
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Andy Salinger, Eric Phipps

Sandia National Laboratories

Albuquerque, New Mexico, USA

Workshop: Advanced Algorithms and Numerical Software
for the Bifurcation Analysis of Dynamical Systems,

Centre de Recherches Mathematiques

July 2, 2007

Bifurcation analysis software for large-scale
and parallel applications with LOCA,
the Library of Continuation Algorithms

SAND2007-4157C

LOCA provides bifurcation analysis tools
for large-scale simulation codes

LOCA has these bifurcation analysis capabilities:
• Parameter Continuation
• Bifurcation Tracking
• Constraint Enforcement
• Space-Time Formulation
• Linear Stability Analysis (via Anasazi code of Thornquist and Lehoucq)

LOCA is C++ and uses Abstract Numerical Algorithms wherever possible, and
is designed to work with iterative linear solvers on parallel computers.

• LOCA is very flexible and extensible

LOCA is 1 of 30 packages in the Trilinos Parallel Algorithms framework
developed at Sandia National Laboratories, and is interoperable with many of
them (preconditioners, linear solvers, sparse matrix, parameter lists, ...)

LOCA does not have:
• MATLAB interface
• graphics capabilities
• an executable

http://trilinos.sandia.gov

LOCA is a Stepper and a collection of
Super-Groups (1 of 3)

Nonlinear Solver:
solve f(x)=0

LOCA Stepper
• Step size control

• Predictor

• Solution/Parameter
Scaling

+ Save Solution

+ Call Eigensolver

[x0, p]

[x, status]

1. Qu’est-ce que c’est Stepper?

f = Group.computeF(x);
while (notConverged) {
Group.computeJacobian(x);
dx = Group.applyJacobianInverse(f);
x.update(dx, -1.0);
f = Group.computeF(x);
notConverged = status(f, dx);

}

LOCA is a Stepper and a collection of
Super-Groups (2 of 3)

f(x), J(x)

J-1v

Application Interface

Linear Algebra
“Group”

Definition: J=df/dx

Abstract Newton solve using a “Group”. Note: Algorithm
is independent of data structures and solution method.

2. Qu’est-ce que c’est “Group”?

In C++ argot: A “Solver” object is
constructed with a “Group” object

Nonlinear Solver:
solve f(x)=0

LOCA is a Stepper and a collection of
Super-Groups (3 of 3)

f(x), J(x)

J-1v

Application Interface

Linear Algebra
“Group”

3. Qu’est-ce que c’est “Super-Group”?

Nonlinear Solver:
solve f(x)=0

F(X), J(X)

J-1V
“Super-Group” Augmented System

Ex: Arclength continuation with bordered solve:

What Super-Groups are programmed in
LOCA already?

Constraint Enforcement (m additional equations)

•Arclength Continuation

•Multiparameter Continuation (Multifario from Henderson@ibm)

•User-supplied Constraints

Bifurcation Tracking:

• Turning Point [Moore-Spence] (two versions)

• Turning Point [Govaerts’ Minimally Augmented]

• Pitchfork Bifurcation

• Hopf Bifurcation [Griewank-Reddien]

• Hopf Bifurcation [Govaerts’ Minimally Augmented]

• Phase Transitions

• Space-Time [trajectory or periodic orbit] (BE)

[N+m] x [N+m] solves:

• Augmented

• Bordered

• Householder

So, what do you need to do to solve a
bifurcation problem in LOCA

f(x), J(x)

J-1v

Application Interface

Linear Algebra
“Group” Done for you for:

• LAPACK

• Epetra*

*Epetra = Distributed-memory sparse matrices and vectors,
understood by many preconditioner and linear solver packages

File #2: main() or LOCA_Driver()

1.set parameters

a) LinearAlgebraParams (ILU(2), GMRES(500))

b) StepperParams
i. Bifurcation method (pick “SuperGroup”)
ii. Step Size Control (step size, aggressiveness)
iii. Predictor (secant)
iv. Eigensolver (spectral transformation, max Iters)

2.construct Interface()

3.construct Group(Interface, LinearAlgebraParams)

4.construct Stepper(Group, StepperParams)

5.Stepper.run()

f(x), J(x), set(p)

File #1: Interface Class

LOCA Example:
1D PDE Chan problem with LAPACK Group

bool
ChanProblemInterface::computeF(NOX::LAPACK::Vector& f,

const NOX::LAPACK::Vector &x)
{
f(0) = x(0) - beta;
f(n-1) = x(n-1) - beta;
for (int i=1; i<n-1; i++)
f(i) = (x(i-1) - 2*x(i) + x(i+1))*(n-1)*(n-1)
+ alpha*source_term(x(i));

return true;
}

bool
ChanProblemInterface::computeJacobian(NOX::LAPACK::Matrix<double>& J,

const NOX::LAPACK::Vector & x)
{
J(0,0) = 1.0;
J(n-1,n-1) = 1.0;
for (int i=1; i<n-1; i++) {
J(i,i-1) = (n-1)*(n-1);
J(i,i+1) = J(i,i-1);
J(i,i) = -2.*J(i,i-1) + alpha*source_deriv(x(i));

}
return true;

}

At this point, the presentation will skip to a “demonstration” piece,
editing and running the code in Linux. Here is some of the code to be
shown – it is Open Source downloadable from trilinos.sandia.gov.

Multi-Parameter Continuation Example:
Using Multifario code (Mike Henderson, IBM)

LOCA has been used to analyze 2D and 3D PDE
discretizations of over a Million unknowns

Stability Analysis of Impinging
Jets, Pawlowski, Salinger, Shadid,

Mountziaris, JFM (2005)

aspect ratio=0.05 aspect ratio=0.125 aspect ratio=1.0

Bifurcation tracking routines quickly delineate
three flow regimes in 2-parameter space

Region II

Region III

Region I

Current work “4D”: General Purpose Space-Time
Formulation and Solver with SpacexTime Parallelism

• Continuation of Trajectories, with end constraints (BVP in time)

• Periodic Orbit Tracking

Periodic Orbit Tracking for Impinging
Jet Reactor

Phase condition:
“Newton update
is orthogonal to
the flow”:

Details:
7K nodes
21K spatial unknowns
30 time steps/period
620K total unknowns
30 Processors
2-4 min / Newton iter

Floquet Stability Analysis of Periodic
Orbits

Floquet Multipliers:
• Linearize around a periodic solution
• Integrate perturbations through 1 period
• Eigenvalues of this operator are called

Floquet Multipliers:
• Orbits are stable if, forall i:

Krylov iteration for Anasazi eigensolver (Thornquist, Baker, Lehoucq):

Periodic Orbit Tracking for Impinging
Jet Reactor – Floquet Rresults

Details:
•10-15 Arnoldi
iterations to converge
leading 2 eigenvalues
•~1 min / iteration

