

# BSL-3 General Procedures

India  
June 2007

[www.biosecurity.sandia.gov](http://www.biosecurity.sandia.gov)

SAND No. #####

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,  
for the United States Department of Energy's National Nuclear Security Administration  
under contract DE-AC04-94AL85000.

# Rationale

---

---

- The general facility procedures are scoped to provide overall biosafety and biosecurity practices and procedures for working in any of the CSIR BSL-3 laboratories
- Specific standard operating procedures (SOP's) are required and will include biosafety and biosecurity practices unique to each BSL-3 laboratory and the work conducted within that laboratory space
  - Areas requiring specific SOPs will be identified

# Priority Procedures

---

---

- **Entry Procedures**
- **Proper PPE Procedures**
  - **Respiratory Protection**
    - Fit Testing
    - Medical Evaluation and clearance
- **Decontamination Procedures**
- **Incident Response Procedures**
- **Medical Surveillance**



# Risk Assessment

---

---

- **SOPs should be based upon a biosafety and biosecurity risk assessment designed to assess the unique risk:**
  - **Procedures**
  - **Agent Based Hazards**
    - **Safety**
    - **Security**
  - **Other Hazards**
    - **Chemical**
    - **Radiological**
  - **Environment**



# SOP

---

---

- **Standard Operating Procedures (SOPs)**
  - Written instructions that document a routine or repetitive activity
  - Detail of processes necessary to perform a job safely and properly
  - Describe both technical and administrative practices and operations
  - Specific to an organization or laboratory



# SOP Purpose

---

---

- **Ensure all relevant individuals understand the work**
- **Document how activities shall be performed**
  - Facilitate consistency which supports data quality
  - Ensure compliance with regulations
  - Help maintain quality control
- **Types**
  - **Repetitive technical activities**
    - Clinical specimen receipt and processing
    - Proper use of biosafety cabinet
    - Diagnostic test procedures
  - **Administrative procedures**
    - The process for proper documentation of training
    - Laboratory Access Authorization

# SOP Sections

---

- **Title Page**
- **Table of Contents**
- **Required Controls**
  - Limited Access
  - Containment
- **Required Training**
  - Personal Protective Equipment
  - Equipment
- **Body**
  - Brief description of the procedure
  - Risks
  - Definitions
  - Procedures
- **Emergency Response Measures**
- **References**
  - Other relevant SOPs
  - Relevant Guidelines and Regulations
- **Contact Information**
  - Principle Investigator
  - Responsible Official
  - Biosafety Officer
  - Engineering and Maintenance



# Body of the SOP

---

---

- **Format**
  - Easy to read and concise
  - Sufficient detail to enable persons with basic knowledge to successfully reproduce procedure without supervision
- **Title and brief description of the procedure or experiment**
- **Special health and safety precautions**
- **Associated Risks**
  - Burns (Autoclaves; UV lights)
  - Rotor failure
- **Definitions**
- **Experience Requirements**
  - Formal training
  - Supervision
  - Documentation and evaluation of training
- **Procedures**
  - Step-by-step description of the procedure
  - Steps written in the order they occur

# Biosafety/Biosecurity Manual Outline

---

---

- 1. Entry procedure**
- 2. Working within the laboratory**
  - Including PPE selection and Use
- 3. Exit procedure**
- 4. Autoclaving/Decontamination**
- 5. Movement of equipment in and out**
- 6. Animal Procedures**
- 7. Transport of infectious material**
- 8. Communication and data transmission**
- 9. Lab Status when not in use**
- 10. Requirements of incident response plans**
- 11. Medical Surveillance**

# 1. Entry Procedures

---

---

- 1. Secure Entry**
- 2. Verify Airflow**
- 3. Enter Laboratory Space**



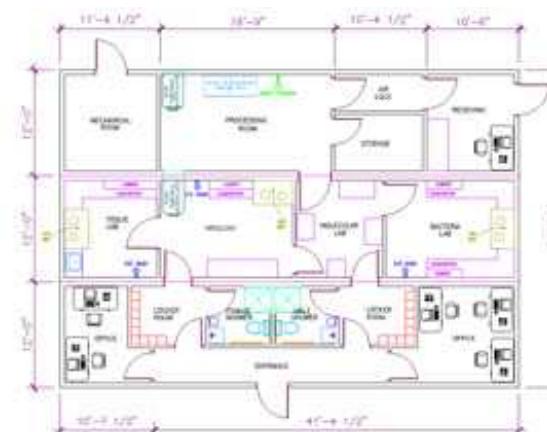
## 1.1 Secure Entry

---

- **Authorized and controlled access**
- **SOP to identify those authorized**
- **SOP to control access**
  - Procedural
  - Physical



