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Pd tritide

Er tritide

Physics of He Platelets in Metal Tritides
Don Cowgill, SNL, Livermore CA USA

IHISM Workshop, St. Petersburg, Russia, 2-6 July 2007

Outline
• Platelet stability and growth
• Pd vs Er system
• Model testing with XRD data
• Percolation of Interbubble Fracture
• Other materials & future efforts

What causes the bubble shape difference?

“In the spirit of a workshop, 
this is work in progress.”

TEM images by Brewer, Gelles, & Kotula 

SAND2007-4057C
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The evolution of He bubbles/platelets is 
captured in a continuum-scale model.
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Computed He release shows all the 
     features observed for tritides.
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• Model using 3 components: 
mobile He, He-pairs, “bubbles”:

dc1/dt = g -2ps1c1
2-ps2c1c2

+2q2c2-psB(r)c1cB

dc2/dt = ps1c1
2 -q2c2 -ps2c1c2

dcB/dt = ps2c1c2

generation rate, g = (3H/M) 
jump rate, p = 12DHe/a

2

pair dissoc. rate, q2 = 2pe-E2/kT

• The mobile concentration drops 
as bubbles produce traps.

• Bubble nucleation is 90% complete in a 2 days.

Using theoretical E2 and experimental DHe gives correct cB.

Bubble nucleation by self-trapping occurs 
during a short pulse in mobile He concentration. 
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• He re-emission following 
a short implant pulse is 
fitted to the self-trapping 
model.
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Nucleation parameters are being measured 
by our He Implant/Re-emission technique.
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• This technique produced the first 
measurements of He diffusion in
metals near room temperature.

• Self-trapping energies can be 
determined by varying the implant 
pulse characteristics.

Pd, 400K
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• Bubble growth relations:
- Mass conservation:  (r/R)3 fp = (vHe/vMH)(He/M)

(v=molar volume, fp=.64 for random array packing)

- Dislocation loop-punching:  p = 2/r + b/r(1+)
(=surface energy, =shear modulus, b=Burgers vector)

- Bulk He EOS: vHe(p,T)

• For a given bubble 
spacing R:  At each 
He/M there is a
unique r, p, vHe:

Modeled bubble 
pressures agree 
with pAv deduced 
by NMR.

Array of Spherical 
Source Volumes

TEM [1] gives 5e17 bubbles/cc

0.60.50.40.30.20.10.0
0

20

40

60

80

100

r(A)

r(A)

r(A)

He/M

B
u

b
b

le
 r

a
d

iu
s
, 
r(

A
) bubbles/cc

2e17

5e17

1e18
0.60.40.20.0

0

2

4

6

8

10

2e17 /cc, random
5e17 /cc, random
1e18 /cc, random
5e17 /cc, cubic array

NMR data (Abell & Cowgill)

He/M

H
e

 P
re

s
s
u

re
 (

G
P

a
)

Each bubble’s growth is determined by its 
He supply rate -- its tritium source volume. 

R
r

He/M

He/M



Sandia
National
Laboratories

0706 dfc

6

• 3He T1 (motion) separates sol-
He from liq-He in bubbles.

• Growth relations convert fluid 
fractions to bubble distributions.
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The constant spacing distribution 
- verifies nucleation has stopped
- provides a sensitive test of the 
nucleation and growth models.

The bubble spacing distribution in PdTx

has been determined by 3He NMR.
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The bubbles cause swelling and lattice stress, 
which produces a shift in the hydride PCT. 
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Plateau pH = poexp(-2hyvH/RgT), 
hydrostatic stress, hy = pHe(dV/V)

Volume occupied by He bubbles:
dV/V = (vHe/vMH)(He/M)
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Swelling and PCT behavior are consistent with the lower bubble density 
found by TEM (Thomas et al., 1983), not higher (Thiebaut et al., 2000).
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The bubbles in fcc materials likely 
evolve from nano-cracks.

