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Outline

* Platelet stability and growth
* Pd vs Er system

» Model testing with XRD data

» Percolation of Interbubble Fracture
* Other materials & future efforts

“In the spirit of a workshop,
this is work in progress.”
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e evolution of He bubbles/platelets is
captured in a continuum-scale model.
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Behavior of spherical bubbles in PdT,

Computed He release shows all the
features observed for tritides.
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The He release spectrum is
critically dependent on the
bubble shape and spacing
distribution.
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ubble nucleation by self-trapping occurs
during a short pulse in mobile He concentration.
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* Model using 3 components:
mobile He, He-pairs, “bubbles’:

101 7 ¢4 .
Mobile He/M
(x 1/2)

dc,/dt = g-2ps,c,%-ps,c,c,

Observed C B(TEM)

E2=0.13 eV
D=0.3A2/s

+2,C,-psp(r)c Cy
de,/dt = ps;¢y-qy¢; -ps,ciC,
dcg/dt = ps,c,c,

" Bubbles/M

Concentration (appm)

generation rate, g = ACH/M)
jump rate, p = 12Dy /a*

—0
o

N
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pair dissoc. rate, q, = 2pe kT

Clusters/M

» The mobile concentration drops 0 td
as bubbles produce traps. Time (days)

Using theoretical E, and experimental D, gives correct cp.

» Bubble nucleation is 90% complete in a 2 days.
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Nucleation parameters are being measured
by our He Implant/Re-emission technique.
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* He re-emission following Re-emission
a short implant pulse is 2 keV
fitted to the self-trapping
model.
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» This technique produced the first  T'Me (s) + Mo (ol

measurements of He diffusion in " Pd(amealed)
metals near room temperature. y

0.001 0.002 0.003 0.004

1/T(K)

Ed=.14 eV

He Diffusivity (A%/s)

 Self-trapping energies can be
determined by varying the implant
pulse characteristics. Sandia
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= Each bubble’s growth is determined by its
He supply rate -- its tritium source volume.

» Bubble growth relations:
- Mass conservation:  (1/R)’ f = (v/vyy)(He/M)

(v=molar volume, f =.64 for random array packing)
- Dislocation loop-punching:  p = 2y/r + ub/r(1+¢)

(y=surface energy, u=shear modulus, b=Burgers vector)

Array of Spherical
Source Volumes

- Bulk He EOS: Vie(p,T) 0
—=—— 2e17 /cc, random
* For a given bubble NI 4 i
100 ——— 5e17 /cc, cubic array
Spacing R: At eaCh E NMR data (Abell & Cowgill
He/M there 1s a 0] S ¢
unique r, p, Viy.. < 5
q ) p? He:* g . bubblesice /é/zr‘
ho)
Modeled bubble & 2
pressures agree /éﬂ )
. S )
with p ., deduced a %o 02 o s
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Fluid Fraction

he bubble spacing distribution in PdT,
has been determined by *He NMR.

« SHe T, (motion) separates sol-
He from lig-He in bubbles.

» Growth relations convert fluid
fractions to bubble distributions.

0.20

Abell & Cowqgill

1.0

0.151

0.81 - 0.107

0.6
0.051

f(r), normalized

F(R), normalized

0.06

The Bubble Spacing
Distribution is
Lognormal

(multiplicative central limit theorem)
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The constant spacing distribution

- verifies nucleation has stopped

- provides a sensitive test of the
nucleation and growth models.
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The bubbles cause swelling and lattice stress,
which produces a shift in the hydride PCT.

Volume occupied by He bubbles: Plateau py = p,exp(-26,,,viy/R,T),
dV/V = (v /vy (He/M) hydrostatic stress, 6., = py(dV/V)
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Model, Bubble Densit
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Swelling, dV/V

Mean Plateau Pressure (torr)
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Swelling and PCT behavior are consistent with the lower bubble density
found by TEM (Thomas et al., 1983), not higher (Thiebaut et al., 2000).
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evolve from nano-cracks.

