

Time domain and level-specific investigations of collisions using picosecond two-color resonant four-wave-mixing spectroscopy: OH $X^2\Pi$ collisions in flames

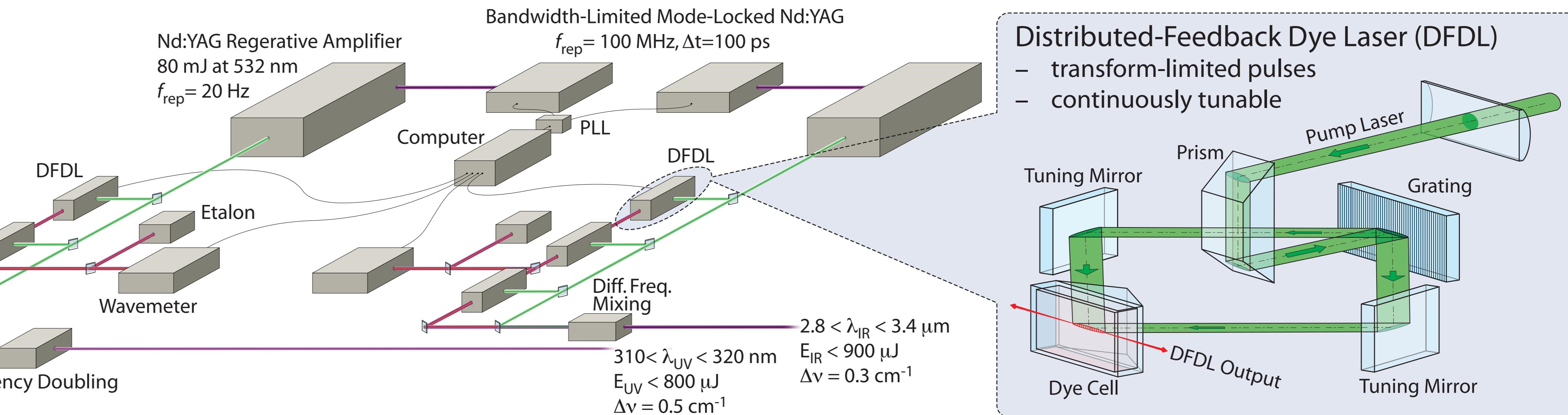
Overview

Time-resolved two-color resonant four-wave-mixing spectroscopy (TC-RFWM) provides a powerful means to investigate both inelastic and elastic collisions. This technique is demonstrated using custom-built picosecond laser systems, which produce nearly transform-limited laser pulses. The 50-ps pulses provide adequate time and spectral resolution for rotationally resolved studies of collisions affecting ground-state hydroxyl radicals in an atmospheric-pressure methane-air flame. The combination of double resonance, time-delayed probing, and independent control of the polarization of each of the four fields involved in the wave-mixing process enables rotational-level-specific measurement of the decay of laser-induced population, alignment, and orientation, as well as state-to-state transfer of these three moments.

