
1

 Abstract
Capability computer systems are designed, developed, and
operated to provide the computational power to investigate
and solve some of the most diffi cult and compelling prob-
lems facing humanity. Th ese unique resources can be ex-
tremely helpful in scientifi c endeavors, but present exciting
challenges for the operators and customers who utilize their
power. While many of the diffi culties in getting capability
jobs run are inherent in the job itself, others intrude by way
of operational issues. Consider Red Storm: in Jumbo mode,
its largest confi guration, it provides 13,�80 dual-core pro-
cessors; over 30,000 links; 3,700 embedded Linux sensors;
88 RAID controllers; 50 10GigE network connections;
plus cooling, power, and environmental sensors. For each
component, the only defi nitely known state is “down.” Th is
overview looks at capability computing from the aspect of
operations, but draws many conclusions about the eff ects of
system design on the eff ectiveness of system operation.

Overview

Sandia National Laboratories has been building large systems
for 15 years now. Prior to that, the Labs had been a pur-
chaser and operator of systems like the Paragon, Th inking

Machines CM-�, and Cray vector systems. During that time,
Sandians have designed, deployed, and operated the fi rst Terafl op
system (ASCI Red), several of the fi rst large commodity clusters
(CPLANT), and this week’s #� system Red Storm. Th e fi rst author
joined Sandia several years ago, aft er working with the University
of New Mexico and NCSA in standing up Los Lobos, one of the
fi rst Linux clusters to break the Top 100. (Sandia’s CPLANT was
another; HPTI built the third.) Today, Sandia also operates one
of the largest Linux clusters in the world, Th underbird with 8,960
processors.

 Figure 1 maps several of many sets of infl uences on our think-

ing and on the subject of today’s talk. Solid lines indicate direct
lines of descendants, from the MPP’s like the nCube and Para-
gon through ASCI Red to the Cray XT4 line, and from the fi rst
Beowulf clusters through commercial off erings like Los Lobos to
Th underbird. Dashed lines indicate infl uences.

 Operating systems also play key a role, with the red lines
trending the use of small, lightweight kernels, and the blue lines
following variants of Linux. In 0�007, Cray is working to blend
the red and blue lines, which might bring us to something like
Cray Purple, but that name has already been taken!

 Th e lower tier of Figure 1 reminds us that many systems have
been designed, fewer have been built, and even fewer have be-
come ongoing commercial successes!

 Th e systems named, of course, are only a handful of those
involved in a great conversation. Th e topic concerns Exafl ops for
science and engineering: how to achieve them, how to deliver

them, how to apply them, and how to fund them.
In 0�007, the next clear step is to a Petafl op, and
from a theoretical Petafl op to a sustained, produc-
tion, delivered, multi-petafl op system. Th ere is no
doubt that any of several vendors can construct
a system with a PetaOp peak. What we’ve found,
however, is that getting from the PetaOp peak to
the sustained, pro duction mult-petaOp system will
take sustained eff ort from a broad-based team hav-
ing diverse talents.

 Isn’t it interesting that we don’t have a unit for
sustained human eff ort? We need a unit that would
signify honest attempts and would harmonize with
Petafl ops and Exabytes, something like Giga-tries

Bringing Up Red Storm:
 Lessons to Remember

 Robert A. Ballance
 John P. Noe

Sandia National Laboratories
Albuquerque, New Mexico

 May 4, 0�007
{raballa@sandia.gov, jpnoe@sandia.gov}

SAND XXXXXXXXXX

ASCI RED

CPLANT

Paragon

Red Storm

BlueGene

nCube, nCube-2 Los Lobos
BeoWulf

ICC/NWCC

Thunderbird

SP

Cray Vector

T3

?
CM-2

Whirlwind•Stretch•BBN•ETA•Alliant•Elexsi•MasPar•Convex •Kendall Square•CDC•Cray 3•…

Figure �: Systems from a Sandian’s Perspective

Figure 2: ASCI Red, Installed 0�997

SAND2007-2904C

�

or Peta-d’oh’s. One of the motivations for this paper, and one of
the missions for organizations like CUG and LCI, is to reduce the
number of wasted human cycles in building ever-more-compli-
cated systems.

But, lest we get too optimistic, let’s consider the following
four very different pictures. Figure 2 shows ASCI Red. Red was
notable for several reasons. It successfully deployed a Lightweight
Kernel on compute nodes called Cougar. Cougar descended from
SUNMOS — the Sandia/UNM OS — that ran on the nCube, and
which became PUMA on the Paragon. Red also had an inte-
grated service (RAS) network that provided for system health
and maintenance checks for all nodes. The RAS design on Red
influenced both CPLANT and Red Storm. Finally, Red provided
a simple mechanism to switch compute nodes from Unclassified
to Classified processing and back gain. This red/black switching
procedure allows Sandia to deploy capability computing on either
network by sharing the compute partitions. The cost is relatively
low: additional service and I/O nodes, and a mechanism for the
switch. The duplicated I/O partitions have an additional benefit
to operations, as well as a cost. The benefit is that during major
upgrades, you can keep a portion of the system in production
while other portions are being worked. Add to terms like scal-

ability, reliability, and operability another: versatility. The cost, of
course, is the overhead of maintaining two installations. In that
sense, Red Storm is like having twins.

