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Direct detection of fission-spectrum neutrons is 

inefficient using existing sensor materials

• Fission neutrons:

– Sources: 235U, 241Pu

– Spectra peak < 1 MeV (Maxwell dist.) 

• Applications:

– Detecting nuclear proliferation

– Long term monitoring

– Cargo screening 

– Neutron radiography

• Detection methods:
3He capture (Moderator Required)
– Efficient only at En < 0.01 MeV

– Direct detection impractical (> 1m, 40 atm)

→ Particle direction and energy are lost

Liquid organic scintillators (High Threshold)
– Low detection efficiency at En < 10 MeV

– Combustible

– Toxic solvents
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New scintillator materials are needed to enable practical detection of these particles

Gamma discrimination 

threshold



0.1

1

10

0.1 1 10

 Recoil Energy / MeV

L
ig

h
t 
Y

ie
ld

 

(r
e
la

ti
v
e
 t
o
 g

a
m

m
a
s
)

Scintillation light is partially quenched at high dE/dx

• Neutrons create ionizing protons when they 

elastically scatter in hydrogenous materials 

• Light output from ion tracks is described by 

Birks’ equation: 

– dE/dx ∝ density

Predicts decreasing density will 

decrease quenching of scintillation light
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Commercial Scintillator EJ301:

Birks eq. fits observed L(E) ~ E3/2

Density 0.88 g/cm3

Density 0.44 g/cm3

Density 0.22 g/cm3

Density 0.11 g/cm3
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dE/dx Scintillation Quenching
A case of static fluorescence quenching
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Nanoporous coordination polymers provide an 

opportunity for tunable scintillator density

11
.2
 Å

Cr and Fe  MIL: 6000 m2/g surface area 

(Férey et al., Science 2005)
IRMOF-1: Rigid, open framework with tunable 

pore size, chemistry (Yaghi et al., Science 2002)



Fluorescent MOFs: entry point for creating scintillators based 

on coordination polymers

Potential energy surface

A. Simeonov, Science, 2000

Ea=179 kJ/mol
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Stilbene linker offers:

• Potential for low density frameworks

• Constrained linker conformation 

→ High fluorescence quantum efficiency

• Zn-based compounds: transparent

→ Low self adsorption

Stilbene: a fluorescent linker for 

MOF synthesis



New stilbene MOFs: multiple structures result from the 

same starting materials under different synthetic conditions

“3D” cubic structure

• DEF, 105 °C/ 16 hours

• Interpenetrated, IRMOF-type structure
• Open porosity

• Surface area = 580 m2/g 

“2D” hexagonal structure

• DMF, 70 °C/16 hrs; 85 °C/ 4 hrs
• Dense material

Formula unit: ZnL3(DMF)2
L = 4,4’-stilbenedicarboxylic acid 

Formula unit: Zn4OL3

Bauer et al., J. Amer. Chem. Soc., in press, 2007.



Constrained orientation of stilbene group in MOF increases 

fluorescence light yield

• Increased fluorescence lifetimes

– Stilbene in solution: τ1 < 100 ps

– LH2: τ1 = 0.73 ns, τ2 = 2.49 ns 

– 2D MOF: τ1 = 0.2 ns, τ2 = 0.95 ns 

– 3D MOF: τ = 0.50 ns 

� Implies higher quantum yields

� Potential for high scintillation light 

yield

Single crystal fluorescence and excitation spectra
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The interaction of MOF compounds with charged particles 

can be probed using a nuclear microprobe

1 Ion Source (H+ or O3+)

2 Terminal 1.5 million volts

3 Bending magnet

4 Object slits (1 - 850 µµµµm)

5 Image slits

6 Magnetic Lens

7 Sample Chamber

1
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43
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7

An accelerator produces charged particles that can be focused and scanned across 

the sample with high spatial resolution

Ion beam at this point:

H+ accelerated to 3 MeV

or O3+ accelerated to 6 MeV
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Microprobe diagnostic tools enable quantitative measurement 

of light output by MOFs

• Energy loss through sample

• Dependent on mass

• Minimal dependence on composition

• Forms images of the sample

• Max. spatial resolution = 0.5 µm
• Use to measure crystal size, thickness

ProtonsParticle detector

Protons

Substrate + sample

STIMSample

Particle

Detector

Scanning Transmission Ion 

Microscopy (STIM)

Ion Beam Induced Luminescence (IBIL)

• Allows the differentiation of minerals or 

organics with similar elemental 

composition

• 1 nm wavelength resolution 180-1100 nm

PIXE

SamplePBS

TOF-MS

STIM

PESA

PIGE

IBIL



IBIL spectra demonstrate that stilbene MOFs emit light 

when they interact with protons

• Samples mounted on gold foils, Mylar, 

or TEM grids 

• SEM obtained before and after to verify 

integrity of crystals

• Beam energy: 3 MeV

• Beam dose rate: ~5 Mrad/s

• Data obtained for

– Anthracene (standard)

– 2d MOF

– 3d MOF

• Note: IRMOF-1 exhibits no IBIL

First reported demonstration of MOF 

radiation sensitivity: Proton-induced 

fluorescence.
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Comparable to 

commercial scintillators

11%BC422Q (commercial organic scintillator)

50%Stilbene
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22%2.49E+089.33E+030.382D MOF

100%1.13E+091.20E+040.4Anthracene

% AnthraceneCts/J peak chDose rate J/kg/sMass (mg)SAMPLE

2D stilbene MOF



Self absorption of luminescence should be minimal in 

stilbene MOFs

• ∆E(Stokes) = Emax(excitation) - ∆ Emax(emis)

• Fluorescence Stokes shifts:

– 2D MOF: 1215 cm-1

– 3D MOF: 815 cm-1

– Linker(H)2: 4088 cm
-1

• IBIL Stokes shifts:

– 2D MOF: 3415 cm-1

– 3D MOF: 5618 cm-1

→IBIL emission is well separated from 

absorption

→Long detector path lengths should be 

feasible

• Broad emission on the long-wavelength side 

may be an indication of radiation damage 

along the ion track
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Stilbene MOFs are much more resistant to radiation damage 

than the anthracene standard

• Anthracene: loses > 90% of initial 
luminescence after 50 Mrad dose

• 2D and 3D stilbene MOFs lose only    
~ 68% after 400 Mrad dose

– This dose is >> expected lifetime dose

– Low density of 3D MOF should favor 
higher damage threshold:

• Anthracene: 1.28 g/cm3

• Stilbene: 0.97 g/cm3

• 2D MOF: 1.52 g/cm3

• 3D MOF:0.50 g/cm3

– Clearly, factors beyond density must be 
accounted for

• Fluorescent polymers exposed to H+

IBIL exhibit new emission

– Attributed to radical formation leading 
to polymer crosslinking

1 rad =  amount of energy absorbed/ mass

= 100 ergs/g
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IBIL spectrum of polyvinyltoluene, (A. Quaranta, 

Nucl. Inst. Meth. Phys. Res. B, 2005)



Summary and conclusions
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• Fluorescent metal organic frameworks constructed from stilbene

dicarboxylates are luminescent when exposed to high-energy H+

• Very high radiation tolerance is exhibited

• Damage caused by the beam made lead to new emission bands

– Time-dependent IBIL may resolve this

• Low density (0.5 g/mol) 3D stilbene MOF is expected to a more 

proportional response to particle energy

– IBIL measurements as a function of beam energy in the 0.1 – 5 MeV energy 

range needed to verify this theory

• MOFs are a novel and potentially promising solution to the problem of 

detecting fission neutrons
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