## 1.2 Verify Airflow


---

---

- **No entry into laboratory until airflow checked**
- **SOP to identify proper flow rate**
- **SOP to identify logging mechanism**
- **SOP to determine response plan if airflow not in compliance**

## 1.3 Entry into Laboratory Space

- Passage from outer area into anteroom and from anteroom into containment area
- Facility layout specific
- Location for Donning PPE



## 2. Working within the Laboratory

---

---

- 1. General procedures**
- 2. Use of personal protective equipment**
- 3. Use of BSC**
- 4. Proper use of centrifuges and microfuge**
- 5. Microfuge**
- 6. Minimization of aerosol production**
- 7. Sharps handling and disposal**
- 8. Vacuum protection**
- 9. Decontamination/disinfection (lab cleaning)**
  - 1. Lab**
  - 2. Equipment**
- 10. Waste collection and disposal**

## 2.1 General Procedures for working in a lab

---

---

- **The laboratory itself is the first layer of containment**
- **The use of good laboratory practices and appropriate microbiological techniques**
  - Being aware
  - Proper planning
  - Understanding the proper care and use of equipment
  - Avoiding distractions as much as possible
- **The laboratories must have SOPs for the general procedures within each laboratory which are based upon the risk assessment**

## 2.2 Use of PPE

---

---

- **Dependant upon all hazardous material to be worked with**
  - Biological
  - Chemical
  - Radiological
- **Should be used in conjunction with engineered controls**
  - Radiation shielding and chemical fume hoods may be required

1. **Gowns**
2. **Gloves**
3. **Eye and mucosal membrane protection**
4. **Respiratory Protection program**

## 2.2.1 Gowns

---

---

- **Laboratory coats or gowns should be worn when there is a potential for splashing or spraying**
- **Gowns should be closed in the front and provide the appropriate level of fluid-resistance**
- **Gowns should have tight fitting wrists or elasticized sleeves when working in a Biosafety Cabinet (BSC)**
  - Water resistance gauntlets can also be used to provide additional arm protection.
- **Hoods, caps and shoe covers provide splash and spill protection**
- **Closed toe shoes are suggested**

## 2.2.2 Gloves

---

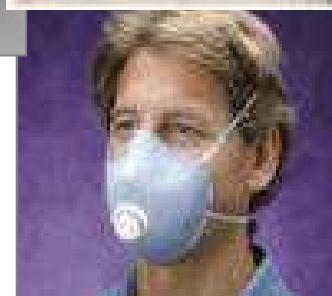
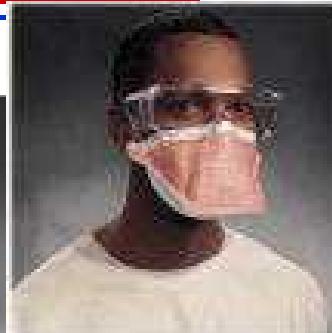
---

- **Gloves should be worn when performing all laboratory procedures**
- **Vinyl or latex gloves are effective against skin exposure to infectious materials**
  - Not intended to protect against needle or sharp penetration
    - Multiple layers of vinyl or latex gloves
    - Heavyweight rubber utility gloves
  - **Gloves should be changes when visibly contaminated, torn or defective and upon completion of work**
- **The outside of the gloves is considered contaminated**
- **Gloves should be removed using aseptic techniques to protect the skin from contamination**



## 2.2.3 Eye and mucosal membrane protection

---



---

- **A face mask or goggles must be used**
  - When working with blood borne pathogens
  - Or when an infectious material may become aerosolized and work can not be conducted within a BSC
- **A full face mask provides additional protection from the unintentional touching of mouth, eyes and nose with a contaminated gloved hand**



