

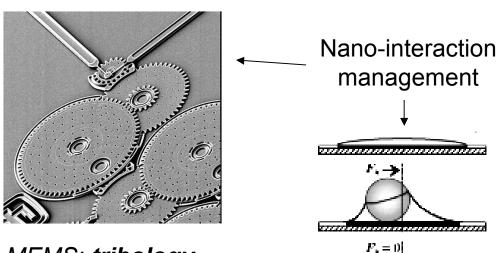
Nelson S. Bell,

Electronic and Nanostructured Materials Sandia National Laboratories Albuquerque, New Mexico 87185-0888

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company.

This work was supported by the U.S. DOE under contract DE-AC04-94AL85000.

Overview


- Photo-Controlled surfaces
- Photo-Controlled Colloidal System
- Photo-physical effects in Colloids
- 2D and 3D Patterning with Colloids

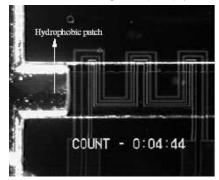
Contributors

Dongqing Yang, S. Tom Picraux, U. Arizona Marcin Piech, United Technologies Corp. Matt George and Paul Braun, UIUC Greg Jamison, Chad Staiger, SNL Liu Jiang, Tim Long, John Lean

Motivation

Photochemical control of physical interaction processes on the molecular level

MEMS: tribology


Self-assembled nanostructures:

➤ Fundamental competency for the realization and application of high-surface-area microsystem architectures and the controlled fabrication and utilization of nanostructured materials

Microfluidics: rheology

J. Micromech. Microeng.., 13, (2003), p. 261

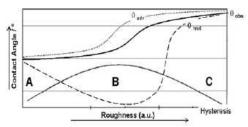
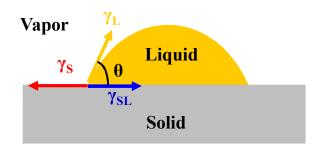


Figure 1. Wettability vs. roughness (schematically). (A) Smooth surface, (B) Wenzel Regime, (C) superhydrophobic surface. θ_{obs}: observable (static) c.a., θ_{adv}: advancing c.a., θ_{reed}: receding c.a.

J. Sol-Gel Sci. Tech., 26, (2003), p.789

Photochromic Molecules


Azobenzene

Spiropyran

Dipole moment of these molecules are reversible, and monitored by:

- changes in optical profile (UV/Vis spectrum)
- alteration of surface energy (contact angle measurements)

Modeling of Surface Energy from Contact Angle Measurements

Young's equation

$$\gamma_S = \gamma_{SL} + \gamma_L \cos \theta$$

Van Oss theory

$$\gamma_S = \gamma_S^{LW} + \gamma_S^{AB}$$

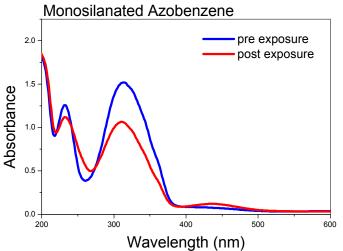
$$\gamma_S^{AB} = 2\sqrt{\gamma_S^- \gamma_S^+}$$

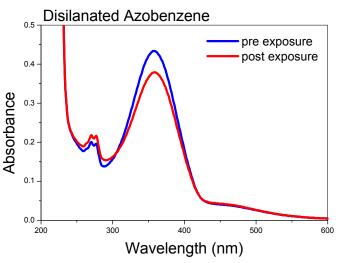
$$\gamma_L(1+\cos\theta) = 2(\sqrt{\gamma_S^{LW}\gamma_L^{LW}} + \sqrt{\gamma_S^-\gamma_L^+} + \sqrt{\gamma_S^+\gamma_L^-})$$

Surface energy separated into dispersive (LW), electron donating (-) and electron accepting (+) components

Van Oss Modeling of Azobenzene Surfaces

Azobenzene modified surface energy (mJ/m²) was calculated by using three fluids of known dispersive, acid and base components.


$$\gamma_L(1+\cos\theta) = 2(\sqrt{\gamma_S^{LW}\gamma_L^{LW}} + \sqrt{\gamma_S^-\gamma_L^+} + \sqrt{\gamma_S^+\gamma_L^-})$$


Table: Surface tensions and components of probe liquids (mJ/m²) suggested by Van Oss

Liquid	γ_L	$\gamma_L^{ m LW}$	γ_L^-	γ_L^+	γ_L^{AB}
Polar					
DI water	72.8	21.8	25.5	25.5	51.0
ethylene glycol	48.0	29.0	47.0	1.92	19.0
formamide	58.0	39.0	39.6	2.28	19.0
Nonpolar					
diiodomethane	50.8	50.8		0	0
1-bromonaphthalene	44.4	44.4	0	0	0

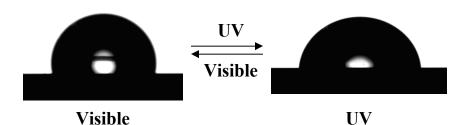
Van Oss Modeling of Azobenzene

Contact Angle Measurements using three fluids of known dispersive, acid and base character.

Solvent Parameters	σL	σD	σ-	σ +
Water	72.8	21.8	25.5	25.5
Diiodomethane	50.8	50.8	0	0
Formamide	58.2	39	39.6	2.28

$$\sqrt{\left(\sigma_{l}^{D}\right)\left(\sigma_{s}^{D}\right)} + \sqrt{\left(\sigma_{l}^{-}\right)\left(\sigma_{s}^{+}\right)} + \sqrt{\left(\sigma_{l}^{+}\right)\left(\sigma_{s}^{-}\right)} = \frac{\sigma_{l}\left(Cos\Theta + 1\right)}{2}$$

Azobenzene (Monosilanat	$\sigma^{\scriptscriptstyle +}$	σ			
Unexposed	40.08	0.10	1.23		
Exposed	40.44	0.07	7.89		
Azobenzene (Disilanated)					
Unexposed	29.10	0.02	7.24		
Exposed	29.44	0.95	7.15		



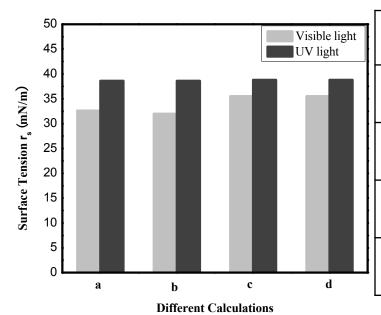
Surface Design with Azobenzene

(CH₂)₄CH₃

100
100
100
95
90
Vis UV Vis UV Vis UV
Irradiations

Wetting angle

Azobenzene molecules attach to the surface through aminopropylmethyldiethoxysilane(ADES)

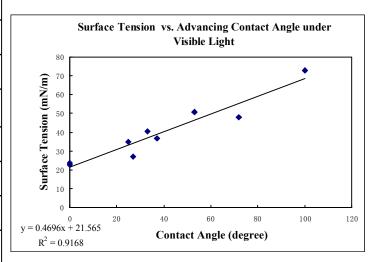

Visible	UV	
100° -102°	88° -90°	

Van Oss Modeling of Azobenzene Surfaces

Azobenzene modified surface energy (mJ/m²) was calculated by using three fluids of known dispersive, acid and base components.