Figure 3 shows the end of ASCI Red. Red was #1 on the Top
500 list for 3.5 years; 7 lists! Red was decommissioned last year,
not because it wasn’t useful, but because we could no longer af-
ford to keep it running. When it was turned off, there were still
jobs on the mesh and more jobs in the queue. ASCI Red served
production cycles for over 9 years from its initial operation until
its retirement. That’s a long time in supercomputer years! Of
course there were upgrades along the way which took advantage
of the rapid pace of technology maturation. Processors, memory,
network interconnect, and disk storage were all upgraded.

The Clock of the Long Now

Figure 4 shows a prototype of the Clock of the Long Now — an
attempt to build a computer, and a very engineered artifact — that
will continue to deliver cycles and be both maintainable and
understandable for 10,000 years [4]. The cuckoo did come out
the first time, seven years ago, and the clock struck twice: once
for each millennium c.e. You might also be interested in Brian
Eno’s study of the bells for the clock; they are based on a 10-digit
permutation so that each day the clock will sound a unique bell
sequence! Of course, that sequence will eventually wrap around,
in a bit over 10,000 years.

The Tacoma Narrows Bridge

Figure 5 shows the Tacoma Narrows Bridge, or “Galloping Gertie”.
Bridge builders have had a history of building new structures that
creatively used new materials and new designs that pushed the
envelope of bridge engineering. Just as regularly, on a well-docu-
mented 30-year cycle, bridges were built and collapsed. This cycle
was originally noticed by Sibley, and is documented in Henry
Petroski’s “Engineers of Dreams” [12].

The amazing thing about the Tacoma Narrows Bridge is not
that it was built, or that it fell down, but that the original archi-
tecture was carefully studied and engineered, and then built even
when there were open questions about its stability. The width to

Figure 3: ASCI Red, 02006

Figure 5: Tacoma Narrow BridgeFigure 4: Clock of the Long Now

“I want to build a clock that ticks once a year. The century hand ad-
vances once every one hundred years, and the cuckoo comes out on the
millennium. I want the cuckoo to come out every millennium for the
next 10,000 years. If I hurry I should finish the clock in time to see the
cuckoo come out for the first time.”		

�

span ratio of the deck was 1:76, while the next most comparable
bridge (the Golden Gate) at the time had a width to length ratio
of 1:46.5. Tacoma Narrows was truly a “stretch goal”.

Bridges have a lot in common with supercomputers; they cost
a lot, take a long time to build, carry a lot of traffic, and are only
missed when they are gone. Like bridges, building a supercom-
puter often starts with a need and a vision. From those seeds
begins lengthy rounds of funding negotiations, politics, further
negotiations, and redesigns. Stretch goals and new technologies
often determine the design of the system. Finally, if the team is
lucky, the system is built and jobs start running.

Computer engineers tend not to lose the same number of
workmen to death, accident, or caisson disease as the bridge
builders, but we may lose the same number of systems in the end.
How many of our prototypes become commercially successful?
How many are maintainable very far into the future? And what
can we do to make our efforts more successful?

The role of disaster in engineering needs to be acknowledged.
Petroski, and many others, are far more articulate on this point
than time allows. Stretch goals always involve risk, and at the
edge of the known, the risk can be considerable. How then, can
we continue to stretch while mitigating the risks and avoiding
truly catastrophic disasters? “To boldly go where no one has gone
before,” to quote Gene Rodenberry.

To paraphrase Petroski (by substituting computers for bridges)
Must we thus expect, if not allow, a bridge (supercomputer)
failure to occur now and then? The history and promise of
bridges (supercomputers) suggest that we must, for reasons
that have to do with neglect of the past and its relevance for
the future. Neglect of the past is often embodied in a short-
term historical memory, thinking, with hubris, that one’s
own generation’s engineering science and technology have
progressed so far beyond what they were a generation or two
earlier that the bridges (supercomputers) of one’s professional
progenitors, and even ones mentors, make pretty pictures but
not examples or models for modern engineering.

The Principles
Looking back over our past successes (and failures!), Sandia teams
have come up with the following principles for building reliable
platforms that can serve both today’s users and tomorrow’s de-
signs. These principles have been drawn from numerous systems,
including those mentioned in Figure 1. Naturally, our attention is
presently drawn to the most recent systems: Thunderbird and Red
Storm. Where possible, we have tried to frame the lessons so that
they might be memorable.

Seek First to Emulate
Learn from the past
Simulate the future

Learn from the past
This first principle is a restatement of Petroski’s arguments for the
use of historical precedent in the
design of new structures. It was
phrased succinctly in a quote by
John Guale:

 “A complex system that works
is invariably found to have
evolved from a simple system
that works.”

Both Thunderbird and Red
Storm are complex systems
evolved from simpler systems.
Thunderbird, a 4,480 node
InfiniBand Linux Cluster from
Dell, is a straightforward exten-
sion of the Linux clusters that
came before. Its scale, and to
some extent the choices dictated
by budget and time frame posed the newer problems. The design
question that faced the Tbird team was not whether it could be
made to work, but how to get it to work efficiently at scale. This
was not a trivial problem; the system debuted at 38.27 TF, and
through system tuning and changes to the software stack it de-
livered 53 TF a year later. What is interesting about this result is
that TBird only managed to hold on to its #6 ranking, even with
a 38% speedup!

