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Sound speed measurements

were performed to identify the onset of melt

gauge location sample/window interface

• Well accepted method to identify 
melt on the Hugoniot

• Requires multiple experiments over 
a broad stress range

• Can also provide information 
regarding the yield strength on the 
Hugoniot
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McQueen, et al., Rev. Sci. Instrum. 53, 245 (1982)



Click to edit Master title style
Previous estimates of diamond melt stress

indicates that the melt properties are poorly understood

Several chemical picture
models for diamond

Reflectivity study on Omega 
suggests complete melt near 

1100 GPa

Bradley, et al., Phys. Rev. Lett. 93, 195506-1 (2004)
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Anode/Flyer Plate

Target

M.D. Knudson, et al., J. Impact Eng., 29, 377 (2003) 

CathodeAnode

These experiments utilize the
ultra-high velocity flyer plate capability on Z
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C targets (500, 
750, and 1000 m) 

(6 mm )

Quartz (or 
Sapphire) windows

(4mm )

• Experiments required an Al/Cu flyer with 
peak velocities in the range of 13-24 km/s

• Three asymmetric loads were designed to 
produce 2 flyers per shot with ~10% 
difference in peak velocity

• ALEGRA 2D MHD was used  to set flight 
distances and to set charge voltages on Z

MHD simulations were critical in providing
load geometries to achieve desired flyer velocities

measured

predicted

700 m Al / 150 m Cu flyer

C
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Experimental geometry enabled very precise 

Hugoniot measurements at multi-Mbar stresses
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• Sub-percent 
measurement of Us

and up

• Each point is a 
weighted average 
of 2 or 3 individual 
measurements (3 
samples per panel)

• Significant benefit 
in being able to 
measure flyer plate 
velocity for 
impedance match

Us – up Hugoniot



Click to edit Master title style

400

600

800

1000

1200

1400

1600

4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75

Density (g/cc)

S
tr

e
s
s

 (
G

P
a
)

Experimental geometry enabled very precise 
Hugoniot measurements at multi-Mbar stresses

Z data

QMD
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• Density precision of 
~1% on average, 
as low as 0.67%

• High precision 
allows for 
quantitative 
comparison with 
theory

• These are by far 
the most accurate 
Hugoniot 
measurements of 
diamond in the 
multi-Mbar stress 
regime
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QMD calculations predict a diamond/liquid/bc8 

triple point within the coexistence region
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Correa, et al., PNAS 103, 1204 (2006)
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Z Hugoniot data is consistent with the trend
in slopes predicted from the QMD calculations

diamond

diamond 
+ liquid

bc8 + 
liquid

liquid

triple 
point

• Piecewise weighted 
least squares linear fits 
to the Z data

• Linear segments 
determined from QMD 
predictions for onset of 
melt, triple point, and 
completion of melt

• Same trends in the 
magnitude of slope 
changes observed in 
experiment

• Experimental results 
consistent with QMD 
predictions regarding 
diamond-liquid-bc8 
triple point
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Trends in the data do show a

clear indication of melt near 650 GPa

onset 
of melt
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• Window transit time is a measure of 
the average velocity through the 
window

• At low stress there is a statistically 
significant difference between 
experiment and simulation

• This difference is being attributed to 
a yield strength effect

Experiment

Simulation
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Release wave profiles below melt indicate 

significant yield strength in the Hugoniot state
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• Reasonable agreement for 
direct impact into quartz 
window

• Significant difference 
between measured and 
simulated profiles with 
inclusion of diamond

quartz 
shock 
front

Direct quartz
impact

~600 GPa shock in diamond

measured

simulated
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Preliminary inference of yield strength
suggest values in the range of ~50-80 GPa

• Hydrocode simulations 
provide insight into the yield 
strength 

• Poisson’s ratio is quite low, of 
order  = 0.1

• Reasonable agreement with 
measured profiles suggests 
~50-80 GPa yield strength
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~600 GPa shock in diamond

 ~ 0.1
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Impedance matching however suggests
negligible shear stress in the Hugoniot state

 – up Impedance match
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• Difference in impedance match 
state in Quartz is statistically 
significant, ~2.7% in Us

• Uncertainty in the measured 
Quartz shock velocity is <1%

• Incompatible with the release 
data
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Impedance matching however suggests
negligible shear stress in the Hugoniot state
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• Better agreement between 
impedance match and 
experimental measurement

• Strong case for negligible 
shear stress in Hugoniot state

• Difference in impedance match 
state in Quartz may be 
statistically significant, ~1.7% 
in Us
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• Very precise Hugoniot data obtained for diamond between 550 and 
1400 GPa

– Consistent with QMD calculations which predict the onset of 
melt at ~690 GPa, a diamond-liquid-bc8 triple point at ~850 
GPa, and completion of melt at ~1040 GPa

• Release data suggests significant yield strength in the shocked 
state below melt (~50-80 GPa)

– Enabled trends in window transit time to determine onset of 
melt at ~650 GPa, in good agreement with QMD

• Impedance matching makes strong case for negligible shear stress 
in the shocked state, somewhat weaker case for initial release 
being hydrostatic

– This issue could be addressed through reshock experiments on 
ZR

Conclusions


