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Introduction - WHA

Local failure modes
•Shear bands
•Fracture at grain-grain  & matrix-
grain interface

Single crystal ballistic tests suggest important role of texture

WHA =
Tunsten (W) Heavy Alloy

17.8 g/cm3

93%W

tungsten crystals

tungsten-nickel-iron matrix

EBSD:  Tony Rollett (CMU)



Plate Impact with Gas Guns

 ~1 km/s
~30 GPa

100 mm Single Stage Gun
gas guns

• launch thin plates at high velocities
• provide well-posed initial conditions
• sample is in uniaxial strain
• used to study material behavior at

high pressures and strain rates

compressed helium used
to launch projectiles as
fast as 1 km/s



• spall is dynamic tensile failure of a material due to
interactions of waves

• failure initiates at internal flaws (triple points, voids,
inclusions, etc.) rather than surface flaws

• spall strengths are typically much higher than tensile
strengths measured in quasi-static experiments

• spall experiments typically involve plate impact
experiments with dimensions of 1:2 for impactor and
target

What is Spall?

V
symmetric impact



A Spall Experiment
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A Spall Experiment

• impactor hits stationary target at t = 0
• shocks travel into impactor and target
• shock in impactor reflects from free

surface as release (unloading) wave
(rarefaction fan)

• same thing happens in target
• release waves intersect at mid-plane

and cause tensile stresses to build
• if stresses are large enough, sample

fails in tension and spall plane forms
• sample separates at spall plane;

waves continue to “ring” in spalled
sample
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Background:  VISAR Diagnostics
s
a
m

p
le

Mirror 1

M2'

M2

Delay

Etalon

Beam Splitter

PBS

Detector 1

Detector 2

beam

intensity

Velocity Interferometer System for Any Reflector
(VISAR) [Barker & Hollenbach, 1972] uses
Doppler shift to measure free surface velocity
history during spall experiment single point measurement,

typically 50-200 µm

heterogeneity within the spot
diameter averaged; no
information outside this region



Illumination
Pattern
On Target

Target

VISAR Fiber
Probe (514 nm)

Dichroic
Beamsplitter

Line-
Imaging
VISAR
Light
(532 nm)

Background:  Line-VISAR

resolution as high as ~10 µm can be achieved along the line
only way to resolve this scale in dynamic experiments



Streak Camera Record

WHA-2
V = 345 m/s, σ = -13.4 GPa

32
 m

m

1.5 mm 3.0 mm

Longitudinal Section



WHA-2 Results
Impact Velocity = 345 m/s

• velocity fluctuations spaced 100-1000
microns (larger than grain size)

• average response similar to previous
point VISAR results

• deviations nearly constant except at
shock front at around 3% of mean

• period for shock arrival approximately
1 mm
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Results for Different
Orientations and Velocities
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• transverse response slightly softer
• ringing in spalled material less pronounced

for transverse samples
• higher impact velocities give somewhat

higher deviations but no apparent
correlation with microstructure

• wave fronts rougher for lower velocities
(ratio ~0.6) and for transverse vs. axial
samples (ratio ~0.6)
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Distributions of Spall Strengths

• significant variation in spall strengths for a given
experiment

• average strengths 0.2-0.4 GPa higher for axial
• strength increases with impact velocity
• both Weibull and normal distributions fit data
• Weibull modulus 5-7 for all experiments (slightly

higher for axial samples)
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Stress-strain response for 300 random grains

(uniaxial compression, Taylor constraints)

Clayton, J.D., J. Mech. Phys. Solids 53, 2005.
Clayton, J.D., Int. J. Solids Structures 42, 2005.
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Crystal Plasticity Modeling

finite crystalline thermoelastic-viscoplastic framework

• 24 slip systems for BCC W grains
• 12 slip systems for FCC matrix
• properties inferred from literature, mainly from static

and intermediate rate experiments



Microstructure Representation

• Realistic grain shapes, sizes, volume
fractions, and lattice orientations

• plane strain
• rigid upper and lower boundaries

450 m/stransverse-1WHA-V
350 m/stransverse-2WHA-IV
250 m/stransverse-2WHA-III
350 m/stransverse-1WHA-II
350 m/saxialWHA-I