$$\gamma_L(1+\cos\theta) = 2(\sqrt{\gamma_S^{LW}\gamma_L^{LW}} + \sqrt{\gamma_S^-\gamma_L^+} + \sqrt{\gamma_S^+\gamma_L^-})$$

Calculations	Illumination	γ_S^{LW}	$(\gamma_S^+)^2$	γ_S^-	γ_S
a)	Visible	32.59	-0.09	0.42	32.59
	UV	38.59	-0.21	3.23	38.59
b)	Visible light	32.02	-0.69	1.99	32.02
а	UV	38.59	-0.55	4.57	38.59
c)	Visible	35.49	-0.28	0.36	35.49
	UV	38.83	-0.22	3.22	38.83
d)	Visible	35.49	-1.00	2.07	35.49
	UV	38.83	-0.57	4.58	38.83


a) Using DI water, Ethylene glycol, diiodomethane to calculate; b) Using DI water, Formamide, diiodomethane to calculate; c) Using DI water, Ethylene glycol, 1-Bromonaphtalene to calculate; d) Using DI water, Formamide, 1-Bromonaphtalene to calculate

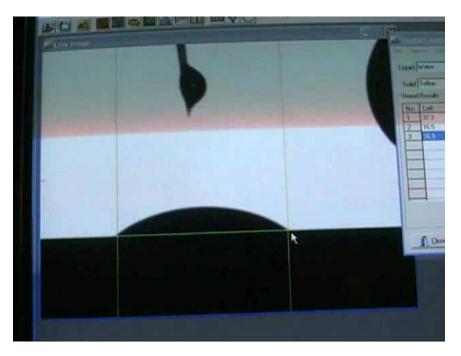
Contact Angle Measurement with Liquids

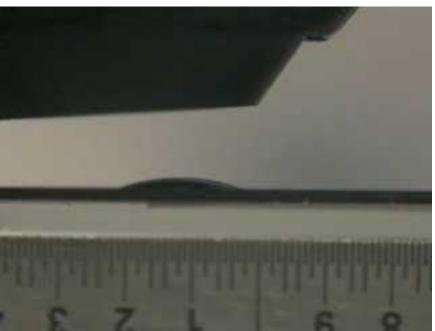
Table: Contact angle on azobenzene modified surface with various solvents (degree).

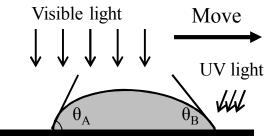
Solvents	trans	cis	Surface	Switching
	$\theta_{ m adv}$	$ heta_{ m adv}$	Tension (mN/m)	Angle $(\theta_{adv}^{trans} - \theta_{adv}^{cis})$
acetonitrile	27.0 ± 0.55	11.5 ± 0.87	27	15.5
benzonitrile	32.0 ± 2.0	17.0 ± 0.76	38.65	15
DI water	101.3 ± 0.98	88.9 ± 0.86	72.8	12.4
diiodomethane	54.1 ± 0.49	42.1 ± 1.08	50.8	12
dimethylformamide	37.5 ± 1.74	26.8 ± 0.53	36.8	10.7
formamide	82.2±1.36	71.5 ± 0.66	58.2	10.7
1-methylnaphthalene	33.3 ± 1.09	23.3 ± 0.34	40.5	10
ethylene Glycol	73.2 ± 0.73	63.9 ± 0.71	48	9.3
1-bromonaphthalene	38.0 ± 0.67	29.7 ± 0.40	44.4	8.3

Linear relationship between surface tension of solvents and its contact angle on azobenzene surface

Droplet Mobility Requirements

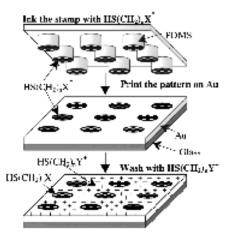

Requirement: The receding contact angle (trans-isomer) under visible light must be larger than advancing contact angle (cis-isomer)

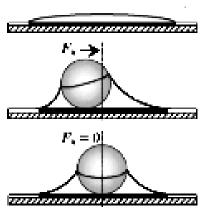

Table: Contact angle measurements (degree) on azobenzene modified surface with various solvents.

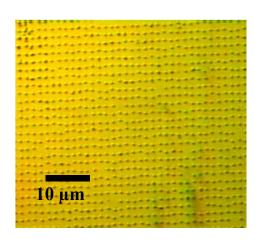

Liquid	tra	ns	cis			
	$\theta_{ m adv}$	$\theta_{ m rec}$	$\theta_{ m adv}$	$\theta_{ m rec}$		
Fulfill motion requirement						
benzonitrile	32.0 ± 2.0	26.2 ± 1.25	17.0 ± 0.76			
diiodomethane	54.1 ± 0.49	43.7 ± 0.58	42.1 ± 1.08	33.1 ± 1.28		
dimethylformamide	37.5 ± 1.74	29.6± 1.47	26.8 ± 0.53	19.0 ± 1.34		
1-bromonaphthalene	38.0 ± 0.67	33.5 ± 0.5	29.7 ± 0.40	24.6 ± 0.51		
acetonitrile	27.0 ± 0.55	19.4± 1.41	11.5 ± 0.87			
1-methylnaphthalene	33.3 ± 1.09	23.5 ± 0.77	23.3 ± 0.34	13.5 ± 0.56		
Not fulfill motion requirement						
DI water	101.3 ± 0.98	76.0 ± 2.0	88.9 ± 0.86	69.8± 1.4		
formamide	82.2± 1.36	62.8± 1.18	71.5 ± 0.66	58.2± 1.01		
ethylene glycol	73.2 ± 0.73	49.0± 1.15	63.9 ± 0.71	41.5 ± 0.49		

Motion of 1-Bromonaphthalene by UV Light

We demonstrate the idea of using light to move liquids on a photoresponsive surface.




Surface Templating of Particle Assembly


Cationic/anionic functionalization of particles and substrates enables

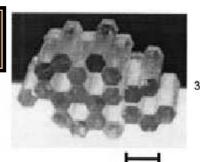
- -single particle spectroscopy
- -definition of ABAB composite architectures for energy transfer

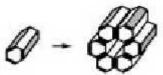
Particle templating via microcontact printing (mCP) of heterogeneous monolayers:

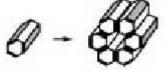
Particle templating allows:

- more complicated structures: FCC, BCC, diamond cubic
- introduction of defects (superlattices)
- stamping of waveguides

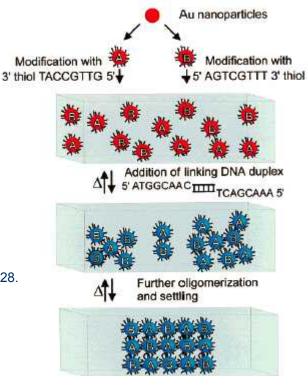
Clem and Payne, "Monolayer-mediated patterning of electroceramics," J. Electroceram, 3(2), 163 (1999). Aizenberg, Braun, and Wiltzius, "Patterned colloidal deposition by electrostatic and capillary forces, Phys. Rev. Lett. **84**(13), 29973000 (2000).