Simulate the Future

Red Storm is based on the architecture proven in ASCI Red. In
fact, a design goal of the Red Storm team was to ensure that ap-
plications which ran on Red would run on Red Storm with only
a recompile. Red Storm has many differences: including a richer
mesh, more complex I/O systems, and a new interconnect. Yet the
basic architecture of the MPP remains constant. This architecture
has since propagated into 16 other sites and almost 30 systems
around the world, of varying sizes and interconnect topologies.

Looking forward, it will also be important to emulate in sense
of computer architectures: we need to spend more time simulat-
ing new architectures in order to build larger machines that have
well-understood characteristics. With technology moving as
fast as it is, there’s little time available to figure out how a sys-
tem works after it has been built. Once operational, the clock of

•
•

Red Storm Thunderbird
Stance Red + Black Black
Service Nodes 320 + 320
Compute Nodes 12,960 4,480
Compute Cores 25,960 8,960
Segments 3360/6240/3360
Interconnect SeaStar Mesh Infiniband
Disk 170TB + 170TB 46TB + 420TB shared
OS Linux + Catamount Linux

Figure 6: Red Storm 02006

Figure 7: Thunderbird

�

obsolescence is ticking. Simulation, at all scales, is a partial view
that can help to predict the behavior of the system before (and as)
it is constructed. Work at Sandia looks at simulation both at the
hardware [15] and software levels [13], enabling design teams to
test alternative designs efficiently and with low cost.

The big bang only worked once�

Nobody ever builds just one system, even when deploying
just one system
Globalize agility; localize fragility
Deploy test platforms early and often
Only dead systems never change

Nobody ever builds just one system

The nice thing about the big bang is that you only have to accom-
plish it once, and then the Universe is up and running. There is
no such luck with large systems. Even when they are ostensibly
off-the-shelf, each installation ends up with unique requirements.
On top of that, as long as the software or hardware is improving,
you will end up rebuilding the system.

This fact has several important implications. First, the admin-
istrator, will end up reconfiguring and reinstalling software. Any
process that is time-consuming, awkward, or error prone once,
will over time, become totally unwieldy. Error prone processes are
especially disastrous in this situation, since the rebuild process is
almost always executed under stress.

Second, any configuration process should support some
form of consistency checking. All systems have some basic rules
for configuration; being able to validate a configuration against
those rules insures against some forms of error. During the early
bring-up of Los Lobos, the management tool provided was XCAT.
XCAT drove off a set of flat text files, but there was notion of
consistency checking. It was easy to change one file, not change
another, and induce a mysterious failure.

In the absence of consistency checking, one can instead adopt
something like “pair programming” for system administration.
One of the major effects of pair programming is that the code
being written is undergoing immediate and constant review. This
technique can easily be applied to system administration, if only
the system administrators could be convinced to adopt it. The
problem, though, is that consistency checking should be both au-
tomated and on-line so that any errors are recognized in real-time.

Third, some form of revision control over configurations is re-
quired, both for debugging and for disaster recovery. And fourth,
there needs to be some form of regression testing after each con-
figuration change, just to find the places where things break.

The authors continue to be amazed at the optimism of design-
ers who expect to build a system (once) and have it work pretty
much out of the box. Hardware designers are good at prototypes.
The Clock of the Long Now is on its third working prototype, but
then they have a schedule that allows time to learn. Software de-
velopers know what it means to see a prototype crash. In fact, you
might claim that the software developers only have prototypes!

“Globalize Agility; Localize Fragility”

This quote comes from Tom Hunter, the President of Sandia. It
certainly applies to the creation and deployment of large systems!

�	 Once in theory, for this Universe.

•

•
•
•

For starters, its hard to predict just how the system will work.
It is harder, still, to predict just how the system will be configured
when it is broken, or during an upgrade, or whenever. Building
systems that can run fast, but still be effectively understood and
debugged, is still an art.

An example of globalizing agility comes from tools that are
built to handle non-uniform deployments. Many management
tools, for instance, will assume that every node in a cluster will
run the same kernel. Yet with specialized nodes, and occasion-
ally inconsistent driver sets, this is a very optimistic assumption.
Just because you can run different kernels doesn’t mean that you
should; inconsistency in large systems is our nemesis. However,
the conscientious admin will always want the capability to change
a kernel sometimes.

Deploy test platforms early and often

Test platforms allow for many activities, both before the main
system is delivered and after. ASCI Red had numerous supporting
systems used for software test and checkout, configuration testing,
and application support. These activities are often mutually exclu-
sive: its really hard to test a new scheduler configuration when the
system software team is trying out the latest kernel, and the appli-
cation teams get side-swiped in either case. Hardware testing, and
testing at ‘semi-scale’ are also important. Teams are now focussing
on Petascale systems and beyond; but as operations people we’d
recommend starting smaller — say only 100 TF!

Test platforms give you space to run those regression tests
mentioned above, as well as the place to develop, tune, and aug-
ment the regression testing. Right now, on Red Storm, much of
our regression testing is by hand. Thunderbird, on the other hand,
uses a more automatic testing model, especially when repairing
hardware nodes.