• He atoms accumulate in “relatively open” 
spaces between (111) planes, where they 
open Griffith-like nano-cracks:

• When the crack opens to s=2d, dislocation 
loops begin to form, creating a dipole:

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

2d < s < 3d

s

[111]

d

s < 2d = 0.6 nm (111)

s

s = 2d = 0.6 nm

s

(111)

HR-TEM of n-crack in PdT by Thiebaut

[110] view
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Surface Energy: pe dV =  dA

pe r2 b =  2r b pe [(r+b)2-r2] s =  2r+b)2-r2+(r+b)s-rs]
pe = 2/r pe = (2s) [(2r+b+s)/(2r+b)]

Lattice Strain: stress =  strain

ps r2 =  [(b/2)/d] 2rd ps [(r+b)2-r2] =  [(d/2)/b] 2r+b)-r]b 
ps = b/r ps = d/(2r+b)

Bubble Pressure: p = pe + ps

plp = 2/r + b/r pde = (2/s) [(2r+b+s)/(2r+b)] + d/(2r+b)
pde = 2/s + d/2r, at large r

Spherical bubbles grow by Platelets can grow by 
“dislocation loop punching” “dislocation dipole expansion”

The He pressure within the precipitate has 
components due to surface and strain energies.

2d < s < 3d

s

[111]

d

r

2r

[110]
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The bubble shape and growth process 
depend on the tritide’s mechanical properties.

• Dislocation loop punching

• Dislocation dipole expansion

• Thin, disk-shaped bubbles are caused 
by a low surface energy (low /b).

Tritide   (GPa-nm) (GPa) b(nm) /b
Pd 1.54 33.6 .2852 0.16
Er 0.637 57.4 .3623 0.03

Surface
Energy

Strain
Energy

2d < s < 3d

s

[111]

d
PDE ≈ 2/s + d/(2r+b)

r

2r

[110]

b

PLP = 2/r + b/r
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The early growth of bubbles in PdT 
appears to have several stages.

1. He atoms collect in (111) planes 
and open nano-cracks (Griffith):
PnC = 4/s,  s = 4[(1-)r/.

2. Dislocation dipoles form when 
the nano-crack gap reaches s=2d.

3. Platelet pressures drop as their 
thicknesses increase to s≈2.5d.

4. The platelets expand radially 
until s=3d, where the dipole 
escapes.

5. [110] loops are emitted as the 
platelets transition to spheres.

6. Spherical bubbles continue to 
grow by normal loop-punching.
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Testing of pressure formulation is provided 
by lattice dilation data on aged tritides.

• Tensile stress created by the precipitates produces a positive da/a.

• Spherical bubbles at Loop Punching pressure:  
Hydrostatic tensile stress balances bubble pressure

pLP(V/V) = B*(3 da/a)LP,  B* = bulk modulus of aged material
where V/V = (4/3) r3 nB, nB = bubbles/cm3

(da/a)LP = [1/3B*] pLP(V/V)

• Platelets at Dipole Expansion pressure:  
[111] tensile stress balances platelet pressure, 4 components
Projection along [100] cubic axes = 1/31/2

pDE(A/A) 4/31/2 = E*(da/a)DE, E* = Young’s modulus of aged material 
where A/A = r2 (nB/4)2/3,  nB=bubbles/cm3

(da/a)DE = [4/31/2E*] pDE(A/A)
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Lattice dilation “details” of PdT appear to 
support the existence of multiple stages.
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• Initial Griffith crack 
growth at high pressure 
will produce an even rise.

• The bubble volume 
increases by 8X during the 
transition from platelets to 
spheres.

• Emitted dislocations must 
remain trapped between 
“bubbles”.
- Bubble source volumes 

remain constant!)
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The He precipitates in Er tritide remain 
2-dimensional platelets throughout life.

• He pressure decreases as the nano-
crack opens.
- He becomes liquid at ~ 12 GPa.

• When the crack width reaches 2d, 
a dislocation dipole begins to form, 
causing a drop in pressure.

• The pressure decreases further as 
the completed dipole expands and 
its width increases to 3d.

• Linking of the platelets will occur 
prior to their spherical transition.
- At r ≈ 25 nm, the co-planar platelet 
area >1 (area projections overlap).
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Lattice dilation is significantly 
greater for platelets.
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• Swelling data can be fitted by 
either growth mechanism; but the 
initial incubation period is not 
consistent with loop punching.

• Platelets produce greater lattice 
strain and can account for the 
rapidly increasing lattice parameter.  
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Model accounts for the platelet growth 
observed by Bond & Browning.

• Model calculation for an 
average platelet density of 
5x1017 platelets/cm3.
- Pd tritide bubble density!

• Here, platelet interactions are 
assumed negligible.  
- We must revisit this!

• For Er tritide, rapid He release 
occurs around 0.3 He/Er, when 
the average platelet is 20 nm.
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The platelet thickness is nearly constant, 
but is should increase slowly with age.

