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Direct detection of fission-spectrum neutrons is
inefficient using existing sensor materials
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— Detecting nuclear proliferation E \S\SA\.
— Long term monitoring I5 ~ 6’9
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« Detection methods: S |
SHe capture (Moderator Required) = oo o
— Efficient only at E, < 0.01 MeV oot 01 1 10
— Direct detection impractical (> 1m, 40 atm) Energy (MeV) T
— Particle direction and energy are lost |

Liquid organic scintillators (High Threshold)

— Low detection efficiency at E, <10 MeV Gamma discrimination
— Combustible threshold

— Toxic solvents

New scintillator materials are needed to enable practical detection of these patrticles
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Scintillation light is partially quenched at high dE/dx

L(E)=S|
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1+ kB(dE / dx)

L(E) = SE in the limit of low dE /dx (yor [5)

o GE/dx o< density i ——
Predicts decreasing density will
decrease quenching of scintillation light hv hv
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) |
© Gamma o
o E discrimination ?&ng <3
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dE/dx Scintillation Quenching

A case of static fluorescence quenching

[OQ]=Quenching species [Q] o< (dE / dx)
[ MO*] = Nonradiative complex [M 15 (dE / dx)

K= 0] »[MO*] = K[Q][M*] Substituting into Stern-Volmer
[M*][O] /

M, 1=[M 1+[MO

[ total] [ ]+[ Q] S(Zf:;j‘x)zl_l_kB(dE/dx)

[M,,,,]=[M*]+ K[Q][M* (dL./ dx)

[M ] _ Lo _ L+ K[O] Stern-Volmer dL _ o (dE/dx) Birks”

[M*] L equation dx 1+ kB(dE / dx) equation
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Nanoporous coordination polymers provide an
opportunity for tunable scintillator density

Crand Fe MIL: 6000 m?/g surface area

1: Riai . |
IRMOF-1: Rigid, open framework with tunable (Féray ot al., Science 2005)

pore size, chemistry (Yaghi et al., Science 2002)
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Fluorescent MOFs: entry point for creating scintillators based
on coordination polymers

Stilbene: a fluorescent linker for
MOF synthesis

Potential energy surface

Ea=179 kJ/mol

Stilbene linker offers:

» Potential for low density frameworks

» Constrained linker conformation

— High fluorescence quantum efficiency
« Zn-based compounds: transparent

— Low self adsorption

A. Simeonov, Science, 2000 ] ) .
Sandia National Laboratories
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New stilbene MOFs: multiple structures result from the
same starting materials under different synthetic conditions

Formula unit: ZnL;(DMF),
L = 4,4’-stilbenedicarboxylic acid

Formula unit: Zn,OL4

“3D” cubic structure .
- DEF, 105 °C/ 16 hours 2D" hexagonal structure

« DMF, 70 °C/16 hrs; 85 °C/ 4 hrs
* Dense material

* Interpenetrated, IRMOF-type structure
» Open porosity
« Surface area = 580 m?/g

Bauer et al., J. Amer. Chem. Soc., in press, 2007. @ Sandia National Laboratoties



Constrained orientation of stilbene group in MOF increases
fluorescence light yield
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Microprobe diagnostic tools enable quantitative measurement
of light output by MOFs

* Dependent on mass 1 nm wavelength resolution 180-1100 nm
* Minimal dependence on composition

 Forms images of the sample
« Max. spatial resolution = 0.5 um
« Use to measure crystal size, thickness

Sample

Protons .
Particle
Detector
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IBIL spectra demonstrate that stilbene MOFs emit light
when they interact with protons

2D stilbene MOF

integrity of crystals
 Beam energy: 3 MeV 1500 |
- Beam dose rate: ~5 Mrad/s 1233
« Data obtained for 0 ‘ ‘ ‘
300 400 500 600 700

— Anthracene (standard) Wavelength (nm)

— 2d MOF
— 3d MOF First reported demonstration of MOF
== radiation sensitivity: Proton-induced
* Note: IRMOF-1 exhibits no IBIL fluorescence.
SAMPLE Mass (mg) Dose rate J/kg/s Cts/J peak ch % Anthracene
Anthracene 04 1.20E+04 1.13E+09 100%
2D MOF 0.38 9.33E+03 2.49E+08 22% c |
3D MOF 1 0.22 1.00E+04 9.62E+07 9% SulzElEll S
commercial scintillators
3D MOF 2 0.49 9.33E+03 6.62E+07 6%
Stilbene 50%

BC422Q (commercial organic scintillator) 1% @ Sandia National Laboratories



Self absorption of luminescence should be minimal in
stilbene MOFs

* |IBIL Stokes shifts:
— 2D MOF: 3415 cm™!
— 3D MOF: 5618 cm-!

—|BIL emission is well separated from
absorption

—Long detector path lengths should be
feasible

* Broad emission on the long-wavelength side
may be an indication of radiation damage
along the ion track
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Stilbene MOFs are much more resistant to radiation damage
than the anthracene standard

1rad = amount of energy absorbed/ mass
=100 ergs/g 0.2 -
— This dose is >> expected lifetime dose 0 ‘ ‘ ‘
— Low density of 3D MOF should favor 0 100 200 300 400
higher damage threshold: Radiation Absorbed Dose (MRAD)
* Anthracene: 1.28 g/cm3 03D MOF 02D MOF A Anthracene |
» Stilbene: 0.97 g/cm3
« 2D MOF: 1.52 g/cm3 ol
« 3D MOF:0.50 g/cm?

— Clearly, factors beyond density must be
accounted for

* Fluorescent polymers exposed to H*
IBIL exhibit new emission

— Attributed to radical formation leading ool
to polymer crosslinking
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Summary and conclusions

— Time-dependent IBIL may resolve this
« Low density (0.5 g/mol) 3D stilbene MOF is expected to a more
proportional response to particle energy
— IBIL measurements as a function of beam energy in the 0.1 — 5 MeV energy
range needed to verify this theory
 MOFs are a novel and potentially promising solution to the problem of
detecting fission neutrons
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