Only dead systems never change

Once you do get it working, and running, and in production,
what comes next? With Red Storm its a software upgrade, or a
hardware upgrade, or an expansion. Sometimes you get all three,
simultaneously. This implies that the operations team has to start
all over again, using similar tools and techniques as the prior
round. Or, you might have reached a point where new tools and
techniques have to be invented.

For Red Storm, this happened when the system was upgraded
from 41 TF to 124 TF. New dual-core processors replaced the
single-cores. New networking hardware required a software
upgrade. A fifth row was added. The system became twice as fast
injecting packets into the mesh. The Lustre file systems grew to
use all available I/O disk nodes. Same system? Same paint, though.

Only after the initial sanity tests did a deep problem surface:
the I/O was stumbling due to networking issues. It took Cray and
Sandia several weeks to discover that the original routing algo-
rithms were no longer sufficient for the speed and volume of data
being passed. Part of that time went into developing new tools to
access deep data previously hidden in the system, including some
very handy traffic counters. Access to those counters is now avail-
able for all XT administrators.

The new tools deployed as a result of this marathon debug-
ging session remind us that systems have to grow smarter as they
continue to operate. Systems learn because administrators and

�

vendors continually add bits of code to ensure that, once recog-
nized, problems and responses are not forgotten. A fundamental
reason for architecting malleability into a system is to make it as
simple as possible for this kind adaptation to take place. Building
extension mechanisms into the software means that the learning
can occur, and acts as a reminder that no one person or organiza-
tion can ultimately predict all of the useful ways that the system
might be used (or might fail!).

Moral: be prepared. When change ceases to happen, your sys-
tem is ready for its next phase.

Build descalable scalable systems
Don’t forget that you have to get it running first
Build scaffolding that meets the structure
Leave the support structures (even non-scalable ones) in
working condition

Don’t forget that you have to get it running first

Scalability is a key to building systems like the largest clusters,
or Purple, or Red Storm. It is also an elusive feature. At 100,000
components, a minor variation may be enough to trigger an im-
balance. Moreover, any statistical argument will rapidly be stress
tested due to the large numbers of events in the system. Once in a
thousand years for a single component failure translates to once a
month for Red Storm.

Conscientious designers, focussed on stretch goals, will com-
promise operability for scalability. Without a focus on scalability,
the full system will not be scalable. While one must design for
absolute speed, efficiency, and scalability, if you don’t also build in
structures that allow you to test, inspect, debug, and reconfigure
the system, that day of full-scale, flat-out production gets post-
poned. And postponed again. We must find ways to build systems
that can be “gracefully descaled” when the ultimately scalable
solution falls over. Its also necessary to make sure that the descal-
ing will work when needed.

In the quest for ever faster HPC systems, it is easy to rational-
ize away many intrusive debugging structures in the quest for
absolute efficiency. Sandia’s approach to MPP systems exacerbates
the problem because Sandia deeply believes that less is more,
especially when it comes to the amount of code in the main line.
In return, it is common to assume that hardware and lower layers
will work as specified.

What happens when the lower levels fail? At that point, one
needs to have had all of those hooks installed so that we can turn
back on the debugging code that was probably needed in the first
place. And if there’s a timing condition, and a dreaded Heisenbug
appears, then one gets new insight as well.

The difficulty with building a scalable system is that you can
so easily break the scaling aspects. For example, a minor piece of
code that works well for small numbers of processors can affect
the scalability of the application for large numbers of processors.
Such failures typically appear as the system size increases by a
power of two plus 1 (2N+1).

Tom Gardiner, one of the Cray computational scientists work-
ing on Red Storm, uncovered the following behavior with Alegra,
a Sandia-written application for computing magneto-hydrody-
namics. The code scaled well out to about 8000 processors, but
around 8000 processors there was a sharp drop in efficiency. The

•
•
•

Alegra team rounded up all the usual suspects: I/O, MPI collec-
tives, etc. But as one of my collaborators would say, “Blessed are
they who read the code.” Tom found a piece of debugging code
that was properly wrapped in conditional compilation directives
everywhere except in the MPI rank 0 node. Rank 0 would oblig-
ingly pause and poll each process in the job, not once, but twice,
for debugging output. The other nodes, of course, had no data
to report. At 8,000 processes, that quick check would put rank 0
several seconds behind the rest of the processes.

Assumptions about global knowledge or behavior can also
affect the scalability of the system, as can any built-in constants.
Linear lookups and O(n3) algorithms hurt!

Build scaffolding that meets the structure

Two key questions before any acquisition are:
Is the build/test/benchmark infrastructure in place first?
Will it effectively support the installation team, the users,
and operations?

The scaffolding that you need to support debug and test needs
to meet both internal and external requirements. The internal
requirement is the need to debug in terms of the inherent design
abstractions and functions. This may seem obvious, but quite
often the development and debugging teams end up on hardware
or software that is not the same as the production system.

Externally, the scaffolding needs to meet the constraints of the
operational environment. For example, it may not be possible to
perform all debugging on an unloaded system. Or it may be nec-
essary to allow multiple workers onto a single system. The early
Cray XT systems had a very strong design constraint of only hav-
ing a single software install on a single hardware installation. This
complicated life both for developers (whose install gets used?)
and for debugging (how to install a different release for a day?).
Cray software is becoming more flexible in this regard.