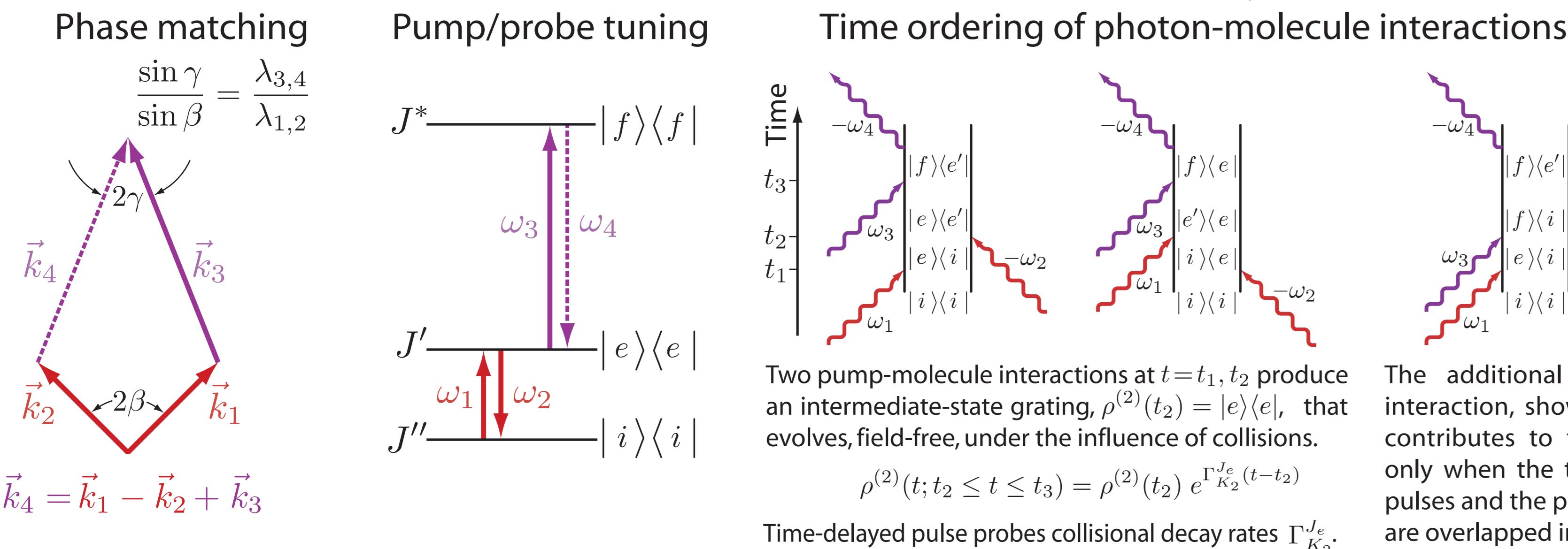
Picosecond TC-RFWM for collision studies

- Picosecond pump-probe technique
 - direct measurement of collision rates in time domain
 - requires sufficiently **short** laser pulses
 - requires **synchronization** of pump and probe lasers
- Two-color (double resonance)
 - enables rotational-level-specific measurements
 - requires sufficiently **narrowband** lasers
- Coherent spectroscopy ($\chi^{(3)}$ process)
 - sensitive to alignment/orientation
 - immune to background in flames
 - requires sufficiently **high-power** laser pulses

Custom picosecond laser system enables time-domain studies in atmospheric-pressure flames



Experimental parameters dictate relevant wave-mixing physics



Polarization dependence of time-domain TC-RFWM

The contribution to the signal electric field with polarization \vec{e}_4 resulting from each relevant Feynman diagram can be expressed as follows using diagrammatic perturbation theory.

$$[\mathbf{P}^{(3)} \cdot \vec{e}_4^*] = C \Phi \sum_K F(\vec{e}_1 \vec{e}_2 \vec{e}_3 \vec{e}_4; K) G(J'' J' J^*; K)$$

Spherical tensor analysis is used to express the problem in terms of the three ranks, K , of the state multipoles.

- $K = 0$ Population
- $K = 1$ Orientation
- $K = 2$ Alignment

The constant C contains the signal dependence on molecular number density, pump and probe field amplitudes, and transition linestrengths.

$$C = \frac{N_i \mathcal{E}_1 \mathcal{E}_2 \mathcal{E}_3}{8i\hbar^3} \frac{|\langle J^* || \mu^{(1)} || J' \rangle|^2}{2J' + 1} \frac{|\langle J' || \mu^{(1)} || J'' \rangle|^2}{2J'' + 1}$$

The phase term for the first two Feynman diagrams on the left is given below. The **second exponential term** describes dephasing resulting from motion of molecules forming the intermediate-state grating $\vec{k}_G = \vec{k}_1 - \vec{k}_2$.

$$\Phi = e^{-i(\omega_4 t - \vec{k}_4 \cdot \vec{r})} e^{-i\vec{v} \cdot [\vec{k}_4(t_4 - t_3) + \vec{k}_G(t_3 - t_2)]} e^{-\Gamma_{f_4}(t_4 - t_3)}$$

The signal dependence on electric-field polarization is contained in F . **Control of polarization** can be used to ensure signal is dependent only on population or orientation or alignment by forcing $F \neq 0$ for only one K .