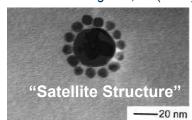



Heterogeneous Particle Assembly


Are there analogs to directed assembly at the colloidal scale?

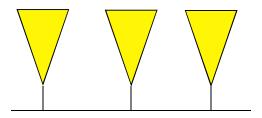
Ned Bowden, et al. J. Am. Chem. Soc. 121 (1999) 5373-5391

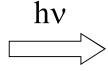


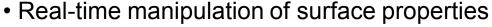

S.R.J. Oliver at al. J. Colloid Interface Sci., 224 (2000) 425-428.

There are novel systems to study with these methods...

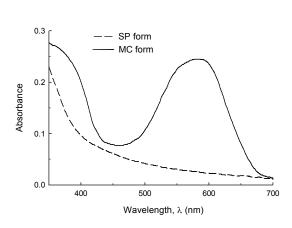
- Electrostatic Assembly (i.e. Ionomeric Gel).
- Photosensitive stabilization mechanisms or bonding. (Zaitsev SY, et al. Supramolecular Science, 4 (1997) 519-524.)
- Biological Surface Recognition* DNA, nucleotides, peptides, lipids ... Observed structures include colloidal micelles, clusters, rings, and chains.
- Structured layer deposition using non-spherical particles (Choi et al. Langmuir (2000) 16, 2997-2999.)


* Chad Mirkin, Inorg. Chem. 39 (2000) Hiddessen et al. Langmuir, 16 (2000)




Photochemical Control of Surface Interactions

Photochemical alteration of an organic moiety resulting in a change in steric, electrostatic parameters

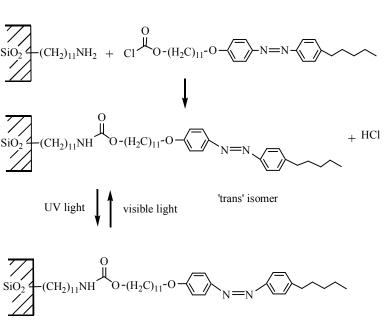


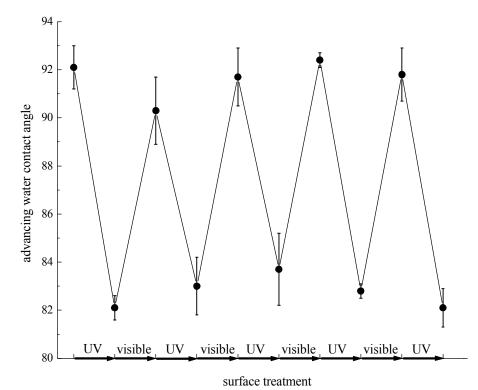
- Switchable/reversible (new operational modes)
- Non-invasive/remote control over stability

Manifested in:

- changes in optical profile (UV/Vis spectrum)
- alteration of surface energy
- photocontrolled colloidal stability

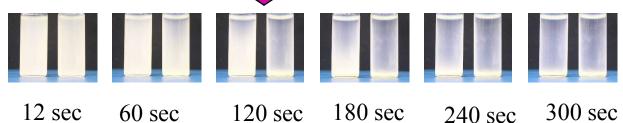
no UV after exposure 1 min UV


time = 5 sec after shaking



time = 90 sec

Azobenzene Derivatized Surface and Colloid Aggregation Response



'cis' isomer

Left sample is visible exposed Right sample is UV exposed

Sedimentation Rate Difference

Interfacial Energy Calculation

A transition from negative to positive interfacial energy is desired for photo control of wetting characteristics.

$$\Delta G_{131} = -2\left(\sqrt{\gamma_1^D} - \sqrt{\gamma_3^D}\right)^2 - 4\left(\sqrt{\gamma_1^+ \gamma_1^-} + \sqrt{\gamma_3^+ \gamma_3^-} - \sqrt{\gamma_1^+ \gamma_3^-} - \sqrt{\gamma_3^+ \gamma_1^-}\right)$$

	Pre exposure	Post Exposure	Change in Surface Energy
Cyclohexane	-4.69	-7.03	-2.34
Chloroform	2.72	13.51	10.78
Tetrahydrofuran	-12.29	-16.31	-4.02
Diiodomethane	-2.67	-3.83	-1.16
Water	-80.14	-49.41	30.73
Formamide	-24.77	-17.46	7.31
Glycerol	-43.54	-33.54	10.00
Ethylene Glycol	-26.37	-20.52	5.85

Reversible Light-regulated Colloidal Interactions

$$\frac{\text{hv (UV)}}{\Delta \text{ or hv}}$$

$$\text{(visible)}$$

Approach: Utilize reversible photochemical reaction

$$\frac{\text{hv (UV)}}{\Delta \text{ or hv}}$$

$$\text{closed form}$$

$$\text{Spirobenzopyran (SP)}$$

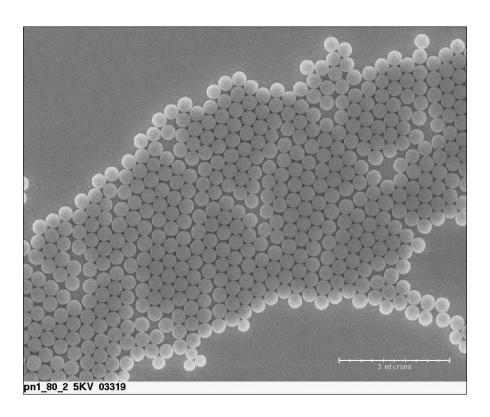
$$\frac{\text{hv (UV)}}{\Delta \text{ or hv}}$$

$$\text{witterionic form}$$

$$\text{Merocyanine (ME)}$$

• Reversible aggregation of SP-coated colloidal particles in non-polar solvents K. Ichimura, et al. *J. Mat. Chem.* **4**, 883 (1994)

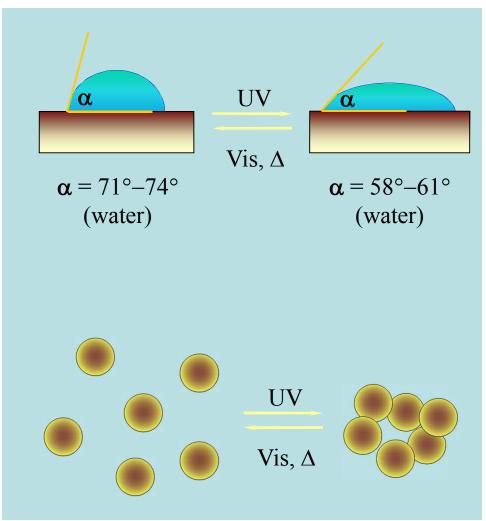
Demonstrate Reversible aggregation and dispersion of colloidal particles by light based methods.