## 2.2.4 Respiratory Protection

- **Respiratory protection is used to provide protection from particles entry into the mouth, nose and lungs**
- **N95/N100 Respirator**
  - **Disposable**
  - **Classified by:**
    - Filter efficiency – 95% (N95), 99% (N99), 99.97% (N100)
    - Series – N (not oil resistant), R (oil resistant), P (oil proof)
- **Powered Air Purifying Respirator (PAPR)**
  - Tight-fitting and loose-fitting models
  - **Disposable hood**
  - **Breathing tube**
  - **Motor/blower unit**
  - **Cartridges**
  - **Nickel Cadmium (NiCad) battery pack**
  - **Used when**
    - Persons with facial hair or facial anomalies that interfere with the seal cannot wear an N95 respirator
    - High-risk aerosol generating procedures present
- **Surgical masks are not respirators**
  - Provide droplet protection, not aerosol protection
  - Provide patient protection
  - Keeps hands out of mouth



## 2.2.4 Respiratory Protection (con't)

---

---

- **Medical evaluation**
  - Determine individual's fitness to use a respirator
  - Physician or other healthcare provider
    - Medical evaluation questionnaire
    - Physical exam at physician's discretion
- **Fit test**
  - Accepted/approved qualitative or quantitative protocol
  - When
    - Prior to initial use
    - Annually
    - Whenever different respirator is worn
    - Whenever a problem reported
    - Whenever a change (e.g. facial change, weight loss) is reported
- **Training**
  - Criteria for respirator selection
  - Limitations of respirator types
  - Proper method for donning
  - Checking face piece for seal and proper operation
  - Respirator maintenance

# Types of Cabinets

---

|                                            | Personnel | Product | Environment |
|--------------------------------------------|-----------|---------|-------------|
| <b>Chemical Fume Hoods</b>                 | X         |         |             |
| <b>Laminar Flow Clean Benches</b>          |           | X       |             |
| <b>Class I Biological Safety Cabinet</b>   | X         |         | X           |
| <b>Class II Biological Safety Cabinet</b>  | X         | X       | X           |
| <b>Class III Biological Safety Cabinet</b> | X         | X       | X           |
| <b>Isolators</b>                           | X         | X       | X           |



## 2.3 Use of BSC

---

- 1. Start Up**
- 2. Decontamination**
- 3. Proper Use**
- 4. Work Techniques**
  - Waste Collection
  - Spill Clean up
- 5. Final purging and Wipe down**
- 6. Shut down**
- 7. Maintenance and Routine Cleaning**



## 2.3.1 Start up

---

---

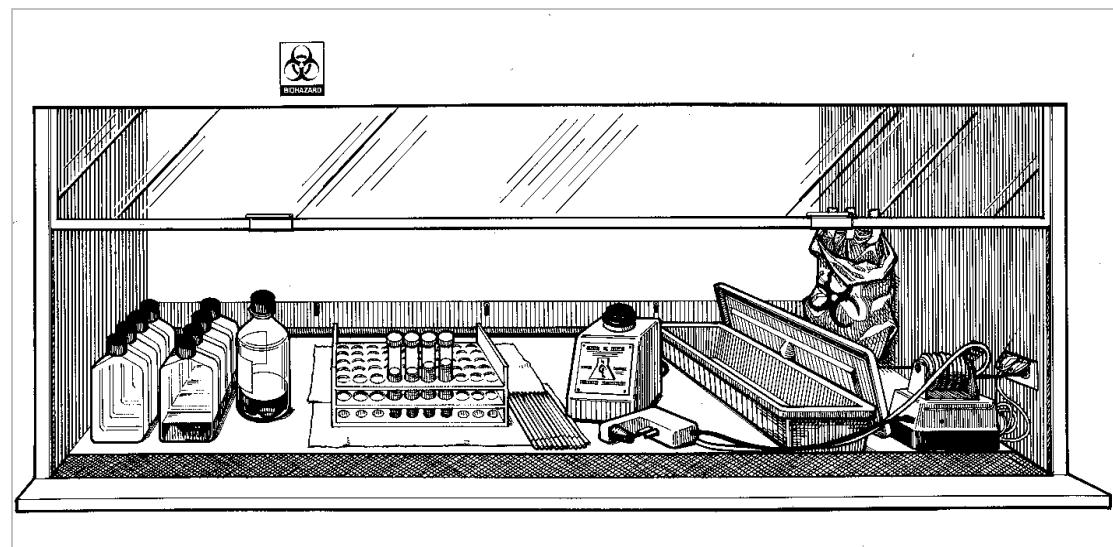
- 1. For class II B2 cabinets, the cabinets are controlled by the HVAC system and are therefore on at all times**
- 2. For laboratories containing other types of BSC, before work starts the BSC should be powered for at least 1 minute before starting use**
- 3. Sash alarms should not be powered off at any time**
- 4. Gauges should be checked to insure cabinet is operating within the certified parameters**