$$F(\vec{e}_1 \vec{e}_2 \vec{e}_3 \vec{e}_4; K) = \sum_{Q_1 Q_2 Q_3} (-1)^{K-Q_2} (2K+1) (\vec{e}_1)^{(1)}_{Q_1} (\vec{e}_2)^{(1)}_{Q_1-Q_2} (\vec{e}_3)^{(1)}_{Q_2-Q_3} (\vec{e}_4)^{(1)}_{Q_3}$$

$$\times \begin{pmatrix} 1 & 1 & K \\ Q_1 & Q_2-Q_1 & -Q_2 \end{pmatrix} \begin{pmatrix} 1 & 1 & K \\ Q_3 & Q_2-Q_3 & -Q_2 \end{pmatrix}$$

G contains dependencies on the spectroscopic transition branches and the decay rates $\Gamma_K^{J'}$ for the K^{th} moment of the intermediate level J' .

$$G(J'' J' J^*; K) = (2J'+1) \left\{ \begin{array}{ccc} 1 & 1 & K \\ J' & J' & J'' \end{array} \right\} \left\{ \begin{array}{ccc} 1 & 1 & K \\ J' & J' & J^* \end{array} \right\} e^{-\Gamma_K^{J'}(t_3 - t_2)}$$

Polarization/excitation schemes

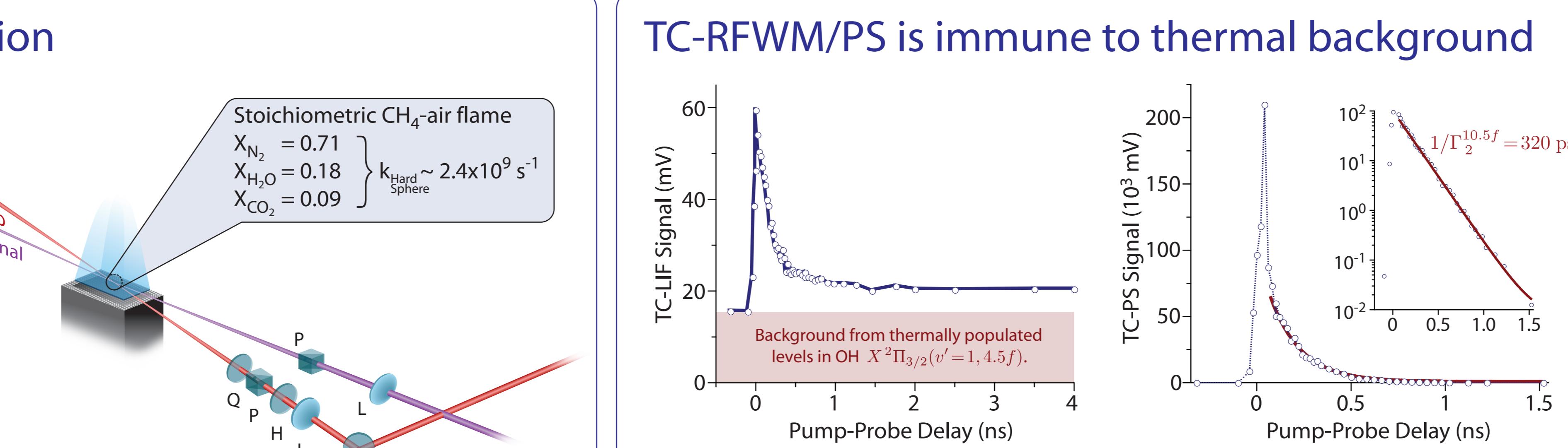
	$ F(\vec{e}_1 \vec{e}_2 \vec{e}_3 \vec{e}_4; K) G(J'' J' J^*; K) e^{+i\Gamma_K^{J'}(t_3 - t_2)}$		
Population	$K=0$	$K=1$	$K=2$
$CC \uparrow \uparrow PP$	$\frac{1}{9.07}$	0	$\frac{1}{177}$
$CC \uparrow \uparrow PQ$	$\frac{1}{9.07}$	$\frac{1}{177 J'+1}$	$\frac{1}{91.4 J'+1}$
$\dashrightarrow \uparrow \uparrow PQ$	$\frac{1}{9.14}$	0	$\frac{1}{2 J'-1}$
$\nearrow \uparrow \uparrow PP$	$\frac{1}{9.09}$	0	0
Orientation	$CC \uparrow \uparrow PP$	$\frac{1}{12.05}$	$\frac{1}{39.400}$
$CC \uparrow \uparrow PQ$	$\frac{1}{12.05 J'+1}$	$\frac{1}{2 J'-1}$	$\frac{1}{39.400 J'+1}$
Alignment	$\nearrow \uparrow \uparrow PQ$	$\frac{1}{7.890 J'+1}$	$\frac{1}{2 J'-1}$
	$\frac{1}{60.2 J'+1}$	$\frac{1}{60.2 J'+1}$	