Particle system: Silica

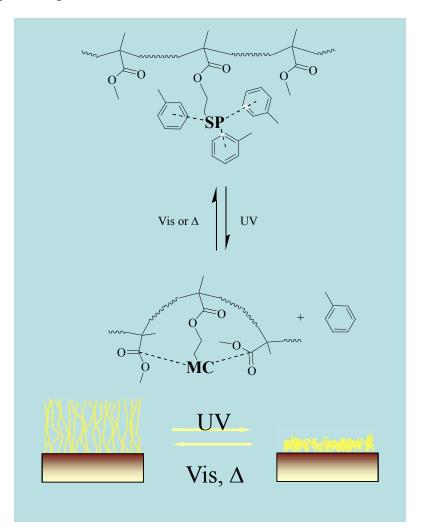
- monodisperse,
- spherical
- common model system
- surface chemistry can be modified using silanes

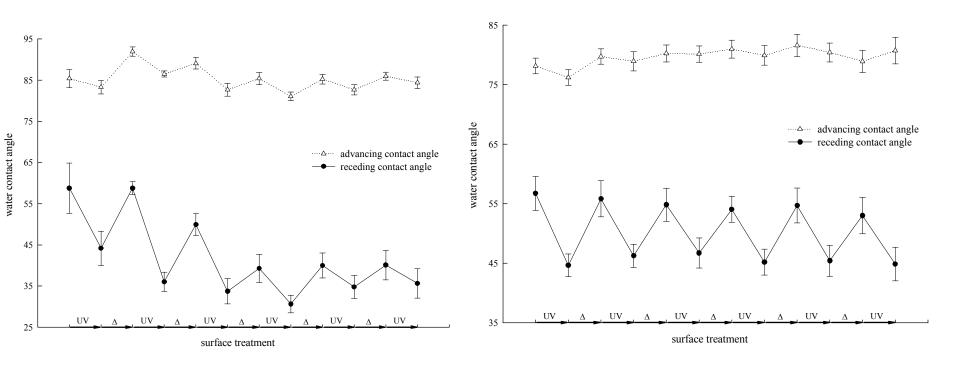
Organic component: spiropyran

- large dipole moment change
- forms a zwitterionic state
- literature states solubility changes of SPMMA polymers in nonaqueous solvents


Approach: derivatize particles with layers of photo-switchable polymer.

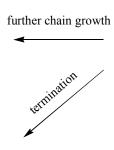
Effects of Photo-Isomerization on Spiropyran Monolayers


- Spyrobenzopyran monolayers on flat surfaces demonstrate reversible wettability change
- Contact angle altered by as much as 13° (Garcia, *et al.*)
- Colloidal particles covered with SP monolayers and dispersed in non-polar solvents undergo reversible aggregation (Ichimura, *et al.*)
- Change brought about by marked polarity difference between closed SP and open ME forms


Effects of photo-isomerization on SP/MMA polymers

- Free SP/MMA polymers reduce solution viscosity upon UV irradiation due to polymer chain shrinkage (Irie *et al.*, Golburt *et al.*)
- Chain shrinkage is most pronounced in nonpolar solvents (*e.g.*, toluene) and disappears in polar media (*e.g.*, dichloroethane)
- Process caused by specific intramolecular solvation of polar merocyanine form by MMA ester side groups in competition with solvation by solvent
- Polymer shrinkage also demonstrated on flat surfaces by as much as 30 nm for 45 nm thick films in non-polar solvents (Ito, *et al.*)

Wetting of SPMMA monolayers versus SPMMA-co-MMA (20% SP) polymers



✓ Loss of switching ability is prevented by using polymeric layers instead of organic monolayers.

Atom Transfer Radical Polymerization (ATRP) Reaction Mechanism

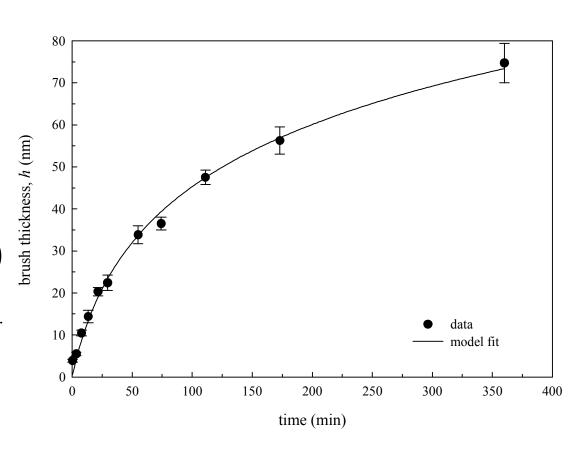
Sio2
$$(CH_2)_{11}$$
-O C -Br + $Cu(I)$ Br SiO_2 $(CH_2)_{11}$ -O C • + $Cu(II)$ Br₂

'active' chain

$$\begin{array}{c|c} + Br^{\bullet} & - Br^{\bullet} \\ \text{deactivation} & \text{activation} \\ \hline \\ \text{SiO}_2 & -(\text{CH}_2)_{11} - O & C - Br + \text{Cu(I)}Br \\ \hline \\ \text{O} & \text{O} \\ \hline \\ \text{n-1} & \text{O} \\ \hline \end{array}$$

'dormant' chain

Properties:


- Controlled growth of uniform layers
- Reaction kinetics allow for thickness control
- Requires oxygen free environment or techniques
- Large number of catalyst systems to test

ATRP Reaction Kinetics for SP/MMA Colloids

Model
$$\frac{d[A]}{dt} = -k_1[A]^2$$

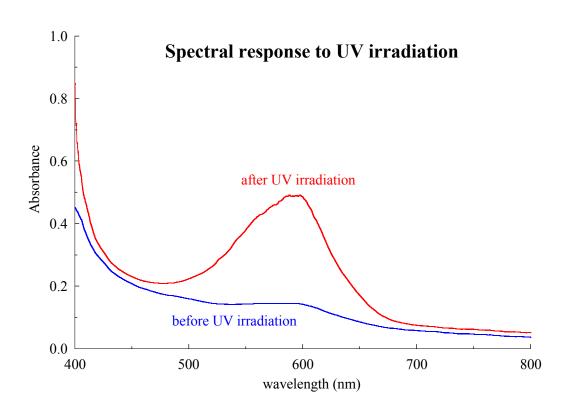
$$\frac{dh}{dt} = k_2[A]$$

$$h = (k_2/k_1)\ln(1 + k_1[A]_0 t)$$

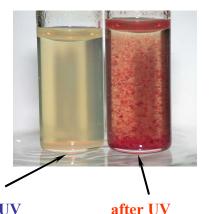
• Fit to the model of Kim *et al.*† indicates the presence of termination reactions

† J. –B. Kim, W. Huang, M. L. Bruening, G. L. Baker, "Synthesis of Triblock Copolymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization," *Macromolecules* **35** (2002) 5410-5416.