## 2.3.2 Decontamination

---

---

- The BSC should be wiped down with a proper disinfectant
- The SOP will identify the proper disinfectant and contact time
  - E.g. A bleach solution with a following ethanol wipe down




## 2.3.3 Proper Use of BSC

---

---

- Place all needed equipment into the BSC
- Do not over crowd or block airflow
- Place the equipment so is it possible to work from a clean side to a dirty side
- Wait for the airflow to resume, approximately 2 to 3 minutes, before starting work



## 2.3.4 Work Techniques

---

---

- **The laboratory SOP must define the proper work technique for working within the BSC**
  - Must be specific to the work to be conducted
  - Must include the required PPE, address the use of flames in BSC, blocking airflow, arm movement, sash level, etc
- **Waste Collection**
  - Any waste should be disposed of within the BSC to avoid contamination outside the BSC
  - SOP must define proper waste handling
- **Spill Clean up**
  - Work should be halted as soon as possible after a spill occurs
  - Clean the spill as soon as safely possible
  - Broken glass or other sharps should be disposed of in sharps disposal with forceps or tongs
  - The laboratory SOP must detail the procedure for spill response
  - The SOP should include response to spills within the BSC grill and spills on persons working in the BSC

## 2.3.5 Final purging and Wipe down

---

- **All biohazardous waste should be placed into a proper container and removed from the BSC**
- **The BSC should be wiped down with the proper disinfectant**
  - Chemical Disinfectant
  - UV light\*



\* The US CDC, NIH and NSF agree that UV lamps are neither recommended nor required in BSC

## 2.3.6 Shut Down

---

---

- **For hard ducted BSC, turn off only the lights**
- **Other BSCs may be powered off after use**



## 2.3.7 Routine maintenance and routine cleaning

---

---

- **BSC require routine maintenance and cleaning**
- **The laboratory SOP must include the process for routine cleaning and decontamination for maintenance**



## 2.4 Proper use of centrifuges and microfuge

---


- **The laboratory SOP must define the proper use of centrifuges**
  - Utilize aerosol containment devices
  - Follow preventive maintenance procedures
- **The laboratory SOP must define the proper use of microfuges**
  - Should be used in a aerosol-proof containment device



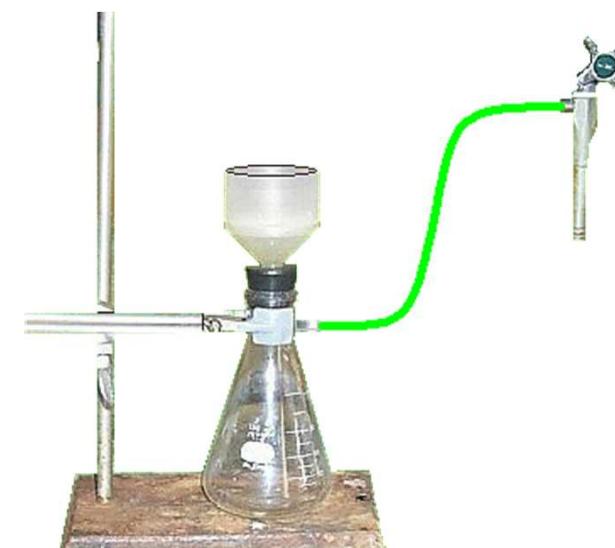
## 2.5 Sharps Handling

---

---



- **Utilize safe sharp devices**
- **Minimize sharps and glass as much as possible**
- **Keep hands away from needles and use mechanical methods for needle removal**
- **Never bend, recap or manipulate sharps by hand**
- **Dispose of entire unit into sharps container and collect reusable sharps in labeled, leak-proof container**
- **Do not overfill containers**
- **The laboratory SOP must detail the proper methods for sharp handling and disposal**