• Predicted thickness appears 
slightly less than the TEM 
determination?

Need more data.
X-ray diffraction?

• Accurate measurement of the 
platelet thickness and density 
can provide a determination 
of the surface energy:
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The bubble shape condition appears to hold 
for precipitates in fcc, hex, and bcc materials.

Material   (GPa-nm) (GPa) b(nm) 2/b shape

ErT 0.637 57.4 .3623 fcc .061 platelets
ScT 0.954 54.0 .3382 fcc .104 early platelets, then?
TiT 1.39 76.2 .3111 fcc .117 platelets & elongated? 
Ni 1.72 76.5 .2490 fcc .180 spheres?
ZrT 1.48 32.6 .3522 fcc .258 spheres
PdT 1.54 33.6 .2852 fcc .322 spheres

Be 1.10 146 .359 hex .051 platelets
Ti- 1.39 40.1 .291 hex .238 platelets

W 2.22 158 .273 bcc .103 platelets
V- 1.95 47.4 .263 bcc .312 spheres
Nb- 1.90 38.2 .285 bcc .350 spheres

• Surface energy/strain energy ratio for spherical bubbles
• Platelets are prefered for small r, where s/2r > 2/b.
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Work on platelet structures is continuing.

• Thin (111) platelet bubbles can be associated with nano-cracks or 
dislocation dipole structures.

• Additional theoretical work is examining
- formulations of platelet characteristics
- linking of platelets by inter-platelet fracture

• Continued testing should examine
- the bubble pressure and spacing distribution in young Pd tritide

(in spherical transion stage).
- bubble shapes in other materials (e.g. SiC).
- bubble shapes in implanted materials.

• TEM and XRD studies in selected materials are needed to characterize 
bubble shapes and transition points. 
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• As the bubbles grow, tension on the 
inter-bubble ligament increases.

• Evans’ fracture criterion:

For plane through adjacent bubbles,
fracture occurs when:

pLP (bubble area) > F (metal area)

(F = fracture strength ≈ µ/4π)

• Valid when neighboring ligaments 
fracture simultaneously (surrounding 
lattice provides no support).

Rapid release should occur when 
bubbles at mean bubble density
undergo inter-bubble fracture.
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stresses due to bubble interactions.
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Inter-platelet fracture can be modeled using 
platelet area projections in the fracture plane.

•  = Platelet angle in the fracture plane.

• Relative angle between platelets is zero or 
angle between [111] directions, 70.529°.

• Averaging areas using (100), (110), (111) 
principle planes, considering the frequency 
in each geometry, gives < cos > = 0.4755.

• IP-Fracture criterion:
pF = 2/s + F { [r2nP

2/3< cos>]-1 - 1 }.

• Equating stresses on the ligament between 3 adjacent platelets:  

pS (projected platelet area) = F (projected metal area)

(pF-2/s) (r2/2) cos  = F [3
1/3R2 - (r2/2) cos ]

2R 

Fracture Plane  
(thru adjacent platelets)

Projected Areas of platelets
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The pressure for inter-platelet fracture drops 
below that for platelet growth at 0.27 He/Er.

• This fracture condition 
depends on platelet density 
and fracture strength F. 

• Rapid He release will occur 
when this condition extends 
over several platelet spacings

-- when platelets at the mean 
density undergo IP-fracture.
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Dependence of the Crit He/M on 
“bubble” density is weaker for platelets.

• The optimum density appears 
slightly higher for Er platelets, 
compared to Pd bubbles.

• For spherical bubbles in PdT, 
regions with high bubble 
density begin linkage first.

• By contrast, the ligaments 
between platelets in ErT2

should all fracture at about the 
same time -

- producing a more abrupt 
transion to Rapid Release.10 1910 1810 1710 16
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Work on platelet structures is continuing.

• Thin (111) platelet bubbles can be associated with nano-cracks or 
dislocation dipole structures.

• Additional theoretical work is examining
- formulations of platelet characteristics
- linking of platelets by inter-platelet fracture

• Continued testing should examine
- the bubble pressure and spacing distribution in young Pd tritide

(in spherical transion stage).
- bubble shapes in other materials (e.g. SiC).
- bubble shapes in implanted materials.

• TEM and XRD studies in selected materials are needed to characterize 
bubble shapes and transition points. 