: (13 . 29
* He atoms accumulate in “relatively open HR-TEM of n-crack in PdT by Thiebaut
spaces between (111) planes, where they

open Griffith-like nano-cracks:
$<2d=0.6nm (111)

L ———————

1
A

* When the crack opens to s=2d, dislocation
loops begin to form, creating a dipole:

s=2d=06nm (111) \\ [111]

\ f—
§: = [110] view
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The He pressure within the precipitate has

components due to surface and strain energies.

Spherical bubbles grow by Platelets can grow by
“dislocation loop punching” “dislocation dipole expansion”
[110]
[111]

2d <s < 3d
Surface Energy: p.dV=vdA
p.r’b=y2nrb p. ©[(rtb)?-1?] s =y 2n[(r+b)?-r’+(r+b)s-rs]
P. = 27/t pP. = (27/s) [(2r+b+s)/(2r+b)]
Lattice Strain: stress = W strain
p, mr? = p [(b/2)/d] 2mrd p, T[(r+b)?-r?] = u [(d/2)/b] 27[(r+b)-r]b
p, = ub/r p, = ud/(2r+b)
Bubble Pressure: P =D T D
py, = 2y/r + pub/r Pae = (2v/s) [(2r+b+s)/(2r+b)] + pd/(2r+b)

Pge = 2Yy/s + nd/2r, at large r
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e bubble shape and growth process
depend on the tritide’s mechanical properties.

* Dislocation loop punching

[110]
———
. Surface Strain
— v—— | Energy Energy
— b Vo

—— P, =2y/r+ pb/r

* Dislocation dipole expansion
[111]

Ppg = 2y/s + ud/(2r+b)

2d<s<3d

* Thin, disk-shaped bubbles are caused
by a low surface energy (low y/ub).

Tritid GPanm GPa)  binm n
Pd 1.54 33.6 2852 0.16
Er 0.637 574 3623 0.03
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\_ Loop Punching (Spheres)
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Bubble Pressure (GPa)

Dipole Expansion
(Platelets, s=3d)
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1.6 nm

Note: Platelets are also the preferred
shape in young Pd tritide (<50 days).
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early growth of bubbles in PdT
appears to have several stages.

1. He atoms collect in (111) planes
and open nano-cracks (Griffith):
P.c=4y/s, s=4[y(1-v)r/mu]'2.
2. Dislocation dipoles form when
the nano-crack gap reaches s=2d.

3. Platelet pressures drop as their
thicknesses increase to s=2.5d.

4. The platelets expand radially
until s=3d, where the dipole
escapes.

5. [110] loops are emitted as the
platelets transition to spheres.

6. Spherical bubbles continue to
grow by normal loop-punching.

20
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He pressure (GPa)
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s Growth

/

s=3d,

/
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Pd, Early Behavior
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esting of pressure formulation is provided
by lattice dilation data on aged tritides.

» Tensile stress created by the precipitates produces a positive da/a.

* Spherical bubbles at LLoop Punching pressure:
Hydrostatic tensile stress balances bubble pressure

p p(AV/V) =B*(3 da/a),p, B* = bulk modulus of aged material
where AV/V =(4/3) nr3 ng,  ng = bubbles/cm?

(da/a) p=[1/3B*] p; p(AV/V)

» Platelets at Dipole Expansion pressure:
[111] tensile stress balances platelet pressure, 4 components
Projection along [100] cubic axes = 1/3172

pPpe(AA/A) 4/312=E*(da/a)pg, E* = Young’s modulus of aged material
where AA/A = nr? (ng/4)?3,  ng=bubbles/cm?

(da/a)pg = [4/32E*] ppr(AA/A)
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i!attice dilation “details” of PdT appear to
support the existence of multiple stages.

0.005
e Initial Griffith crack
Crack Growth & 1
Dipole Expansion growth at high pressure
0.004- will produce an even rise.

Loop—Puncihing
(Fabre B7)  The bubble volume

0,003 increases by 8X during the
o transition from platelets to
©
© spheres.