## 2.6 Vacuum protection

---

---

- Vacuum pumps must be protected from contamination using a filter
- The risk assessment will aid in the definition of the filter type and location
- The laboratory SOP must detail the proper use and type of filter used



## 2.7 Chemical Storage

---

---

- The laboratory SOP must process the storage, labeling and handling techniques for hazardous chemicals within the laboratory
- The storage and handling methods should be based upon the risk assessment
- Identify proper methods of disposal
  - Incineration
  - Permissible limits for sewer disposal



## 2.9 Spill Response

---

---

- The laboratory SOP should define the proper spill response based upon the material spilled and other specifics include sharps handling
- The SOP must be developed based upon a risk assessment
  - Should identify the PPE
  - Should identify the proper disinfectants
- Precautions for each disinfecting agent defined within the SOP should also be listed
- Spill may exceed lab ability for clean-up
  - Fumigation by biosafety office may be necessary



# 3 Exit Procedures

---

---

**The laboratory SOP must detail the exit procedures for each laboratory.**

- 1. Secure infectious materials**
- 2. Waste disposal/decontamination**
- 3. Disinfection of work surfaces**
- 4. Doff, disposal/decontamination of PPE**
- 5. Hand washing**
- 6. Exit**
- 7. Consider emergency evacuation procedures**



## 3.1 Waste Disposal/Decontamination

---

---

- **All waste should be placed into a biohazard disposal bag**
  - This bag should be clearly labeled as containing biohazardous material and be water tight
  - Any sharps to be disposed of should be placed into a sharps container which is also properly labeled
    - A sharp container should be resistant to perforation by any sharps within the container and be resistant to spills
    - Sharps should be able to be placed inside the container without opening the lid.
- **The container and all contents must be autoclaved before removal from containment**
- **If an autoclave is not available within the containment area, the biohazard container should be placed into a second outer bag**
- **The outer bag should be sealed and submerged into a decontamination dunk tank or decontaminated before removed from containment**

## 3.2 Disinfection of work surfaces

---

---

- The surface area of the laboratory should be disinfected with the proper disinfecting agent
- Each disinfecting agent has different properties
  - Concentration
  - Age of effectiveness
  - Contact time
  - Impact to the biological agent
- Disinfecting agents may also corrode equipment and surfaces.
- The laboratory SOP will define the exact disinfecting agent, contact time and procedure
- The SOP should also define the hazards associated with the disinfecting agent and proper handling and storage techniques
- MSDS should be available for all disinfectants

## 3.3 Disposal/Decontamination of PPE

---

---

- **PPE should be removed as directed in the SOP before exiting the lab or anteroom**
- **Disposable PPE should be placed into a biohazard container**
- **Reusable PPE should be decontaminated based upon manufactures recommendations and stored**



## 3.4 Hand washing

---

---

- **All personnel should wash their hands prior to leaving the anteroom or containment area**
- **If soap and water are not present, a chemical hand cleanser may also be used**



## 3.5 Exit

---

---

- **Before exiting the laboratory area**
  - Double check all equipment is in the proper state
  - All doors are closed
  - All biohazards are properly disposed of or stored
- **Sign out where required**
- **The laboratory area should be secured as determined by the SOP**



## 4 Autoclaving

---

---

- **An autoclave is a device which uses extreme heat in the form of steam and pressure to sterilize items**
- **Add water to a sealed container**
- **Items should be placed loosely within the autoclave**
- **The laboratory SOP must define the time and pressure required to fully sterilize items**
  - **The proper loading and unloading procedures**
  - **The SOP should also identify those which can not be autoclaved**
  - **The SOP must also define the verification methods for use within the laboratory**

# 5 Movement of equipment in and out

---

---

- The laboratory should have been designed to allow for large equipment movement in and out
- Equipment must be decontaminated before removal from the laboratory
- The decontamination procedure must be identified with the equipment SOP
- The method of decontamination must consider:
  - The contaminants
  - The physics of the equipment
  - The reason for its removal from the laboratory

# 6 Animal Biosafety Procedures

---

- 1. *Animal Care and Handling (1999 manual?)*  
CEPSCA**
- 2. Animal care worker**
- 3. Cage cleaning / waste disposal**
- 4. Animal Disposal**



