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LOCA provides bifurcation analysis tools 
for large-scale simulation codes

LOCA has these bifurcation analysis capabilities:
• Parameter Continuation
• Bifurcation Tracking
• Constraint Enforcement
• Space-Time Formulation
• Linear Stability Analysis (via Anasazi code of Thornquist and Lehoucq)

LOCA is C++ and uses Abstract Numerical Algorithms wherever possible, and 
is designed to work with iterative linear solvers on parallel computers.

• LOCA is very flexible and extensible

LOCA is 1 of 30 packages in the Trilinos Parallel Algorithms framework 
developed at Sandia National Laboratories, and is interoperable with many of 
them (preconditioners, linear solvers, sparse matrix, parameter lists, ...)

LOCA does not have:
• MATLAB interface
• graphics capabilities 
• an executable

http://trilinos.sandia.gov



LOCA is a Stepper and a collection of 
Super-Groups (1 of 3)

Nonlinear Solver: 
solve    f(x)=0

LOCA Stepper
• Step size control

• Predictor

• Solution/Parameter 
Scaling

+ Save Solution

+ Call Eigensolver

[x0, p]

[x, status]

1. Qu’est-ce que c’est  Stepper?



f = Group.computeF(x);
while (notConverged) {
Group.computeJacobian(x);
dx = Group.applyJacobianInverse(f);
x.update(dx, -1.0);
f = Group.computeF(x);
notConverged = status(f, dx);

}

LOCA is a Stepper and a collection of 
Super-Groups (2 of 3)

f(x), J(x)

J-1v

Application Interface

Linear Algebra
“Group”

Definition: J=df/dx

Abstract Newton solve using a “Group”. Note: Algorithm 
is independent of data structures and solution method.

2. Qu’est-ce que c’est “Group”?

In C++ argot:  A “Solver” object is 
constructed with a “Group” object

Nonlinear Solver: 
solve    f(x)=0



LOCA is a Stepper and a collection of 
Super-Groups (3 of 3)

f(x), J(x)

J-1v

Application Interface

Linear Algebra
“Group”

3. Qu’est-ce que c’est “Super-Group”?

Nonlinear Solver: 
solve    f(x)=0

F(X), J(X)

J-1V
“Super-Group” Augmented System

Ex: Arclength continuation with bordered solve:



What Super-Groups are programmed in 
LOCA already?

Constraint Enforcement (m additional equations)

•Arclength Continuation

•Multiparameter Continuation (Multifario from Henderson@ibm)

•User-supplied Constraints

Bifurcation Tracking:

• Turning Point [Moore-Spence]  (two versions)

• Turning Point [Govaerts’ Minimally Augmented]

• Pitchfork Bifurcation

• Hopf Bifurcation [Griewank-Reddien]

• Hopf Bifurcation [Govaerts’ Minimally Augmented]

• Phase Transitions

• Space-Time [trajectory or periodic orbit] (BE)

[N+m] x [N+m] solves:

• Augmented

• Bordered

• Householder



So, what do you need to do to solve a 
bifurcation problem in LOCA

f(x), J(x)

J-1v

Application Interface

Linear Algebra
“Group” Done for you for:

• LAPACK

• Epetra*

*Epetra = Distributed-memory sparse matrices and vectors,        
understood by many preconditioner and linear solver packages

File #2:  main()  or  LOCA_Driver()

1.set parameters

a) LinearAlgebraParams (ILU(2), GMRES(500))

b) StepperParams
i. Bifurcation method (pick “SuperGroup”)
ii. Step Size Control (step size, aggressiveness)
iii. Predictor (secant)
iv. Eigensolver (spectral transformation, max Iters)

2.construct Interface()

3.construct Group(Interface, LinearAlgebraParams)

4.construct Stepper(Group, StepperParams)

5.Stepper.run()

f(x), J(x), set(p)

File #1: Interface Class



LOCA Example:
1D PDE Chan problem with LAPACK Group



bool
ChanProblemInterface::computeF(NOX::LAPACK::Vector& f, 

const NOX::LAPACK::Vector &x)
{
f(0) = x(0) - beta;
f(n-1) = x(n-1) - beta;
for (int i=1; i<n-1; i++)
f(i) = (x(i-1) - 2*x(i) + x(i+1))*(n-1)*(n-1) 
+ alpha*source_term(x(i));

return true;
}

bool
ChanProblemInterface::computeJacobian(NOX::LAPACK::Matrix<double>& J, 

const NOX::LAPACK::Vector & x)
{
J(0,0) = 1.0;
J(n-1,n-1) = 1.0;
for (int i=1; i<n-1; i++) {
J(i,i-1) = (n-1)*(n-1);
J(i,i+1) = J(i,i-1);
J(i,i) = -2.*J(i,i-1) + alpha*source_deriv(x(i));

}
return true;

}

At this point, the presentation will skip to a “demonstration” piece, 
editing and running the code in Linux. Here is some of the code to be 
shown – it is Open Source downloadable from trilinos.sandia.gov.



Multi-Parameter Continuation Example:
Using Multifario code (Mike Henderson, IBM)



LOCA has been used to analyze 2D and 3D PDE 
discretizations of over a Million unknowns

Stability Analysis of Impinging 
Jets, Pawlowski, Salinger, Shadid, 

Mountziaris, JFM (2005)

aspect ratio=0.05 aspect ratio=0.125 aspect ratio=1.0



Bifurcation tracking routines quickly delineate 
three flow regimes in 2-parameter space

Region II

Region III

Region I



Current work “4D”: General Purpose Space-Time 
Formulation and Solver with SpacexTime Parallelism

• Continuation of Trajectories, with end constraints (BVP in time)

• Periodic Orbit Tracking



Periodic Orbit Tracking for Impinging 
Jet Reactor

Phase condition: 
“Newton update 
is orthogonal to 
the flow”:

Details:
7K nodes
21K spatial unknowns
30 time steps/period
620K total unknowns
30 Processors
2-4 min / Newton iter



Floquet Stability Analysis of Periodic 
Orbits

Floquet Multipliers:
• Linearize around a periodic solution 
• Integrate perturbations through 1 period
• Eigenvalues of this operator are called 

Floquet Multipliers:
• Orbits are stable if, forall i:

Krylov iteration for Anasazi eigensolver (Thornquist, Baker, Lehoucq):



Periodic Orbit Tracking for Impinging 
Jet Reactor – Floquet Rresults

Details:
•10-15 Arnoldi 
iterations to converge 
leading 2 eigenvalues
•~1 min / iteration