Two-beam, polarization spectroscopy configuration

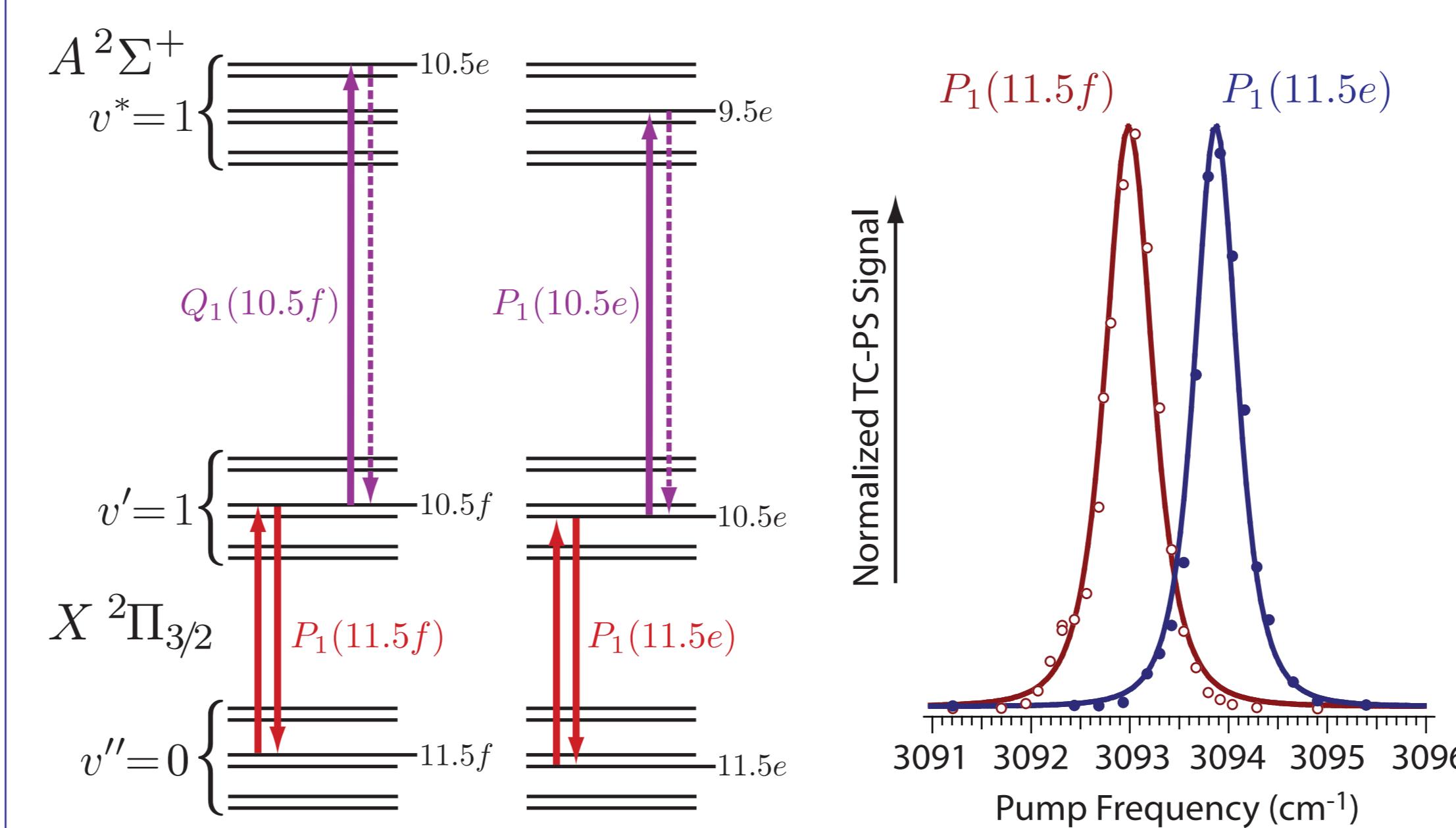
- Simplest set-up
- Automatically phase matched
- Detect component of signal with polarization perpendicular to probe polarization
 - $\vec{e}_4 \perp \vec{e}_3$
 - Susceptible to background from probe
 - Collision rate measurements are always influenced by alignment and/or orientation