Photo-induced switching


SiO2
$$(CH_2)_{11}$$
—O $(CH_2)_{11}$ —O $(CH_2)_$

- In non-polar solvents spyrobenzopyran (SP) molecule exists in closed form
- UV excitation causes ring-opening photoisomerization
- After UV treatment molecule exists in zwitterionic merocyanine (ME) form
- Corresponding polarity change alters polymer conformation and polymer-solvent interactions
- Process is reversible (albeit slower) upon exposure to visible light or heat



Behavior of core-shell silica/polymer particles in toluene

(data shown for 284 nm silica core and 20 nm SP/MMA polymer shell containing 20 mol % of SP molecules)

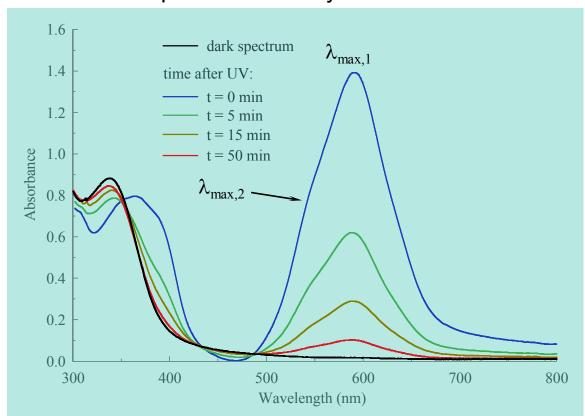
Photo-induced aggregation

before UV particles well dispersed with SP molecules in closed, non-polar

form

particles aggregate and sediment with SP molecules in

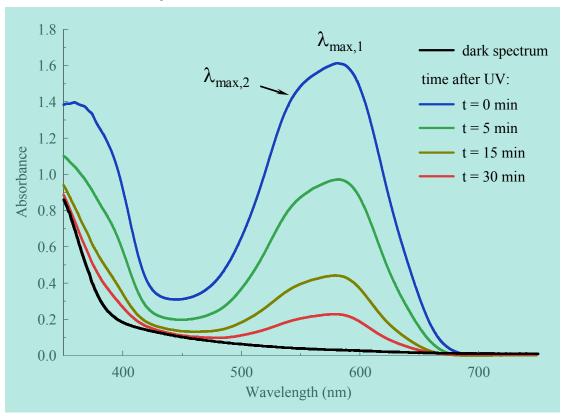
more polar, open


form

- aggregation induced in < 1min by λ =366 nm light from a hand-held lamp
- particles easily re-disperse upon shaking after visible light irradiation (λ>420 nm) or heating

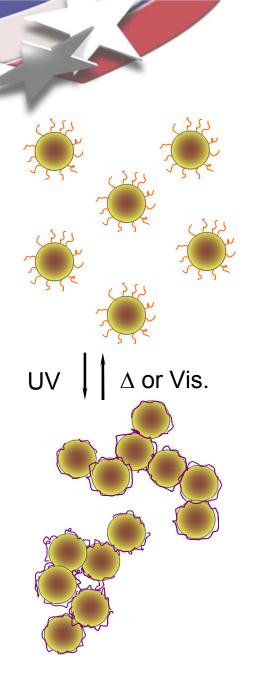
UV-Vis Characterization

Spectra in Tetrahydrofuran Solvent

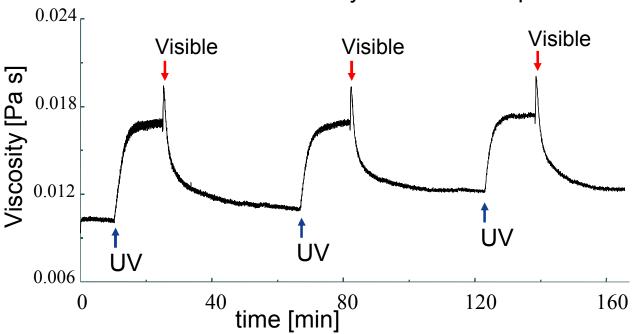

Spectrum of 20% SP / 80% MMA polymer attached to 1 μ m SiO₂ colloids at concentration of 0.079% wt/wt in THF

- $\lambda_{\text{max},1} = 589 \text{ nm due to ME}$
- $\lambda_{max,2} \approx 550$ nm due to ME-SP aggregates
- identical spectra obtained for attached and free polymers
- SP monomer shows only $\lambda_{max,1} = 587$ nm due ME
- SP micro-environment within SP/MMA polymers favors ME-SP aggregation

UV-Vis Characterization


Spectra in Toluene Solvent

Spectrum of 20% SP / 80% MMA polymer attached to 1 μ m SiO₂ colloids at concentration of 0.20% wt/wt in toluene


- $\lambda_{\text{max},1} = 581 \text{ nm due to ME}$
- $\lambda_{max,2} \approx 545$ nm due to ME-SP aggregates
- $\lambda_{max,1}$ diminished relative to $\lambda_{max,2}$ in toluene compared to THF
- This points to better ME solvation by THF vs. toluene
- $\lambda_{max,1}$ and $\lambda_{max,2}$ blue shifted in toluene compared to THF
- This points to more polar ME micro-environment in toluene vs. THF

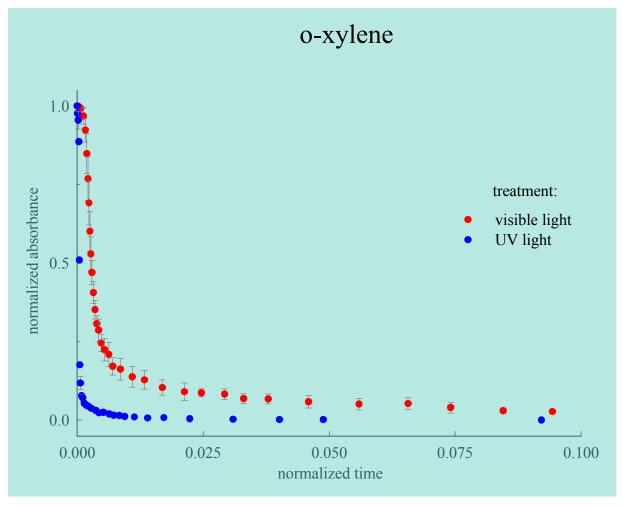
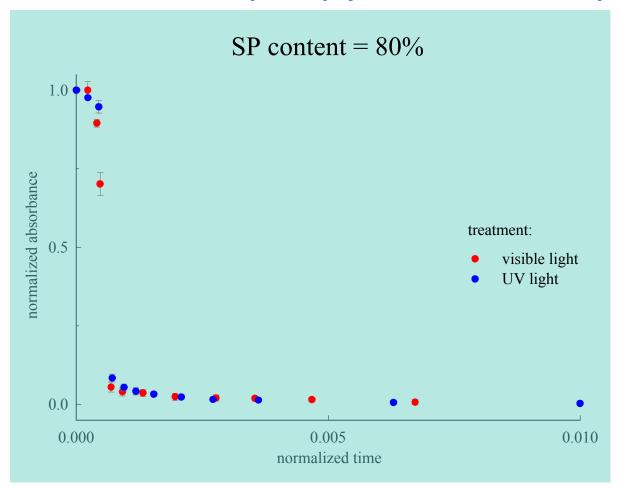

Photo-control of viscosity in colloidal systems

Photo-reversible Viscosity of colloidal dispersion

1 μm SP/MMA modified colloids (20% SP) in toluene at ~30 vol.%

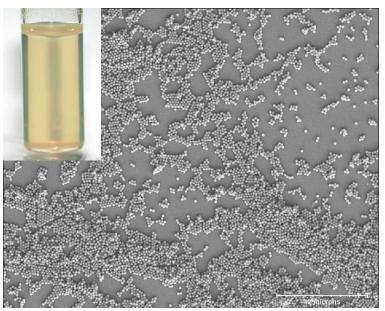
Sedimentation in different solvents

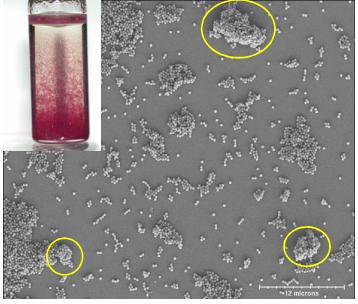

- Surface Layers contain 20 mol% spirobenzopyran molecules in PMMA shell.
- Time axis normalized by theoretical sedimentation time (Stokes equation)

