
LogJAMM: Logs are Just Another
Monitoring Mechanism

Centrally logging Linux, UNIX and
Windows machines

June 11, 2007

Paul Sery
System Administrator

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE­AC04­94AL85000.

The acknowledgement statement MUST be used on the title slide
of all presentation material distributed outside of Sandia.

SAND2007-2691C

• Do the normal things
– transmit logs to central location
– archive the logs
– analyze the logs
– use for forensics when necessary

• But add the system administrator to the mix
– they're most familiar with their systems
– our human intrusion detection system (IDS)
– many eyes instead of a few

• Why do this?

Taking a slightly different approach to
centralized logging

Is the read bit set on /var/log files?
• We don't expect users to read their logs
• But system administrators should
• Do they?
• I don’t think I want to know the answer
• Example: our client SSL certificate expired:

– client can't connect to server
– it tries to reconnect every 10 seconds
– thousands of log messages piled up on clients
– my email address was in each message!

• I didn't get a single complaint or query

Is the read bit set for /var/log files?

• This is not really a surprising result
• reading logs is a boring, mind numbing process
• easy to forget
• easy to ignore
• easy to miss important events in the clutter

What's the solution?

• IMHO there is no solution
• There’s no silver bullet so we need to do what's possible:

– gather data
– provide better tools
– encourage sys admins to read and analyze their data
– incrementally improve out capabilities with time & experience

• Thus, a central logging system:
– centralize log data collection
– make it easier to read logs
– make it easier to analyze logs
– create automated analysis systems
– research advanced techniques

Central Logging System overview

• The remaining slides describe the
– system architecture overview
– query and analysis system
– future

System architecture

• Simple client­server configuration
– similar to examples found at

www.campin.net/newlogcheck.html
• Clients sends encrypted log data to server

– optionally send unencrypted via TCP or UDP
• Server collects and stores data
• Analysis machine

– downloads from server(s)
– crunches data
– makes available to system administrators

Query and Analysis System

• Designed for System Administrators
– System administrators have lots of jobs to do and little

time to perform them
– our job is to make their job easier
– help them to consistently and thoroughly review logs

• To do this:
– remove need to log into individual machines
– remove need to sift through repetitive log data
– create tools for finding new and different events

• Use system administrators as our de­facto IDS

System Administrator tools

• Accessed through a web page
• Provides query/analysis tools
• Access limited to the designated sys admin

Raw and Normalized Logs

• Raw logs contain all information

• Homogenized logs have variable information stripped

– replace numbers with a token

– replace random identifiers with a token

Query Tools

• Search raw or normalized logs
• Use:

– regular expressions
– self­generated indexes (tokens)
– Fourier Transform­based filters
– to find differences and new, never before seen events
– local versus remote log differences

• Optionally e­mail normalized logs, diffs, new stuff
• Optionally e­mail real­time events

Raw Logs

• Use the web page to look at your raw logs
– don’t have to interactively log into each machine,
– or write your own scripts
– display by machine, date, facility and priority
– you can also do text searches

• One­stop­shopping makes reading logs easier

Raw log example

• Mar 26 04:10:01 xyz crond[13283]: (root) CMD (/usr/lib/sa/sa1 1 1)
• Mar 26 04:20:01 xyz crond[13295]: (root) CMD (/usr/lib/sa/sa1 1 1)
• Mar 26 04:22:01 xyz crond[13298]: (root) CMD (run­parts /etc/cron.weekly)
• Mar 26 04:24:45 xyz anacron[1766]: Updated timestamp for job `cron.weekly' to 2006­03­26
• Mar 26 04:30:01 xyz crond[1770]: (root) CMD (/usr/lib/sa/sa1 1 1)
• Mar 26 04:40:01 xyz crond[1774]: (root) CMD (/usr/lib/sa/sa1 1 1)
• Mar 26 04:50:01 xyz crond[1778]: (root) CMD (/usr/lib/sa/sa1 1 1)
• Mar 26 05:00:01 xyz crond[1858]: (root) CMD (/usr/lib/sa/sa1 1 1)
• Mar 26 05:01:01 xyz crond[1881]: (root) CMD (run­parts /etc/cron.hourly)
• Mar 26 05:10:01 xyz crond[1993]: (root) CMD (/usr/lib/sa/sa1 1 1)
• Mar 26 05:20:01 xyz crond[1997]: (root) CMD (/usr/lib/sa/sa1 1 1)
• Mar 26 05:30:01 xyz crond[2001]: (root) CMD (/usr/lib/sa/sa1 1 1)
• Mar 26 05:40:01 xyz crond[2006]: (root) CMD (/usr/lib/sa/sa1 1 1)
• Mar 26 05:50:01 xyz crond[2010]: (root) CMD (/usr/lib/sa/sa1 1 1)
• Mar 26 06:00:01 xyz crond[2024]: (root) CMD (/usr/lib/sa/sa1 1 1)
• Mar 26 06:01:01 xyz crond[2027]: (root) CMD (run­parts /etc/cron.hourly)
• Mar 26 06:10:01 xyz crond[2030]: (root) CMD (/usr/lib/sa/sa1 1 1)
• Mar 26 06:20:02 xyz crond[2034]: (root) CMD (/usr/lib/sa/sa1 1 1)

• and on, and on, page after page

Homogenized Logs

• Log messages contains static and variable information
– static: program name, message header, etc.
– variable: IP addresses, PIDS, etc.