Until recently, though, it was difficult to divvy up a single XT3
cabinet for multiple users, a capability that the initial lab systems
provided, but that the production systems have lost. This turns
out as a good example of useful scaffolding that has fallen into
disrepair.

Leave the support structures in working condition

Of course, there are many examples of bit rot that we can all cite;
code not exercised is always buggy. Support code, when not ex-
ecuted for long periods, will be the most out of compliance with
the current code base. This means that one should regularly test
the support code even though such code maintenance appears to
be overhead. Programmers are at heart optimists. Support code is
(or should be) dead code, after all.

You’ll need to debug someday.
Like yesterday.

Make the lights green, then recheck the connections
Software reports reality as it sees it
Parallel tools for parallel systems

Software reports reality as it sees it

Software systems that rely on a single, internal, coherent view of
their world are doomed to failure. For example, how many of you
would volunteer to administer a file system without the equiva-

•
•

•
•

�

lent of fsck? But how many of us have been delivered tools that
assume that their internal structures are correct, consistent, and
which can’t be compared to the existing system?

One of the key aspects of Jim Laros’ work on management sys-
tems [20] is that the software is always capable of three important
tasks:

It can explore the system to see what is out there, and make
that information part of the internal view. For example, Red
Storm’s disk management tool can map the controllers and
determine attributes like model numbers and firmware
levels that can become part of the tool’s data base.
It can make the system reflect its internal view. The same
disk tool can be used to update firmware revisions by in
order to make the controllers reflect the internal data.
It can also provide us with a comparison of the internal
structures and the external reality.

These are not wishful goals; they are the bedrock of managing
and debugging a system that consists of many more components
than human operators can recall. Yet, why do we trust the soft-
ware? For that matter, why do we trust the hardware? As voltages
lower, and as chips become denser, the probability (inevitability?)
of soft logic errors increases.

One firm recommendation is that any software that maintains
state about an operational system needs a way to compare that
state to the current situation, and have ways to recover when the
view diverge. It will also be important to provide online/real-time
consistency checking.

Parallel tools for parallel systems

Engineers of parallel systems sometimes neglect to use parallel-
ism themselves. For example, Red Storm has an integrated RAS
network that is powered by network of embedded Linux proces-
sors: 3715 altogether in the Jumbo configuration. It is true that
this hierarchical network has a single root. But this is really no
different than a … Linux Cluster. It seems just right for exploiting
locality, multiprocessing, parallelism, and all sorts of well-known
techniques. Unfortunately, our experience has been that many
tools are designed to run on a single processor. Sometimes with
multiple threads, but still a single processor.

Version 1 of the Cray management tool for Red Storm was de-
livered with a simple facility to dump the state of the machine. It
uses the RAS network. Of course, when we needed it, the system
was in Jumbo mode: 10,368 compute nodes. System had crashed;
advice was to gather a dump. Our estimate was that it would have
taken over 3 days to complete the dump.

As a counter example, both Jim Laros and Ballance have writ-
ten libraries that fan out work to available processors in a Linux
Cluster. Jim’s was for CPlant, Ballance’s for Los Lobos. These
libraries make it simple to start a task on any node (and especially
on an admin node), and then use the power of the cluster to do
the work. Many others have written similar tools. These tech-
niques, together with an extreme focus on scalability, have to be
the cornerstone of any large machine.

Even Tiger Woods has a coach
Don’t assume you know/understand it all
Observers help
Never underestimate your blind spots

•

•

•

•
•
•

Don’t assume you know/understand it all

One of the issues with designing/building/running a large system
is that a complete understanding of all the pieces is beyond the
scope of any single individual, and possibly beyond the scope of
many teams. System interactions can be as small as the electron
level within a chip or cable, and as large as the local power grid
or an ensemble of 12,000 nodes. Simple, replicated components
make this easier. Complexity is a cost.

A good end-to-end example is the I/O subsystem in Red Storm,
which involves Lustre file systems with 161 Linux-based servers,
41 raid controllers, fibers, and lots of moving disks. Being able
to trace a performance problem through the multiple layers, and
across the many sibling processes, requires the full attention of
many experts: CFS, Cray, DDN, OS specialists, and sometimes
even the routing experts.

During the upgrade of Red Storm to Version 2.1 SeaStar chips,
our test plan exposed a routing issue that had probably been
present in Red Storm from its first deployment. The growth of
the Lustre file systems, their distribution across the I/O sections,
and the new speed of the network exposed a routing failure that
resulted in extreme network congestion. It took several weeks of
intense effort, and two new routing algorithms, to iron out the
issues.

One of the good things about the distributed team was that
one member was working from England. The time zones were in
our favor: we could run tests and ship results during the daytime
in North America while that team member slept, and in return
the New Mexico team would awake to a new patch for testing and
logging.

Observers help

This effort also illustrates the second point: observers help. The
Red Storm project depends extensively on e-mail, e-mail lists, and
teleconferences. It was a newcomer to a teleconference who sug-
gested the definitive test which isolated the routing problem.

