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combination of double resonance, time-delayed probing,
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Experimental parameters dictate relevant wave-mixing physics Polarization dependence of time-domain TC-RFWM  The phase term for the first two Feynman diagrams on the left is given  Polarization/excitation schemes
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Two-beam, polarization spectroscopy configuration TC-RFWM/PS is immune to thermal background Direct measurement of total decay rates in flame
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