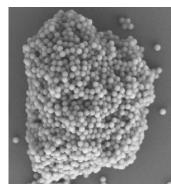
$$t = \frac{18\eta_L H}{a^2 (D_p - D_L)g}$$

- Decrease in solvent polarity causes stronger aggregation
- UV irradiation precipitates stronger aggregation in in border-line solvents

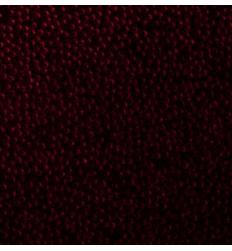
Sedimentation with different spiropyran content particles

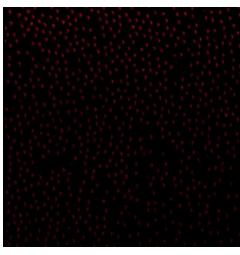

- Sedimentation studied in toluene solvent for each SP concentration
- Increase in SP content causes stronger aggregation
- UV irradiation precipitates stronger aggregation in in border-line solvents
- Photo-aggregation is sensitive to solvent and %SP; polymer solubility factors can be adjusted for different systems.

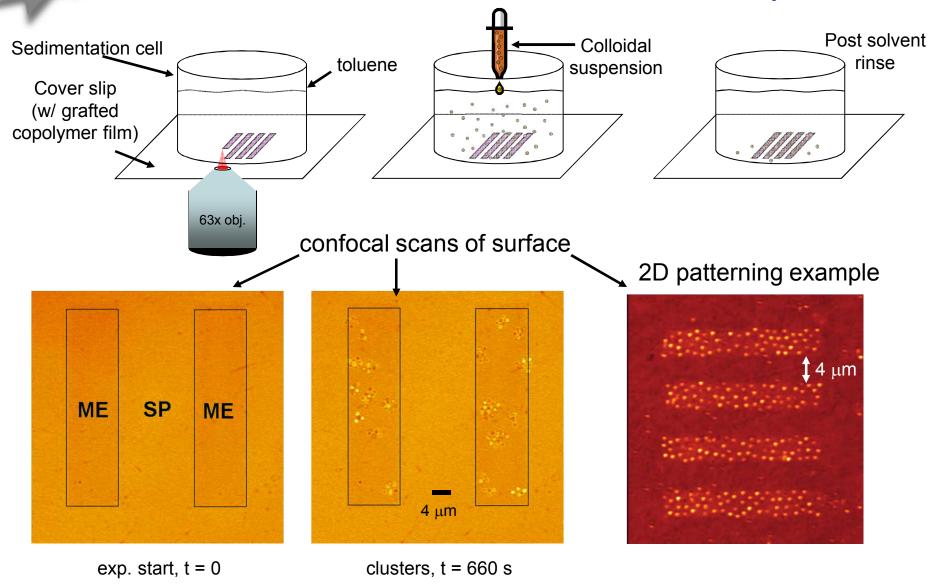



Sediment Comparison via SEM and Confocal Microscopy

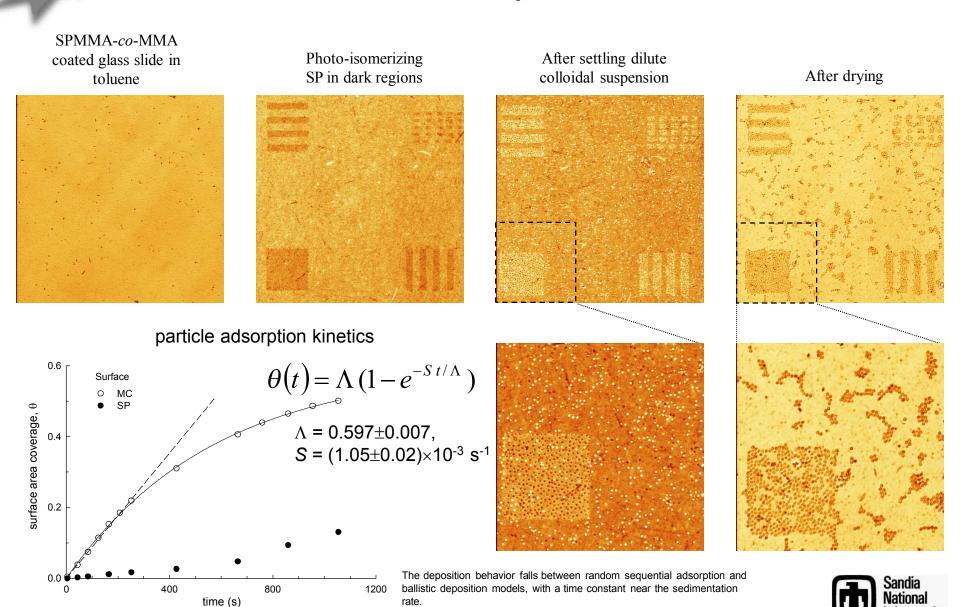
No UV exposure


After 1 min UV irradiation (λ =366 nm)

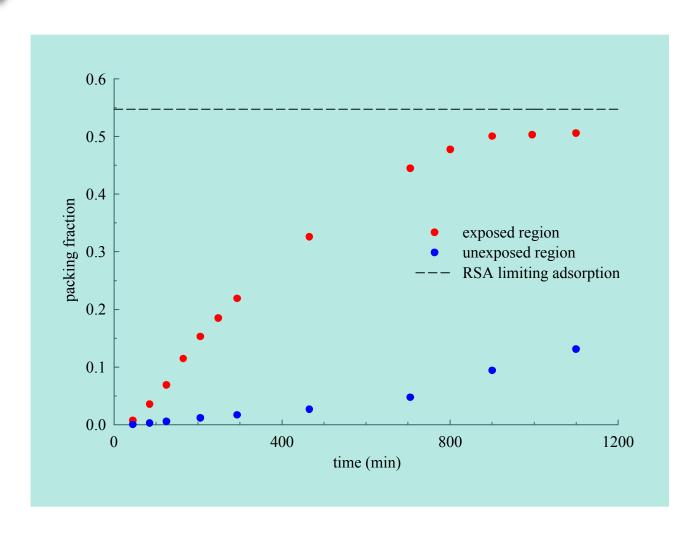



- particles form well spread mono- and multilayers
- predominant hexagonally packed domains

- larger aggregates present in addition to mono- and multilayers
- aggregates characterized by random particle packing