Another excellent example of openness has been the ongoing
series of Red Storm Quarterly meetings. These meetings started
as a way to communicate about the project and design to its
stakeholders. Along the way, it has also grown to include prospec-
tive owners and operators of XT systems. Today, CUG and other
groups are taking over this communication arena. But at the onset
of the project, it served us well to expose the designs and to pub-
licly discuss the issues and the trade-offs.

Transparency of process is important: the open source move-
ment has long held this as an axiom. This is true not only of code,
but hardware and system design. The rise of Web 2.0 augments
this process by providing tools to support distributed collabora-
tive relationships. Right now, the tools are available; and many
teams use them both for code development and systems opera-
tions. The capacity management teams at Sandia are a good
example; using Jabber and Trac, they have moved most of their
configuration management discussions into Web 2.0. What we
need, though, are for the vendors to open up their own processes
into similar forums.

Never underestimate your blind spots

Declan Rieb of Sandia calls this “Playing with mental blocks.”

7

Blind spots are the inverse of the false positives of the green
lights; you can’t see, or reason about, what you aren’t measuring.
Even when you collect data, it takes careful analysis — visual and
statistical — to draw the conclusions. In a sense, we are asking of
systems the same questions that were defi ned by Kaplan and Gar-
rick [9] for any risk analysis situation:

 What can go wrong?
 How likely is it to happen?
 What are the consequences?

 Let’s add a fourth:

 How will we know it has happened?

 End-to-End arguments apply
 Within large systems
 Within teams

 Th e original phrasing of the end-to-end argument had to do with
the placement of functions in a network. Simply stated, the end-
to-end argument states that one should not build into the network
core any functionality that cannot be completely implemented
within the network [5].

 End-to-end arguments are similar to the arguments for RISC:
building a complex function into a network implicitly optimizes
the network for one set of uses while substantially increasing the
cost of a set of potentially valuable uses that may be unknown
or unpredictable at design time. Reducing the complexity of the
core allows for future fl exibility while reducing cost. Th e general-
ity in the network that comes from avoiding over commitment to
a specifi c set of functions allows for new solutions to arise. And
applications don’t have to rely upon, or work around, complicated
core structures that are themselves potentially unreliable.

 End to end arguments do not imply a blind allegiance to
placement dogma, but to a careful consideration of the impacts of
placing functionality within a network.

 Within large systems

 Is a supercomputer a network? No doubt.
 Another example from Red Storm: complication and infl ex-

ibility in the core. We’ve recently had the experience of being
fl ooded by error messages when a component in the system fails.
In our case, it was triggered by Lustre. Th e fl ood can easily create

•
•
•

•
•

millions of messages and gigabytes of output. Cray’s initial imple-
mentation had the following characteristics:

 No way to throttle messages; all or none
 No way to tune the message handling

 Th e end-to-end placement failed in each direction. What could
have been core network functionality (fl ow control of log mes-
sages) was not present in the network core. What could have been
edge-defi ned behavior (message selection and processing activi-
ties) was implemented in the core, and so we could not adequately
infl uence the behavior of the system.

Within teams

 Does the team working on a supercomputer comprise a network?
It does, and the management of the communications in the
network is a worthy study. Review your communications mecha-
nisms, and also the role of each individual in the overall commu-
nications. Revisit your own role. (Play with those mental blocks:
see below) Does your team’s communications infrastructure
support their tasks and interaction styles? Does everyone have
access to necessary information sources? Multi-hundred Gigabyte
log fi les transmit slowly over the Net. Decisions can bottleneck at
the decider.

 Successful technology transitions require people transforma-
tions

 Have you ever tried to teach your spouse or your parents to use
PC, or a cell phone, a Palm, Blackberry, or even a VCR?

 Jared Diamond, in Guns, Germs, and Steel [7] points out many
times in the history of humanity that groups have successfully ad-
opted a new technology, and other times when technologies were
rejected. An example of the fi rst was the adoption of horses by
the Native Americans. Horses came from the Old World via the
Spanish, but within a century their use, and their care, had spread
throughout the West. Th eir owners changed in the process of
course: they learned to ride and fi ght on horseback; they learned
to care for large domesticated animals; they survived and devel-
oped immunities to new diseases.

 Conversely, guns spread to Japan in 01453 ce, but aft er 01600
fi rearms were systematically rejected by the ruling Samurai class.
Th e culture reverted to a gun-free society until 01853.

 Closer to home, Sandia experienced some of the same issues
in exporting the ASCI Red architecture to Cray. Overall, the
transfer was successful, but turbulent. We might have improved
the transfer process by fi nding ways to draw the communities into
closer contact, up to and including co-locating some of the ASCI
Red veterans with the design teams at Cray. Th is strategy worked
well at Bell Labs in the 01970’s when experienced telephone
switching center operators were brought into the development
teams in order to infuse the No. 1ESS project with a perspective
for operations.

