.

But what does this development model imply for a system on 
which an application can run reliably, for long periods of time, on 
hardware that has intermittent failures or interrupted service? The 
application is now running far longer than the system will remain 
up; and might generate more data than can be stored locally. 
How do you manage this application? How can you manage the 
hardware? What does it mean for high-end computing to become 
a utility?

Operations are going to see it all in any case. The advantage to 
having operations involved from the start is that they often have 
the skills, tools, and stamina to travel over rough terrain to figure 
out the right direction of travel. In other words, they’re like scouts 
for the army. Send them out early, and maybe they can help the 
army to assess its position, understand its terrain, and perhaps 
even be successful without a major battle (in this case, with the 
end users!)

Operability, like scalability, is not a feature that can be added to 
a system after it is designed.

Mind the Long Term

How is it possible to think about the long-term, when the lifetime 
of a system is only a few years? Is it worthwhile? Is it possible? The 
next big system is not, after all, the Clock of the Long Now.

Our limits to our vision come from three sources. First, it 
always seems like a miracle that the bridge will be built at all, es-
pecially given funding constraints and organization politics! The 
work of getting the system into place can be overwhelming. Red 
Storm had a several year deployment, starting from drafting the 
RFC to the transition to General Availability. Thunderbird, on the 

THE HONORARY AWARD (Statuette). This award 
shall be given to honor extraordinary distinction in 
lifetime achievement, exceptional contributions to 
the state of motion picture arts and sciences, or for 
outstanding service to the Academy.                 [1]

What is the Apgar score?

“One minute — and again five minutes — after your baby is born, doc-
tors calculate his Apgar score to see how he’s doing. It’s a simple process 
that helps determine whether your newborn is ready to meet the world 
without additional medical assistance.

This score — developed by anesthesiologist Virginia Apgar in 1952 and 
now used in modern hospitals worldwide — rates a baby’s appearance, 
pulse, responsiveness, muscle activity, and breathing with a number be-
tween zero and 2 (2 being the strongest rating). The numbers are totaled, 
and 10 is considered a perfect score.”	 [2]
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other hand, provided no time to plan; it was all execution. From 
conception to first slap was about 6 months!

Second, teams don’t build enough systems to get it right. Fred 
Brooks in the Mythical Man Month [3] has a wonderful comment 
about the third system being the right one; the first system is all 
learning, and then second time around the designer tries out all 
the stuff that got thrown out of the first.

Third, we focus so hard on design-order-build-install-run 
(5-4-3-2-LINPACK)! that the lifetime of useful service is hard to 
envision. Yet, it is during that post-HPCC phase that the effort 
continues, and the real work of HPC gets completed.

HPL-LINPACK, after all, is like an Apgar score. The Apgar is a 
simple triage to ascertain the level of care required by a newborn 
human. It is a really important number for about 24 hours. The 
HPCC suite improves the situation by incorporating more factors, 
but it is still primarily a birth-time assessment.

What is needed is a score less like the Apgar and more like an 
Academy Awards Lifetime Achievement: some set of numbers 
that will summarize the total productivity, usefulness, and costs of 
a system over its lifetime.

NERSC has a candidate in their ESP benchmark [11,16]. This 
benchmark “is designed to evaluate systems for overall effective-
ness, independent of processor performance. The ESP test suite 
simulates ‘a day in the life of an MPP’ by measuring total system 
utilization. Results take into account both hardware (PE, memory, 
disk) and system software performance.”

The problem is to generalize from a day to a lifetime; this is left 
as a goal for one of you. What is the measure of a machine over its 
lifetime? Does it have a progressive solution (e.g. first 6 months, 
year, two years, ...) And if you solve this, how do you get the ven-
dors to start measuring it?

Closing
To restate the primary lessons:

Seek first to emulate
The big bang only worked once
Build descalable scalable systems
Make the lights green, then recheck the connections
Even Tiger Woods has a coach
End-to-end arguments apply
Successful technology transitions require people transfor-
mations
Begin with the end in mind
Mind the long term

The design principles for the Clock of the Long Now [4] prove to 
be excellent guidelines for building large systems as well. Briefly 
stated they are:

Longevity: Display the correct time for ten millennia
Maintainability: with Bronze-age technology if need be.
Transparency: obvious operational principles.
Evolvability: improvable over time.
Scalability: the same design should work from tabletop to 
monument size.

All worthy goals — suitably re-framed — for the next Petaflop 
system!
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