• Removing variables reduces visual “noise”
– normalized logs are much easier to scan
– unusual events tend to stand out

• Normal computer logs can be tens to millions of lines per day
• Homogenizing drastically reduces total number of messages
• Several orders of magnitude in some cases
• Many messages are exactly alike once variables stripped

Homogenized Log Example 1

• Count normalized message
• 1 anacron: Updated timestamp for job cron.daily to ...­...­...
• 171 crond(pam_unix)[...]: session closed for user root
• 170 crond(pam_unix)[...]: session opened for user root by (uid=...)
• 144 crond: (root) CMD (/usr/lib/sa/sa...)
• 1 crond: (root) CMD (run­parts /etc/cron.daily)
• 23 crond: (root) CMD (run­parts /etc/cron.hourly)
• 341 crond: pam_krb...[...]: ccache dir: /tmp
• 341 crond: pam_krb...[...]: configured realm dce.sandia.gov
• 170 crond: pam_krb...[...]: no v... creds for user root, skipping session cleanup
• 170 crond: pam_krb...[...]: no v... creds for user root, skipping session setup
• 170 crond: pam_krb...[...]: pam_close_session returning ... (Success)
• 170 crond: pam_krb...[...]: pam_open_session returning ... (Success)
• 341 crond: pam_krb...[...]: renewable lifetime: ...
• 341 crond: pam_krb...[...]: ticket lifetime: ...
• 341 crond: pam_krb...[...]:...: /etc/v...srvtab
• 341 crond: pam_krb...[...]:...: forwardable not proxiable
• 341 crond: pam_krb...[...]:...: Kerberos ...
• 341 crond: pam_krb...[...]:...: no ignore_afs
• 341 crond: pam_krb...[...]:...: no krb..._convert
• 341 crond: pam_krb...[...]:...: user_check
• 341 crond: pam_krb...[...]:...: validate
• 341 crond: pam_krb...[...]:...: warn
• 5 rhnsd: running program /usr/sbin/rhn_check
• 1 sendmail:...: to=root, ctladdr=root (.../...), delay=...:...:..., xdelay=...:...:..., mailer=local, pri=..., dsn=..........., stat=Sent
• 14 ssl: ... connected from:...
• 9 ssl: VERIFY OK: depth=...,
• 14 syslog­ng[...]: Connection broken to AF_INET(...............:...), reopening in ... seconds

Homogenized versus Raw Logs

• Example 1 summarized over 4K messages
• But contained very little interesting information
• Many cron, sendmail, etc. jobs but not much else
• Must sift through a lot of clutter to determine that the
logs aren’t interesting

• How do you see a tree for the forest?

Normalized log example 2

• 185 crond(pam_unix)[...]: session closed for user root
• 184 crond(pam_unix)[...]: session opened for user root by (uid=...)
• 131 crond: (root) CMD (/usr/lib/sa/sa...)
• 1 crond: (root) CMD (/usr/local/sbin/CRONJOBS/normalize_messages.pl)
• 1 crond: (root) CMD (/usr/local/sbin/CRONJOBS/xfer_logs....sh)
• 21 crond: (root) CMD (/usr/sbin/ntpdate ­s IPADDR > /dev/null)
• 3 crond: (root) CMD (/usr/sbin/up...date ­u > /dev/null)
• 22 crond: (root) CMD (run­parts /etc/cron.hourly)
• 150 crond: pam_krb...[...]: ccache dir: /tmp
• 149 crond: pam_krb...[...]: configured realm dce.sandia.gov
• 184 crond: pam_krb...[...]: no v... creds for user root, skipping session cleanup
• 184 crond: pam_krb...[...]: no v... creds for user root, skipping session setup
• 74 crond: pam_krb...[...]: pam_close_session returning ... (Success)
• 74 crond: pam_krb...[...]: pam_open_session returning ... (Success)
• ...
• 1 httpd: [error] [client IP_ADDRESS] script not found or unable to stat: /var/www/cgi­bin/bash
• 1 httpd: [error] [client IP_ADDRESS] script not found or unable to stat: /var/www/cgi­bin/csh
• 1 httpd: [error] [client IP_ADDRESS] script not found or unable to stat: /var/www/cgi­bin/finger
• 1 httpd: [error] [client IP_ADDRESS] script not found or unable to stat: /var/www/cgi­bin/hamcards.cgi
• 1 httpd: [error] [client IP_ADDRESS] script not found or unable to stat: /var/www/cgi­bin/maillist.pl
• 1 httpd: [error] [client IP_ADDRESS] script not found or unable to stat: /var/www/cgi­bin/noN­exIstAnt_scriPt.lp
• 1 httpd: [error] [client IP_ADDRESS] script not found or unable to stat: /var/www/cgi­bin/nph­test­cgi
• 1 httpd: [error] [client IP_ADDRESS] script not found or unable to stat: /var/www/cgi­bin/postcard.pl