0.002

“ * Emitted dislocations must
- | P remain trapped between
' “bubbles”.
Thiebaut data - Bubble source volumes
0.000°% - - - - remain constant!)
0.00 0.02 0.04 0.06 0.08 0.10
He/M
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Pressure (GPa)

\

e He precipitates in Er tritide remain

14

2-dimensional platelets throughout life.

10

Model: Evolution of He Platelet Pressure
in Er Tritide

s=2d

s=3d

Nano-crack Growth

Dipole Formation

Transition
to Spheres

Dipole Expansion

Loop
Punching

5 10 15 20

major radius (nm)

25

30

* He pressure decreases as the nano-
crack opens.
- He becomes liquid at ~ 12 GPa.

* When the crack width reaches 2d,
a dislocation dipole begins to form,
causing a drop in pressure.

* The pressure decreases further as
the completed dipole expands and
its width increases to 3d.

* Linking of the platelets will occur
prior to their spherical transition.
- At r = 25 nm, the co-planar platelet
area >1 (area projections overlap).

Sandia
National

0706 df .
¢ Laboratories



\

Lattice dilation is significantly
greater for platelets.

0.006

» Swelling data can be fitted by Platlel Grow
either growth mechanism; but the etrice
initial incubation period is not

Russian Data

(thin film)
consistent with loop punching. 0.0041
0.12
Er Tritde oot . E
5e17 bubbles/cc =
0.107
0.002 1
& 008
2
. Spheres
%’3 0.061
% O'OO%.OO 0.02 0.04 0.06 0.08 0.10
r% 0.04- He/M
.03 He/M 5 & Ml g
®  Beavis iglionico data .
002 | 04HeM — Spheres (=48, * Platelets produce greater lattice
— Disc-shaped (u=57.4, Knapp) .
strain and can account for the
0.00 * T T T . . . .
00 o1 2 03 04 rapidly increasing lattice parameter.
He/M Sandia
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del accounts for the platelet growth

observed by Bond & Browning.

Platelet dim, 2r (nm)

30

251
20 1
157

107

Platelets

Nano-cracks

disloc dipole

formation

5e17 /cc

N\

« Bond-Browning
data (average)

0.05

0.10

0.15 0.20 0.25
He/M Ratio

0.30

» Model calculation for an
average platelet density of
5x10!7 platelets/cm?.

- Pd tritide bubble density!

 Here, platelet interactions are
assumed negligible.
- We must revisit this!

* For Er tritide, rapid He release
occurs around 0.3 He/Er, when
the average platelet 1s 20 nm.
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Thickness (nm)

i\he platelet thickness is nearly constant,
but is should increase slowly with age.

1.0

0.87

0.67

0.4

0.21

/
\

Er (111) plane spacing
adjacent to platelet

/

\

He platelet thickness

5x10"7 platelets/cm?

0.05

0.15 0.20 0.25

He/Er Ratio

0.10 0.30

* Predicted thickness appears
slightly less than the TEM
determination?

Need more data.
X-ray diffraction?

» Accurate measurement of the
platelet thickness and density
can provide a determination

of the surface energy:

_Tus’

- 4(1-v)r
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The bubble shape condition appears to hold
for precipitates in fcc, hex, and bce materials.

Material y(GPa-nm) u(GPa) b(nm) 2y/ub shape
ErT 0.637 57.4 3623 fcc  .061 platelets
ScT 0.954 54.0 3382 fcc  .104 early platelets, then?
TiT 1.39 76.2 3111 fee 117 platelets & elongated?
Ni 1.72 76.5 2490 fcc 180 spheres?
ZrT 1.48 32.6 3522 fce 258 spheres
PdT 1.54 33.6 2852 fce  .322 spheres
Be 1.10 146 359hex  .051 platelets
Ti-o 1.39 40.1 291 hex  .238 platelets
W 2.22 158 273 bcc  .103 platelets
V-a 1.95 47.4 263 bcc 312 spheres
Nb-a. 1.90 38.2 285bcc  .350 spheres

 Surface energy/strain energy ratio for spherical bubbles
* Platelets are prefered for small r, where s/2r > 2y/ub.
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Work on platelet structures is continuing.