 With any new technology, it is easy to transfer the physical or
digital artifacts. What’s hard to transfer is the insight and under-
standing of how to best use the new tools. Th is where the sensei
arrives. Th ere are several useful roles that need to be fi lled:

 Philosophers understand the end-to-end issues, the func-
tioning of the big system, and where a specifi c subsystem
fi ts in. Several of those Bell Telephone advisors stayed on
with the project for many years, Several of them remained

•
•

•
OperationsOperationsOperations

End
Users

App
DevelopersSystem

Builders
DevelopersDevelopers

System
Software

Build

Run

Systems Applications

Figure 8: The Role of Operations

“Th e most important benefi t of the end to end arguments is that they
preserve the fl exibility, generality, and the openness of the Internet.” [5]

�

with the project for multiple generations of designers, and
ended up as senior architect-philosophers.
Historians understand how the previous system evolved,
and can cite not just the working solutions, but the dead
ends involved. Evolution, after all, proceeds by exploration.
All those dead ends are interesting, sometimes as points to
avoid, and sometimes as starting places when the technol-
ogy changes and makes an old approach viable once more.
Tilt meters (another phrase owed to Michael Levine of PSC)
are the canaries in the coal mines. However, their goal is
not to die, but to say “What?”. They are continually compar-
ing the evolving design of a system against its goals, and try
to ensure that the path to success remains open. A single
person can, of course, fulfill many of these roles.

If there is a theme in these comments, it is that the architect must
understand the end-to-end issues in the system, and communi-
cate those issues to the specialists who are building components.
Understanding the end-to-end issues depends on experience
with prior systems, and depends as well on the ability to forecast
behavior as systems scale to previously untested sizes.

Begin with the End in Mind

“Beginning with the end in mind’’ is the only viable approach to
system design and deployment at this level.

The cast of contributors to developing any new high-end
system is shown in Figure 8. Five groups of “personality types’’ ap-
pear. A sixth category, the funding officers and agencies, does not
appear directly on this map. Like all maps, this one simplifies in
order to make a point. In reality, many individuals migrate among
the quadrants or play different roles within their career. In some
ways, these categories correspond to “actors” in object-oriented
design [6].

System builders are drawn from computer scientists, com-
puter engineers, and system architects. This group lives to
build new, innovative, and much-needed systems.
System software and library implementors are drawn largely
from the same backgrounds as the builders. As a group,
they implement the lower-level software required by ap-
plications. Many of the people included in this category are
trained software developers.
Application developers, unlike the system software devel-
opers, tend to have a strong scientific focus, with skills in
software development derived from practice rather than
extensive training. They also overlap with the end user seg-
ment of the population.
End users actually use the high-end systems to achieve
their goals. End users value predictable systems, job
throughput, high operation rates, memory bandwidth, and
high-bandwidth, low-latency networks. To the degree that
they are also application developers, they also value ease of
programming. However, not all end-users are application
developers; many are users of applications developed by
other groups.
System operators and engineers get to make it all work.
Sometimes, as with vendor-supported systems, they have
the help of the vendor. Other times, as with commodity
clusters, they have only their community of like-minded
system administrators. They are the first to hear about and

•

•

•

•

•

•

•

deal with user confusion and user dissatisfaction, and often
are driven to create the tools they need to keep a system
operational and in production.

High-end system development typically proceeds clockwise,
beginning with the system builders. By the time an implementa-
tion reaches the lower half of the diagram, many design decisions
are irrevocable and many resources are already committed. By the
time the system reaches operations we are down to Perl scripts,
SNMP, human ingenuity, and the (tested) good will of the system
administrators.

But what does this development model imply for a system on
which an application can run reliably, for long periods of time, on
hardware that has intermittent failures or interrupted service? The
application is now running far longer than the system will remain
up; and might generate more data than can be stored locally.
How do you manage this application? How can you manage the
hardware? What does it mean for high-end computing to become
a utility?

Operations are going to see it all in any case. The advantage to
having operations involved from the start is that they often have
the skills, tools, and stamina to travel over rough terrain to figure
out the right direction of travel. In other words, they’re like scouts
for the army. Send them out early, and maybe they can help the
army to assess its position, understand its terrain, and perhaps
even be successful without a major battle (in this case, with the
end users!)

Operability, like scalability, is not a feature that can be added to
a system after it is designed.

Mind the Long Term

How is it possible to think about the long-term, when the lifetime
of a system is only a few years? Is it worthwhile? Is it possible? The
next big system is not, after all, the Clock of the Long Now.

Our limits to our vision come from three sources. First, it
always seems like a miracle that the bridge will be built at all, es-
pecially given funding constraints and organization politics! The
work of getting the system into place can be overwhelming. Red
Storm had a several year deployment, starting from drafting the
RFC to the transition to General Availability. Thunderbird, on the

THE HONORARY AWARD (Statuette). This award
shall be given to honor extraordinary distinction in
lifetime achievement, exceptional contributions to
the state of motion picture arts and sciences, or for
outstanding service to the Academy. [1]

What is the Apgar score?

“One minute — and again five minutes — after your baby is born, doc-
tors calculate his Apgar score to see how he’s doing. It’s a simple process
that helps determine whether your newborn is ready to meet the world
without additional medical assistance.

This score — developed by anesthesiologist Virginia Apgar in 1952 and
now used in modern hospitals worldwide — rates a baby’s appearance,
pulse, responsiveness, muscle activity, and breathing with a number be-
tween zero and 2 (2 being the strongest rating). The numbers are totaled,
and 10 is considered a perfect score.”	 [2]

�

other hand, provided no time to plan; it was all execution. From
conception to first slap was about 6 months!

Second, teams don’t build enough systems to get it right. Fred
Brooks in the Mythical Man Month [3] has a wonderful comment
about the third system being the right one; the first system is all
learning, and then second time around the designer tries out all
the stuff that got thrown out of the first.