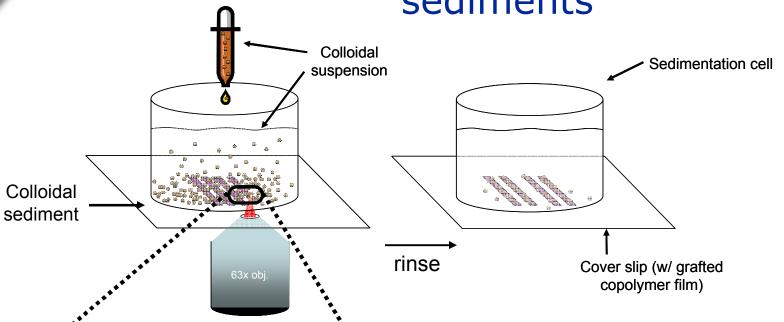


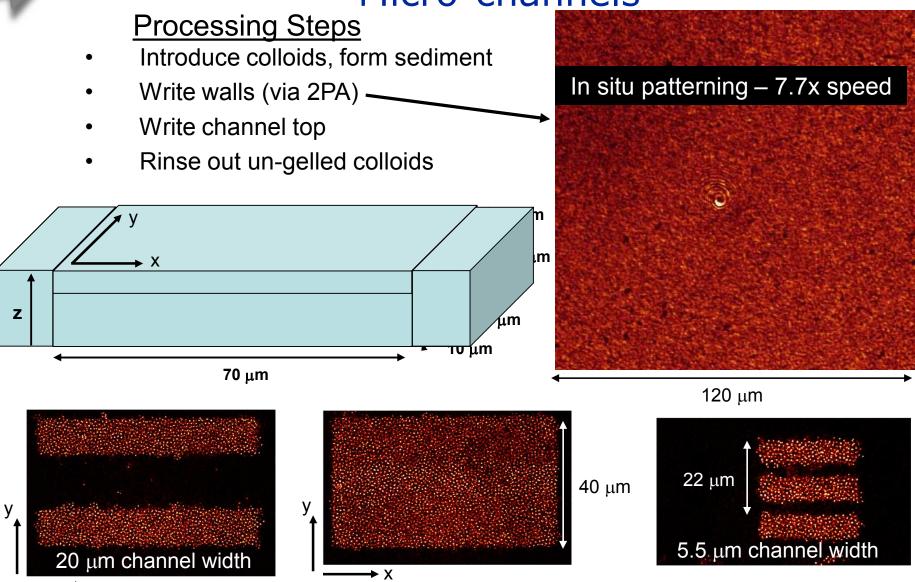
2D Photo-defined Colloidal Adsorption



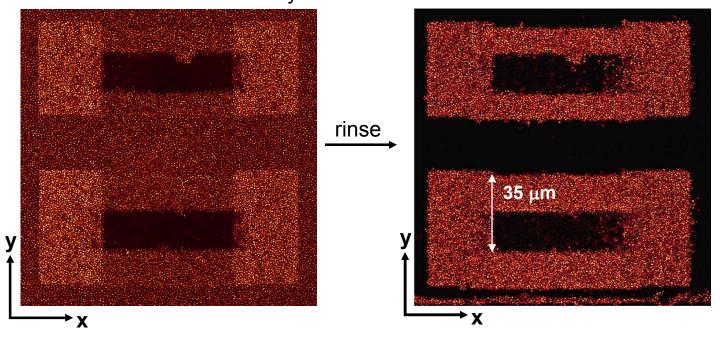
M. Piech, M. C. George, N. S. Bell and P. V. Braun:, Langmuir, 22, 1379-1382 (2006)

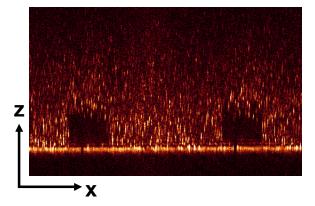
Photo-Actuated Deposition in Toluene

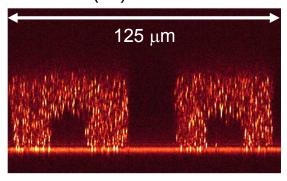

Kinetics of photo-actuated deposition

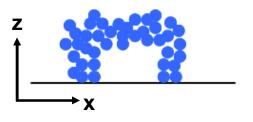

- Initially particles adsorb 14× more selectively to the exposed regions containing ME
- Following rinsing and drying particle density is 10× higher in exposed regions

3D laser gel-writing in colloidal sediments

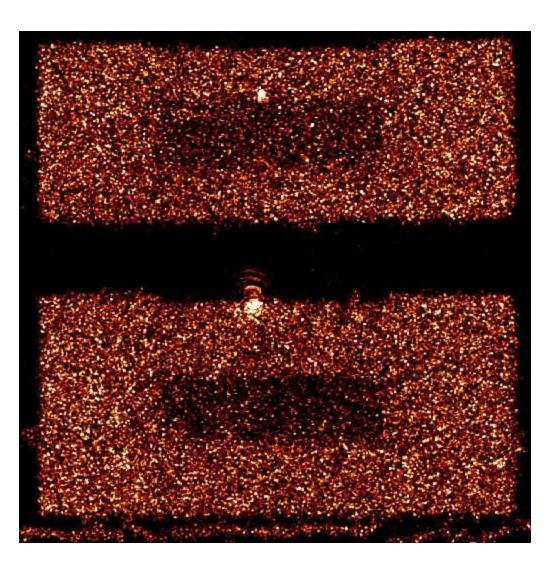

Photo-Patterned Colloidal Gel Micro-channels


M. George, A. Mohraz, M. Piech, N. Bell, J. Lewis, and P. Braun (unpublished work)


Photo-Patterned Colloidal Gel Micro-cavity


confocal xy reflectance sections

confocal reflectance cross-sections (xz)



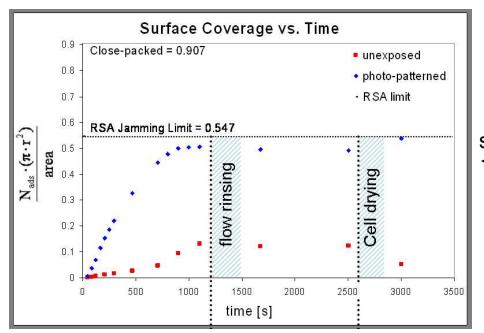
Trapped Colloidal Particles

Processing Steps

- form a colloidal sediment
- Write walls (via 2PA)
- Write channel top
- Rinse out un-gelled colloids
- Observe Brownian motion of contained colloids

