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Ramp-wave loading experiments are useful for 
studying structural phase transitions

• Evolution of ramp wave sensitive to 
derivative of stress-strain response

• Wave speed changes suddenly on 
entering/exiting mixed-phase region

• Pre-heat samples to different initial 
temperatures to map out phase boundary

• Tin has one of steepest dP/dT of any 
element, in easy-to-acess P, T ranges

• Volume change of 3-5% easily detected 
in velocity profiles
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Data on pre-heated solid tin are available from
8 different shots on the Z pulsed-power machine

Shot Z1285
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anode panel
Al or Cu
0.6 – 1.2 mm

drive “insulator”
Al2O3, 2.0mm
(2 shots only)

sample insulator
Al2O3, 2.0mm (except 3 shots)

windows
LiF or Al2O3

3.0mm

Sn sample
0.3 – 0.8 mm

VISAR

VISAR

• direct, indirect heating

• polycrystalline (fine-, course-grained), 
single-crystal, resolidifed
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Velocity profile measurements exhibit a kink
due to onset of the phase transformation
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• Velocity measurements from 18 different samples considered

• Two-wave structured profile in bulk tin with kink at onset of transformation

• Wave interactions map this kink on to window interface velocity profile

• For sapphire window, transition at interface possible before kink arrival

• Large precursor unexplained, possibly due to thermal & bonding issues
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Backward integration gives effective stress 
loading history used in forward simulations
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• backward finite-difference solution to 
equations of motion

• accounts for ramp-wave interactions 
due to difference in sample and 
window acoustic impedances

• “effective” pressure loading 
history at drive boundary used in 
forward simulations without 
magneto-hydrodynamics

• method strictly valid only for 
isentropic flow, but works in many 
quasi-isentropic cases



Forward simulations use multi-phase mixture 
model for tin in WONDY Lagrangian hydrocode
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• Homogeneous mixture model based on assumptions introduced by 
Horie & Duvall (1968)

• numerical method developed by Andrews (1970), extended to N
phases by Hayes (1975)

• EOS of each phase = Birch isotherm EOS with constant Cv, Γ/v

• parameters, reference states for Sn based on Mabire & Héreil (2000)

• kinetics set close to equilibrium

• strength neglected

• β-phase reference energy 
characterizes location of β-γ
phase boundary

• effect of elevated temperature on 
drive, window materials neglected



Phase boundary located by adjusting reference 
energy to match experimental velocity at kink …
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… and extracting P, T from simulation at material 
point in bulk tin away from window interface
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Most results fall close to equilibrium boundary, 
but scatter is high for data using sapphire window
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