» Thin (111) platelet bubbles can be associated with nano-cracks or
dislocation dipole structures.

 Additional theoretical work is examining
- formulations of platelet characteristics
- linking of platelets by inter-platelet fracture

 Continued testing should examine
- the bubble pressure and spacing distribution in young Pd tritide
(in spherical transion stage).
- bubble shapes in other materials (e.g. SiC).
- bubble shapes in implanted materials.

« TEM and XRD studies in selected materials are needed to characterize
bubble shapes and transition points.
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or spherical bubbles, Rapid He Release is
modeled using a ligament fracture criterion.

* As the bubbles grow, tension on the
inter-bubble ligament increases.

e Evans’ fracture criterion:

For plane through adjacent bubbles,
fracture occurs when:

pr p (bubble area) > o (metal area)
(o = fracture strength = p/4m)

* Valid when neighboring ligaments
fracture simultaneously (surrounding
lattice provides no support).

Rapid release should occur when
bubbles at mean bubble density
undergo inter-bubble fracture.

10

o]
!

Inter-bubble Fracture

/

Loop Punching

Bubble Pressure (GPa)

N « | metal _
area fraction
bubble
area fraction

21 Pd Tritide

5x10!7 bubbles/cm3
O = W4n

Fracture
Point

0.0 0.2 0.4

He/M

* Both curves are modified by local
stresses due to bubble interactions.
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Inter-platelet fracture can be modeled using
platelet area projections in the fracture plane.

4

» Equating stresses on the ligament between 3 adjacent platelets:

ps (projected platelet area) = o (projected metal area)
(pp-2y/s) (mr?/2) cos 0 = o [3V3R? - (nr?/2) cos 6]

Fracture Plane * 0 = Platelet angle in the fracture plane.
(thru adjacent pla;celets)

 Relative angle between platelets 1s zero or
angle between [111] directions, 70.529°.

» Averaging areas using (100), (110), (111)
principle planes, considering the frequency
in each geometry, gives < cos 6 > = 0.4755.

, e [P-Fracture criterion:
Projected Areas of platelets pr = 2v/s + op { [mrnp23< cosd >]1- 1 }.
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e pressure for inter-platelet fracture drops
below that for platelet growth at (.27 He/Er.

Pressure (GPa)

Model: IP-Fracture Criterion

10 75
Er Tritide
5x10'7 platelets/cm?
4 op = W4n
w=57.4 GPa (Knapp)
Fracture Pressure
°! /
Al
Platelet Growth Pressure s S S
(Dipole Expansion) T
o1
Fracture
Point
0 T
000 004 008 012 016 020 024 028
He/Er

* This fracture condition
depends on platelet density
and fracture strength .

» Rapid He release will occur
when this condition extends
over several platelet spacings

-- when platelets at the mean
density undergo IP-fracture.
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i Dependence of the Crit He/M on
“bubble” density is weaker for platelets.

06  The optimum density appears
slightly higher for Er platelets,
Bubbles in \PdT compared to Pd bubbles.
0.57
* For spherical bubbles in PdT,
< regions with high bubble
D 4] density begin linkage first.
° § * By contrast, the ligaments
. % between platelets in ErT,
Platelets in ErT2 3 should all fracture at about the
/hﬁ;\-\\ same time -
0 - producing a more abrupt

10" 107 10" 10" transion to Rapid Release.
Nb, Np (bubbles, platelets/cc)
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Work on platelet structures is continuing.

» Thin (111) platelet bubbles can be associated with nano-cracks or
dislocation dipole structures.

 Additional theoretical work is examining
- formulations of platelet characteristics
- linking of platelets by inter-platelet fracture

 Continued testing should examine
- the bubble pressure and spacing distribution in young Pd tritide
(in spherical transion stage).
- bubble shapes in other materials (e.g. SiC).
- bubble shapes in implanted materials.

« TEM and XRD studies in selected materials are needed to characterize
bubble shapes and transition points.
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