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Sound speed measurements

were performed to identify the onset of melt

longitudinal

« Well accepted method to identify
melt on the Hugoniot

« Requires multiple experiments over
a broad stress range

Sound speed

» Can also provide information
regarding the yield strength on the
Hugoniot
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Previous estimates of diamond melt stress
indicates that the melt properties are poorly understood

Several chemical picture
models for diamond
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Reflectivity study on Omega
suggests complete melt near
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These experiments utilize the
ultra-high velocity flyer plate capability on Z

Anode o  Cathode Anode/Flyer Plate
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M.D. Knudson, et al., J. Impact Eng., 29, 377 (2003) ﬂ'l
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MHD simulations were critical in providing
load geometries to achieve desired flyer velocities

C targets (500, Quartz (or

750, and 1000 um) (4mm ¢)

(6n{n‘¢) / \

Sapphire) windows

700 um Al / 150 um Cu flyer

» Experiments required an Al/Cu flyer with
peak velocities in the range of 13-24 km/s

* Three asymmetric loads were designed to
produce 2 flyers per shot with ~10%
difference in peak velocity

 ALEGRA 2D MHD was used to set flight
distances and to set charge voltages on Z

Flyer Velocity (km/s)

Asymmetric Flyer Load for C Melt Experiment
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Experimental geometry enabled very precise

Hugoniot measurements at multi-Mbar stresses
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Each pointis a
weighted average
of 2 or 3 individual
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samples per panel)

Significant benefit
in being able to
measure flyer plate
velocity for
impedance match
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Experimental geometry enabled very precise
Hugoniot measurements at multi-Mbar stresses
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» Density precision of

~1% on average,
as low as 0.67%

High precision
allows for
quantitative
comparison with
theory

These are by far
the most accurate
Hugoniot
measurements of
diamond in the
multi-Mbar stress
regime
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QMD calculations predict a diamond/liquid/bc8

triple point within the coexistence region
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Z Hugoniot data is consistent with the trend
in slopes predicted from the QMD calculations
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Piecewise weighted
least squares linear fits
to the Z data

Linear segments
determined from QMD
predictions for onset of
melt, triple point, and
completion of melt

Same trends in the
magnitude of slope
changes observed in
experiment

Experimental results
consistent with QMD
predictions regarding
diamond-liquid-bc8
triple point
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Trends in the data do show a
clear indication of melt near 650 GPa
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 Window transit time is a measure of
the average velocity through the
window

» At low stress there is a statistically
significant difference between
experiment and simulation

» This difference is being attributed to
a yield strength effect
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Release wave profiles below melt indicate

significant yield strength in the Hugoniot state

~600 GPa shock in diamond
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« Reasonable agreement for

direct impact into quartz

window

 Significant difference

between measured and

simulated profiles with
inclusion of diamond
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Preliminary inference of yield strength

suggest values in the range of ~50-80 GPa

~600 GPa shock in diamond
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* Hydrocode simulations
provide insight into the yield
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» Poisson’s ratio is quite low, of
order v = 0.1

* Reasonable agreement with
measured profiles suggests
~50-80 GPa yield strength
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Impedance matching however suggests
negligible shear stress in the Hugoniot state

¢ — U, Impedance match
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» Difference in impedance match
state in Quartz is statistically

significant, ~2.7% in Ug

« Uncertainty in the measured
Quartz shock velocity is <1%

* |ncompatible with the release

data
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Impedance matching however suggests
negligible shear stress in the Hugoniot state
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« Better agreement between
impedance match and
experimental measurement

» Strong case for negligible
shear stress in Hugoniot state

» Difference in impedance match
state in Quartz may be
statistically significant, ~1.7%
in Ug
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‘ Conclusions

* Very precise Hugoniot data obtained for diamond between 550 and
1400 GPa

— Consistent with QMD calculations which predict the onset of
melt at ~690 GPa, a diamond-liquid-bc8 triple point at ~850
GPa, and completion of melt at ~1040 GPa

* Release data suggests significant yield strength in the shocked
state below melt (~50-80 GPa)

— Enabled trends in window transit time to determine onset of
melt at ~650 GPa, in good agreement with QMD

* Impedance matching makes strong case for negligible shear stress
in the shocked state, somewhat weaker case for initial release
being hydrostatic

— This issue could be addressed through reshock experiments on
ZR
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