Third, we focus so hard on design-order-build-install-run
(5-4-3-2-LINPACK)! that the lifetime of useful service is hard to
envision. Yet, it is during that post-HPCC phase that the effort
continues, and the real work of HPC gets completed.

HPL-LINPACK, after all, is like an Apgar score. The Apgar is a
simple triage to ascertain the level of care required by a newborn
human. It is a really important number for about 24 hours. The
HPCC suite improves the situation by incorporating more factors,
but it is still primarily a birth-time assessment.

What is needed is a score less like the Apgar and more like an
Academy Awards Lifetime Achievement: some set of numbers
that will summarize the total productivity, usefulness, and costs of
a system over its lifetime.

NERSC has a candidate in their ESP benchmark [11,16]. This
benchmark “is designed to evaluate systems for overall effective-
ness, independent of processor performance. The ESP test suite
simulates ‘a day in the life of an MPP’ by measuring total system
utilization. Results take into account both hardware (PE, memory,
disk) and system software performance.”

The problem is to generalize from a day to a lifetime; this is left
as a goal for one of you. What is the measure of a machine over its
lifetime? Does it have a progressive solution (e.g. first 6 months,
year, two years, ...) And if you solve this, how do you get the ven-
dors to start measuring it?

Closing
To restate the primary lessons:

Seek first to emulate
The big bang only worked once
Build descalable scalable systems
Make the lights green, then recheck the connections
Even Tiger Woods has a coach
End-to-end arguments apply
Successful technology transitions require people transfor-
mations
Begin with the end in mind
Mind the long term

The design principles for the Clock of the Long Now [4] prove to
be excellent guidelines for building large systems as well. Briefly
stated they are:

Longevity: Display the correct time for ten millennia
Maintainability: with Bronze-age technology if need be.
Transparency: obvious operational principles.
Evolvability: improvable over time.
Scalability: the same design should work from tabletop to
monument size.

All worthy goals — suitably re-framed — for the next Petaflop
system!

•
•
•
•
•
•
•

•
•

•
•
•
•
•

Acknowledgements
This paper could not have been contemplated without the op-
portunities afforded us to build, learn, reflect, and build again.
Discussions and examples have been drawn from many conversa-
tions, and several employers.

Special thanks to Ron Brightwell, Bill Camp, Sophia Corwell,
Michael Hannah, Tram Hudson, Steve Johnson, Sue Kelly, Ruth
Klundt, Jim Laros, Rob Leland, Geoff McGirt,John Naegle, Kevin
Pedretti, Rolf Riesen, Jon Stearley, Jim Sundet, Jim Tomkins, John
Van Dyke, and Lee Ward for their insights, their stories, and their
often elegant turns of phrase. Bob Ballance would also like to
acknowledge Joe Davison, Frank Gilfeather, Barney Maccabe, Mi-
chael Mahon, Brian Smith, and Michael Van De Vanter for many
fruitful interactions.

Finally, thanks to all the system administrators who are keep-
ing them all running, even as we speak.

References and Readings
Academy Awards Web Site 2007, http://www.oscars.org/
78academyawards/rules/index.html
BabyCenter.com, http://www.babycenter.com/refcap/3074.
html
Brooks, Frederick P., The mythical man-month: essays on soft-
ware engineering, 20th anniversary edition, Addison-Wesley,
01995
Brand, Stewart, The clock of the long now, Basic Books, 01999
Clark, David D., Blumenthal, Marjory S, “Rethinking the
design of the Internet: the end-to-end arguments vs. the brave
new world,” ACM Transactions on Internet Technology (TOIT)
Volume 1, Issue 1, pages 70–109, August 02001.
Cooper, Alan, The inmates are running the asylum, Sams Press,
02004.
Diamond, Jared, Guns, germs, and steel: The fates of human
societies, W. W. Norton & Company, 01999.
Hillis, Danny, “The Millennium Clock,” Wired Magazine,
01995 “Scenarios” issue.
Kaplan, Stanley, and Garrick, John B., “On the quantitative
definition of risk,” Risk Analysis, 1(1), 01981, pp 11–27.
Laros, James H, The Cluster Integration Toolkit, http://www.
cs.sandia.gov/cit
NERSC ESP Website, http://www.nersc.gov/projects/esp.php
Petroski, Henry, Engineers of dreams: great bridge builders and
the spanning of America, Alfred A. Knopf, 01995.
 Riesen,Rolf , “A hybrid MPI simulator”, IEEE International
Conference on Cluster Computing (CLUSTER’06), 02006.
Saltzer, J. H., Reed, D. P. and Clark, D. D., “End-to-End argu-
ments in system design,” ACM Transactions on Computer
Systems, pages 277–288, 01984
Underwood, Keith D., Levenhagen, Michael, and Rodrigues,
Arun, “Simulating Red Storm: challenges and successes in
building a system Simulation,” Proc. International Parallel and
Distributed Processing, March 02007, IEEE
Wong, Adrian T., et al, “ESP: A system utilization benchmark,
Supercomputing 2000.

1.

�.

3.

4.
5.

6.

7.

8.

9.

10.

11.
1�.

13.

14.

15.

16.