## 6.1 Animal Care workers

---

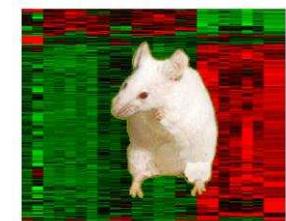
---

- **Animal care workers should be giving proper training**
  - Handling
  - Risks
  - PPE
- **Each laboratory must have a unique SOP for each species**
  - A supplemental SOP for working with infected animals
- **PPE for animal care workers should include:**
  - Protection from allergens
  - Infectious agents
  - Injuries acquired from the animals
- **Medical surveillance program**

## 6.2 Cage cleaning/waste disposal

---

---


- Cage cleaning releases aerosols which may include infectious agents and are also a strong source of allergens
- Respiratory protection should be used while cleaning cages which have not been sterilized via autoclave
- Cage cleaning may also be performed in a BSC
- The laboratory SOP must define how the cages are to be cleaned and sterilized
- The SOP must also define the method for waste disposal and transport

## 6.3 Animal Disposal

---

---

- **Autoclaving animals larger than mice not recommended**
  - To sterilize a mouse with an autoclave 1.5 hours of time is required
- **Decontamination of the animal storage container via autoclave or chemical decontamination prior to transport to an incinerator or chemical digester**
- **The laboratory SOP must define the methods for decontamination and disposal of animals**



## 7 Transport of Infectious Materials

---

---

- **CSIR must develop a policy for movement of material in and out of the containment space**
- **This should include:**
  - **The validation requirements if the material is to be used outside of a BSL-3 laboratory**
  - **The procedures for transporting material between BSL-3 laboratories**

## 7.1 Transport Between BSL-3 lab space

---

---

- Use leak proof non-breakable primary container
- Place into similar secondary container
- Label as biohazard
- Decon outer container before removal from containment



## 7.2 Transportation of material outside

---

---

- **Prior to movement outside of BSL-3 laboratory space:**
  - Infectious material must be inactivated
  - The inactivation methods must be verified
- **The inactivation and validation methods must be defined within the SOP**



# 8 Communication and Data Transmission

---

---

- **Communication and data as part of biosafety and biosecurity can include:**
  - Information regarding the laboratory airflow
  - Power grid
  - Security system
  - Personnel procedures
  - The SOPs
- **Most biosafety information should be available for all persons working within the laboratory area**
- **Biosecurity information should be protected to a level appropriate to the information**

# 9 Lab Status when not in use

---

---

- **CSIR needs to work with the laboratory engineers to determine the engineered control limitations**
- **The laboratory must remain negative, but a risk assessment along with the engineering limitation can be used to determine how negative**
- **SOPs should also identify equipment and other systems which can be shutdown when the laboratory space is not in use**
- **The SOP must also define the proper procedures for restoring the laboratory to operational levels prior to use**
- **CSIR must also define the proper methods for laboratory decontamination and scheduled maintenance cycles**
  - **The decontamination method should be developed based upon a risk assessment**

# 10 Incident Response Plan

---

---

- **Each facility must develop an incident response plan which includes the procedures for handling incidents within the BSL-3 laboratory space**
- **The response plan should be scoped to include:**
  - Large level disasters
  - Infrastructure disruptions
  - Medical emergencies
  - Biosecurity incidents
- **A specific SOP should be developed to define the response mechanism for each incident within the laboratory**
- **The SOPs should be developed based upon the risk assessment**
- **Plans should be practices and reviewed on a periodic basis**
- **Training should include all agencies involved in the response**

# 11 Medical Surveillance

---

---

- **Each facility should define the medical surveillance program for any employees with access to the laboratory and infectious material (including animal care takers)**
- **The medical surveillance program should be developed based upon the hazards and the facilities limitations**
  - The surveillance program requirements should fall out of a risk assessment
- **The program should identify:**
  - The pre-screening requirements
  - The suggested/required immunizations
  - Monitoring procedures for symptoms
  - Post-exposure practice and procedures
  - Provide information to the workers as well as healthcare providers as to the potential exposures
    - Emergency care options

# Summary

---

---

- **CSIR define policies and general procedures**
- **Laboratories to develop and implement SOPs**
- **Priority Procedures**
  - **Entry Procedures**
  - **Proper PPE Procedures**
    - **Respiratory Protection**
  - **Decontamination Procedures**
  - **Incident Response Procedures**
  - **Medical Surveillance**