Four-beam, grating spectroscopy configuration

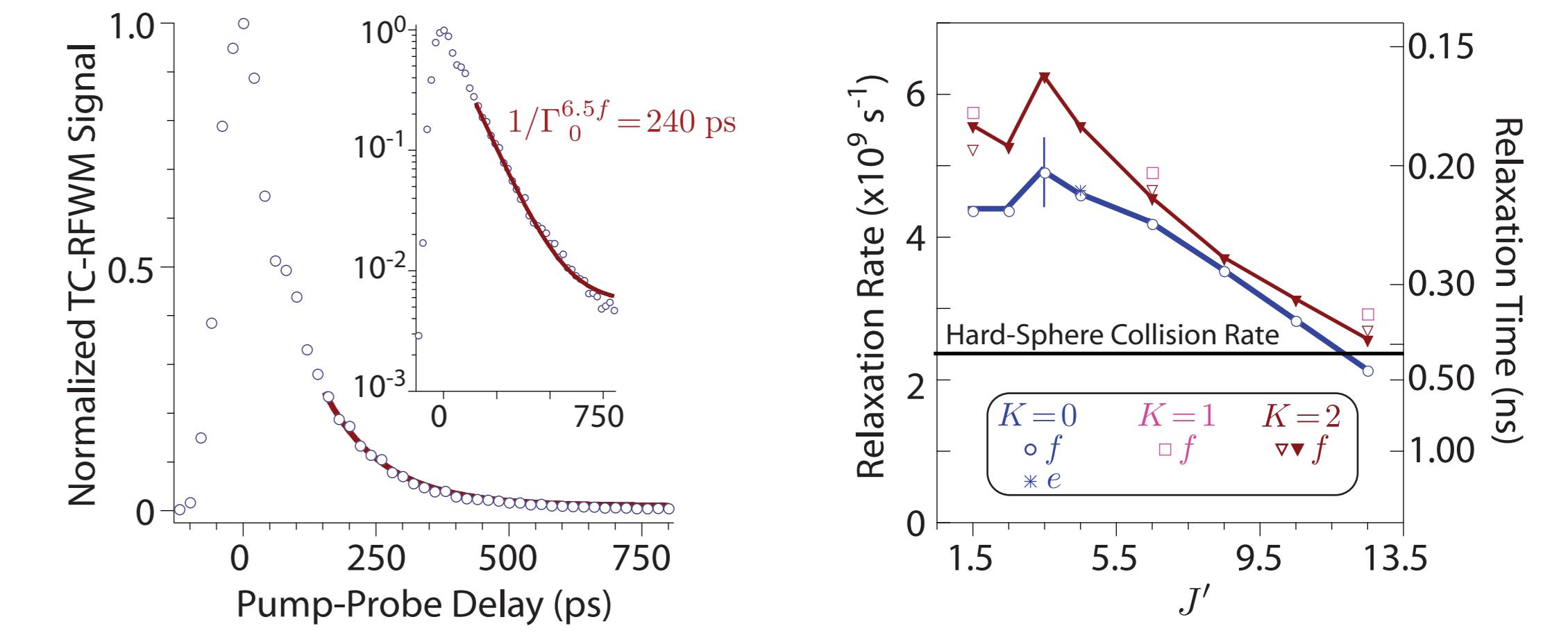
- Phase matching is critical
- Complete experimental control over polarization of all three waves driving $\chi^{(3)}$
- Polarization-specific detection
 - population
 - orientation
 - alignment



Δ-doublet resolution and sub-ns time resolution



Direct measurement of total decay rates in flame



Level-to-level transfer of population/anisotropy