Normalized log example 2

• Example 2 clearly shows some interesting events
• Notice the script execution attempts!
• This is “script kiddie” stuff commonly seen by
Internet­facing web servers

• But this web server isn't facing the Internet!
• Turned out to be a standard security scan
• Spotting such events against the noisy background of
“raw” log events is difficult

Self­generated index searches

• Problem: how to find similar messages
– traditional solution: string or regex search
– but, to some extent, you first need to know what you're

looking for
– how do you search for “something like xyz”?

• Possible solution: use self­generated index searches
– create numeric indexes (tokens) from the log message
– convert words and phrases into numbers
– search for phrases numerically “close” to each other

Self­generated index searches

• Convert each letter into its ASCII equivalent
• For instance, abc = 304 and xyz = 373

– “I know my abc's by heart” = 2119
– “I know my xyz's by heart” = 2188
– The sentences differ numerically by about 3%

• Use the indexes to search for similar sentences
• Using regular expressions to do this is harder
• Normalized messages generated by the same program tend to group together

– for instance, failed ssh logins look like:
– sshd: Failed password for bob from ::ffff: IPADDR port ... ssh...
– use the index concept to search for similar events
– varying the index by 5% reveals messages like:
– sshd: Failed password for bobz from ::ffff: IPADDR port ... ssh...

Self­generated index searches

• Generate numeric indexes for the program name
– the first word in the message
– and the remaining words

• sshd: Failed password for bob from ::ffff: IP_ADDRESS port ... ssh...
– sshd: is the program index
– Failed is the first word index
– password for bob ... is the remainder index
– resulting indexes: 492, 581, 4813

• Using numeric indexes helps find both exact and similar events in the database
• Self­generated index searches
• Note: index searches of complex messages start to break down

– “I know my abc's by heart” = 2119
– “I don't know my xyz's very well” = 2835
– you might need to correlate such messages, but they differ by over 30%
– so far, it appears that 20% is the effective limit

Fourier Transform searches

• Think of a log message as a string of letters
– Convert the letters to their ASCII values
– Message can now be treated as a one­dimensional array (signal)
– Transform from pattern space to frequency domain using Fast Fourier Transform (FFT)
– Each message has a unique FFT signature
– Filter coefficients to search for similar messages

• Next step, use 2­d FFTs
– 1st dimension: Convert each word in a message into an index (see previous slides)
– 2nd dimension: one client per day
– We’ll get one signature per machine per day
– Possible alerts for unusual machine aggregate activity

• What else?
– Investigate other time periods, combinations
– Use super computers
– Investigate other transforms

• Truly useful? Stay tuned

Daily homogenized log e­mails

• Schedule daily e­mails of normalized logs
• Have your cup of coffee while reviewing yesterday's
“summarized” logs

• Quickly see what happened on your machines
• Simple, easily performed job
• We've been using it for over a year
• We find it to be a very effective tool

Real­time alerts

• Use the Simple Event Correlator (SEC) system
• SEC provides real­time syslog pattern matching that:

– searches individual events for patterns
– searches sequence of events for patterns
– specifies action to take when pattern matched

• To configure SEC:
– enter patterns for your machines via web page
– interactively search results or receive e­mails

Local versus Remote Log Comparisons

• Local and remote logs should match up
• Four reasons they won't:

– network trouble – logs don't get to the server
– race conditions – SSL latency drops initial messages
– server trouble – no server to save to
– hacker wipes logs!

• All reasons are interesting, but the last is what we're
looking for

Simple log comparison

• Checksum yesterday's local logs
• Transmit checksum to server via syslog­ng
• Server compares to its copy vs. client checksums
• Works but with a fair number of mismatches

– reasons #1­3 (from previous slide) can cause mismatch
• Right now too many false­positives
• Perhaps better syslog configuration will work better

– filter out SSL messages
– filter out non­locally logged messages such as rhnsd

Direct Log Comparisons

• Copy yesterday's logs to server
– server directly compares local vs remote
– differences stored in db and mailed to sysadmin
– small problems like SSL start­up latency are obvious
– so are big problems

• More difficult to setup than checksum method
– need cron job or daemon to transmit logs
– use more network resources
– most useful for secure servers
– voluntary for now

New, never before seen events

• Use normalized log db and self­generated indexes
• Compare today's events to all previous ones
• Record, display e­mail new events
• Hopefully, interesting trends and interesting events
will be evident

Future

• Anomaly detection
– use the Sisyphus machine­learning system
– use virus/spyware detection model (Cyber Defenders)
– obtain syslog intrusion database
– create normalized signatures
– compare to incoming logs in real­time

• Want to increase the number of clients
– the more data, the better

• Investigate other analysis tools