Conclusions

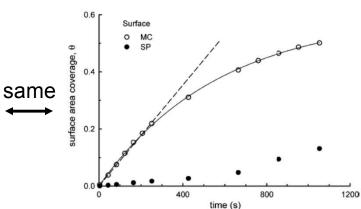
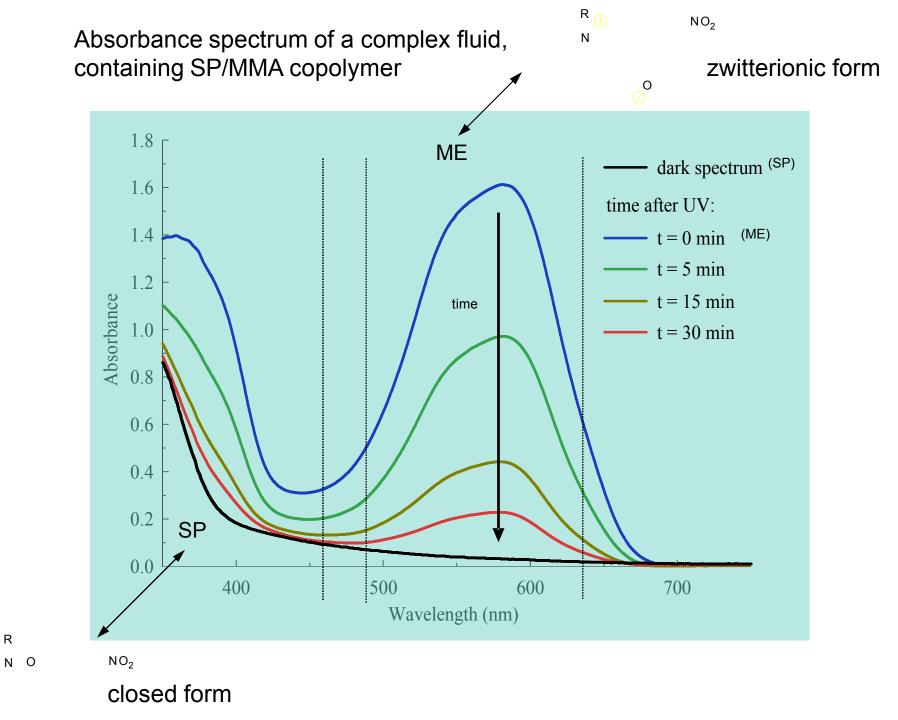
- 1. Photochromic molecules show the capability to influence macroscopic phenomena
- Changes in optical and surface energy of modified surfaces have been detected by UV/VIS and contact angle measurements, respectively.
- 3. Modeling of Surface Energy Parameters gives greater insight into the mechanisms of surface energy control and allows screening of systems to generate desired photowetting effects.
- 4. A colloidal system has demonstrated reversible aggregation and dispersion phenomena.
- 5. Polymer layers show greater cycle lifetime than monolayers.
- 6. Chromophoric molecules act as dopants in modifying polymer behavior and show promise for more application.

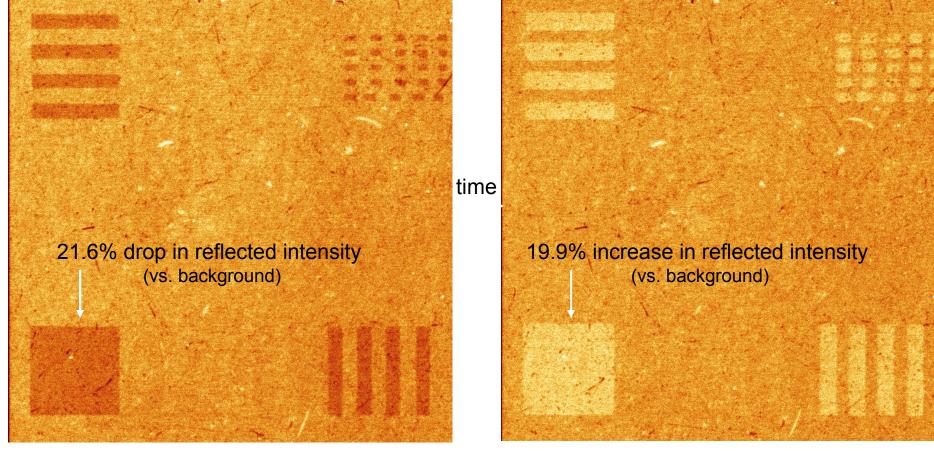


Adsorption kinetics

RSA of Disks \Rightarrow Jamming coverage 0.547 +/- 0.0002

Evans, J.W. Rev. Mod. Phys., 65, No. 4, (1993)

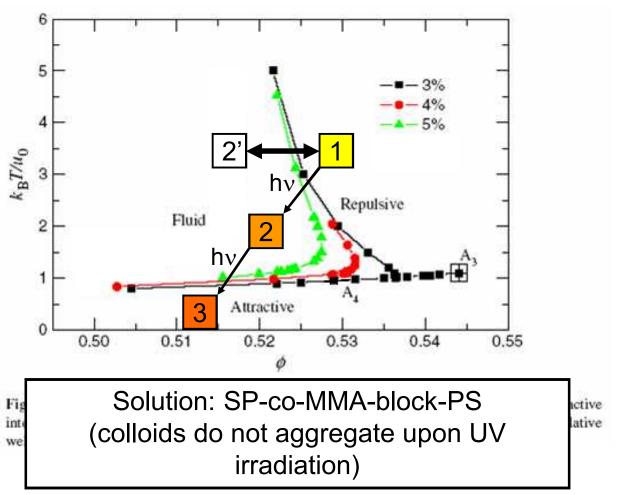




Figure 3. Plot of fractional surface coverage as a function of time for colloids depositing onto the photoswitched (MC) and unexposed (SP) regions of the substrate modified with an SP-co-MMA

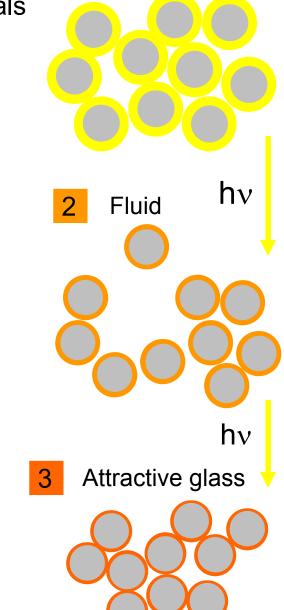
M. Piech, M. C. George, N. S. Bell and P. V. Braun:, *Langmuir*, **22**, 1379-1382 (2006).

R

Confocal Reflectance Images (458nm)



Initial image taken after 2-photon exposure


After several minutes (& additional exposure)

Initial drop in reflected intensity... followed by brightening with time !?!?!

Phase diagram for colloids with hard core repulsionand short range attractive square well potentials

Luca Cipelletti and Laurence Ramos, "Slow dynamics in glassy soft matter", *J. Phys.: Condens. Matter* **17** (2005) R253-R285

Repulsive glass

Synthesis and Light-induced Assembly of Photo-responsive Colloids

Matthew George¹, Ali Mohraz¹, Kyle Plunkett², Martin Piech³, Nelson Bell³, Jeffrey Moore², Jennifer Lewis¹, and Paul Braun¹

- Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois
- 2. Chemistry, University of Illinois, Urbana, Illinois
- 3. Electronic and Nanostructured Materials, Sandia National Laboratories, Albuquerque, New Mexico.

Acknowledgments

Additional contributors:

- Marcin Piech, United Technologies Corporation
- Dongqing Yang and Tom Picraux, University of Arizona, CINT
- Matt George and Paul Braun, UIUC
- Jacinta Conrad
- Stephanie Pruzinsky

Facilities:

- Sandia National Laboratory; Albuquerque, NM
- Beckman Institute Microscopy Suite; Urbana, IL
- Frederick Seitz Materials Research Laboratory; Urbana, IL

Funding:

- CINT Sandia National Laboratory
- Army Research Office MURI Grant
- Department of Energy