Fracture Modeling:
cohesive approach

• new crack surfaces generated via
traction criteria at interfaces
(Camacho & Ortiz, 1996)

• focus on intergranular fracture at
W-W and W-matrix interfaces

• nominal fracture properties:
fracture stress (300K) (Dandekar
& Weisgerber, 1999;
Weerasooriya, 2003; Bjerke,
2004)

• fracture toughness (compromise
of values from literature)
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Charpy tests
Bjerke, 2004 • cleavage could be important, not

modeled here



Model results: WHA-IV

• velocity fluctuations spaced 10-30
microns

• roughness in shock front contours on
order of grain size

• vortical velocity flow fields appear in
wake of unloading waave
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Model results: collective

• residual velocity highest for trans-2
• no pronounced peak in deviations
• higher velocities give higher deviations
• trans-1 (equiaxed) gives lowest deviations

and most uniform shock front
• ratio of roughness for 250 & 350 m/s (III

and IV / trans-2) is 0.65
• ratio for axial (I) and trans-2 (IV) is 0.71

450 m/strans-1V
350 m/strans-2IV
250 m/strans-2III
350 m/strans-1II
350 m/saxialI



Field Variables of Model

• pressure, elastic energy, plastic strain, dislocations all increase
with impact velocity

• momentum conservation prevents concentration of pressure in
grains vs. matrix

• strain and dislocations accumulate in matrix, local plastic strain
rates reach  ~107 s-1

• deviatoric stress concentrates in stiff W grains (right, simulation
WHA-IV, t = 20 ns)

WHA-III (trans-2, VI = 250 m/s, t = 40 ns) WHA-IV (trans-2, VI = 350 m/s, t = 40 ns)



Model results: spall fracture
 Effective stress at spall planes, t = 80 ns

I                   II                    III                   IV                 V

• failure surface more torturous for axial and trans-1
• “spall strength” decreases with increased impact velocity
• trans-2 orientation has lowest “spall strength” since it presents the greatest GB

area perpendicular to tensile loading
• ligaments remain since failure can only occur on W grain boundaries
• differences among microstructures not distinguishable by Weibull modulus
• Weibull moduli higher than in experiments - strength variability arises from both

microstructure (grains and anisotropy) and flaw distributions

βσ

450 m/s
350 m/s
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350 m/s
350 m/s

2.69
1.50
1.57
2.88
2.01

14.9
7.8

11.3
18.8
8.7

trans-1V
trans-2IV
trans-2III
trans-1II
axialI



Comparison of results

Noteworthy observations
• heterogeneous wave profiles observed in both simulations and experiments
• fluctuations of 10-30 microns in simulations (grain size) and ~500 microns in

experiments (several grains)
• shock roughness affected by velocity and morphology in about the same way for

experiments and simulations
• deviations of 10-30 m/s for simulations, ~10 m/s for experiments
• spike in deviations seen in experiment; absent in simulation
• spall strengths lower for grains elongated perpendicular to loading direction
• deviations in spall strengths ~0.2 GPa for simulations and ~0.3-0.4 GPa for

experiments
• Weibull moduli higher for simulations than experiments
• higher velocities give larger spall strengths in experiments, but not in simulations



Conclusions

• shock roughness decreases with increased velocity and is
higher for transverse orientations (expt. and sim.)

• velocity deviations increase with velocity but not affected by
orientation (expt.) or are lower for equiaxed grains (sim.);
magnitudes are similar for expt. and sim.

• spall strength lowest for orientations with elongated grains
perpendicular to loading (expt. and sim.), supporting
hypothesis that failure controlled by W grain boundaries

• β higher for sim. than for expts., indicating that β is controlled
by microstructure/anisotropy and nonuniform flaw
distributions; no strong correlation with velocity or orientation

• proper method for comparison of model and experiments
remains unclear, but standard deviation of velocity, shock
front roughness, and Weibull modulus show promise



Future Work

• verify repeatability of behavior and statistics
• determine effect of measurement resolution
• investigate effect of variations in geometry
• experimental validation of plastic flow rules at higher

rates

• larger domain for calculations
• multiple realizations
• 3-D simulations
• transgranular fracture criteria
• shock-induced grain boundary strengthening


