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Outline of the Presentation

• Background and perspectives of predictive capability

• Approaches to uncertainty quantification

• Distinction between aleatory and epistemic uncertainties

• Key areas of concern in extrapolation of models

• Concluding remarks

Work in collaboration with Marty Pilch and Tim Trucano, SNL,

and Scott Ferson and Jon Helton, consultants.
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What is Predictive Capability

in Science and Engineering?

• Is it the speed of the computer?

• Is it the number of finite elements we have in a simulation?

• Is it the number of atoms/molecules we have in a simulation?

• From a science perspective, predictive capability could be

viewed as the ability to generate new knowledge

• From an engineering perspective, I contend that predictive

capability should be viewed by how well we answer the

questions posed by Kaplan and Garrick (1981):

– What can go wrong?

– How likely is it to go wrong?

– What are the consequences of going wrong?
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Approaches to Uncertainty Quantification

• Risk assessment approach taken in:

– Nuclear reactor safety

– Underground storage of nuclear waste (Waste Isolation Pilot Plant

and Yucca Mountain Project)

• Key steps in quantitative risk assessment (QRA):

– Identify initiating events, fault trees, and event trees

– Characterize all sources of uncertainty according to aleatory and

epistemic

– Propagate uncertainties through the computational model

– Characterize system responses according to aleatory and

epistemic uncertainty

– Conduct sensitivity analysis to determine major sources of

uncertainty in system responses
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Aleatory and Epistemic Uncertainty

• Aleatory uncertainty is an inherent variation associated with the

physical system or the environment

– Also referred to as variability, irreducible uncertainty, and stochastic

uncertainty, random uncertainty

• Examples:

– Variation in weather conditions

– Variation in manufacturing and assembly of systems

• Epistemic uncertainty is an uncertainty that is due to a lack of

knowledge of quantities or processes of the system or the

environment

– Also referred to as subjective uncertainty, reducible uncertainty, and

model form uncertainty

• Examples:

– Lack of experimental data to characterize new materials and processes

– Poor understanding of physics phenomena

– Lack of experimental data/testing for complete systems
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Propagation of Uncertainties

The propagation of uncertain input quantities through a

mathematical model to obtain outputs can be written as

– y is a system response quantity of interest

– f  is the mathematical model of the physical process of interest

–                               is the vector of all aleatory uncertainties

–                                       is the vector of all epistemic uncertainties

y = f (
�
xa ,

�
xe )

 
�
xa = x1, x2 ,�xm�
xe = xm+1, xm+2 ,�xn
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Approaches to Representation

of Aleatory and Epistemic Uncertainties

• Second-order probabilistic analysis:

– Use a two step process separating epistemic and aleatory
uncertainties

– Treat the range all epistemic uncertainties as possible realizations
with no probability associated with realizations from sampling

– Treat aleatory uncertainties as random variables

• Robust Bayesian inference:

– Investigate the effect of different assumptions of prior distributions

– Investigate the effect of partitioning the available data

• Evidence theory:

– Can represent aleatory and epistemic uncertainties within one
framework

– Early criticism misdirected at Dempster’s rule of aggregation of
evidence

– Early applications have been very successful
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Mathematical Structure

of Evidence Theory

• Let the universal set (or sample space) be defined as

• Based on the information available concerning uncertain quantities, a basic
probability assignment (BPA) can be defined as

• Then the plausibility function can be defined as

• And the belief function can be defined as

• Plausibility and belief are super-additive and sub-additive, respectively

 
X = {x : x is a possible value of the uncertain quantity}

 

m(E ) 0 forE X

m(E ) = 1
E X

 

Pl(E ) = m(U )
U E

 

Bel(E ) = m(U )
U E

 
Pl(E ) + Pl(E c ) 1

 
Bel(E ) + Bel(E c ) 1
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Characterization of

System Response Quantity

• It can be shown that

• Given the epistemic

uncertainties, the

probability of a given

system response value

can only be given as an

interval-valued probability

• Second-order probability

yields an ensemble of

CCDFs

 CCBF(Y ) CCDF(Y ) CCPF(Y )

Complementary Cumulative Plausibility and Belief over system response

System response quantity
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Bayesian Approach to

Uncertainty Quantification

• Key steps in Bayesian approach:

– Assume prior distributions for uncertain parameters in the

model

– Update the prior distributions for uncertain parameters using

available experimental data and Bayes formula

– Use the updated parameters in the model to make predictions

for the application of interest

– Disadvantages:

• Assumes the key issue is calibrating parameter distributions

• Assumes the model form is accurate

• Is computational very expensive
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Typical Application of

Bayesian Inference: Interpolation
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Key Area of Concern:

Large Extrapolation in a Model Parameter
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Key Area of Concern:

Extrapolation of a Validation Metric Result

• What is a validation metric?

• A quantitative measure of the mismatch between the CDFs

from the computational model and the experimental data

• A “distance” between the CDFs measured in terms of

dimensional units of the system response quantity

• The primary purpose of the validation metric is measure the

predictive accuracy of the physics model, not calibration of

the model

• If experimental data is limited, the validation metric results

can either:

– Increase

– Remain the same and decrease the confidence in the validation

metric result
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Typical Method of Comparison

of Computation and Experimental Data
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Compare the Simulation and Data

Using the Cumulative Distribution Function
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Validation Metric Reflects the

Difference Between the Full Distributions

5 15
0

1

0 10 20
0

1

0 10 20
0

1

10

P
ro

b
ab

il
it

y
P

ro
b
ab

il
it

y
P

ro
b
ab

il
it

y

Matches in mean

Both mean and variance

Matches well overall



17

Prediction with Extrapolation

of Aleatory and Epistemic Uncertainties

• The model form

uncertainty is

represented as the

magnitude of the

validation metric d

•d is treated as an

epistemic uncertainty
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Key Area of Concern:

No Experimental Data on Coupled Physics

• No experimental data, and no validation metric result, is

available for:

– Physics that exist at the same level in the validation hierarchy as

where other physics models can be  evaluated

– Coupled physics that only exists at higher levels in the

validation hierarchy

• Sandia experience for both of these situations has shown

that model accuracy is commonly poor

• This is a model form inaccuracy due to coupled physics

• Possible approaches to estimate this epistemic uncertainty:

– Alternate physics modeling approaches

– Hierarchical physics models
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Example of Extrapolation Within a

Validation Hierarchy (Weapon in a Fire)
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Concluding Remarks

• Predictive capability in engineering decision making relies on

a clear representation of aleatory and epistemic uncertainties

• Improvements needed in evidence theory:

– Understanding of dependence between epistemic uncertainties

– Understanding of sensitivity analysis for epistemic uncertainties

• Improvements needed in Bayesian inference:

– Develop better methods to separate parameter estimation and

model bias error identification

– Develop methods to better estimate uncertainty in predictions

• Improvements needed in uncertainty quantification due to:

– Extrapolation of a validation metric result

– No experimental data for coupled physics


