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Motivation

Hydrogen Embrittlement/Deformation Mechanics

Multistage forging

grain flow resistance welding

plug

reservoir

reservoir

plug

hydrogen reservoir

Physically-based models:
- Hardening
- Recovery (static/dynamic)
- Recrystallization
- Grain growth
- Hydrogen-dislocation

forging welding fracturehydrogen

Our concerns of hydrogen effects require that we model each of the complicated 
manufacturing processes, capturing the material state with each successive step.



Confidence in Gas Transfer Systems reservoir design and subsequent 
stockpile performance are dependent on developing an understanding of 
short crack behavior in hydrogen affected materials.  This requires a 
validated model and approach that has been proven successful on 
increasingly difficult problems leading up to and giving confidence in 
simulations of an actual reservoir.  

The reservoir material of interest, 21-6-9 stainless steel, has been fully 
characterized in two states:  as- processed and hydrogen charged to 
match service reservoir levels.  This characterization data is used to fit 
material model parameters to develop a good description of the material 
mechanical behavior in each state.  Additionally, elastic-plastic J-Integral 
validation experiments of increasing complexity are being conducted on 
21-6-9 stainless steel material in both states. First, material was tested 
using a planar CT specimen geometry. This is being followed by a three 
dimensional axisymmetric geometry that is currently being designed, and 
finally a three dimensional asymmetric geometry will be designed and 
tested as the most challenging validation experiment for modeling.  
Experimental results and methods will be presented.



Short Crack/J-Integral Methods
Problem and Approach

Problem Description:

• Develop and demonstrate a validated capability to assess short crack length fracture by 
J-Integral methods.  

• Use this capability to analyze GTS reservoirs and support development of the GTS 
Design Standard.   

• Develop experimental methods for characterizing and validating short crack behavior.

Technical Approach:

• Material Characterization:  21-6-9 stainless steel in the as-processed and hydrogen-charged 

conditions.

Tension, notched-tension, compression experiments

• Elastic-Plastic J-Integral Validation Experiments:  Incrementally increasing complexity

Planar CT specimen geometry

3-dimensional axisymmetric geometry

3-dimensional asymmetric geometry 



Validation Issues Addressed:

• Elastic/Plastic reservoir properties

• Fracture, short cracks, crack growth

• J-Integral methods

• Hydrogen embrittlement 

Applications:
• GTS reservoir safety and design
• Nuclear power industry/Hydrogen economy infrastructure
• Sandia-wide interest in short crack behavior

Short Crack/J-Integral Methods
Problem and Approach



Background

Consideration of Hydrogen Embrittlement:

• Gas transfer system reservoirs are a key component of all modern nuclear 
weapons.

• GTS reservoirs are manufactured by forging process to obtain strength, grain 
size and grain flow required for tritium compatibility.

• Hydrogen presence has a significant embrittlement effect on mechanical 
properties and reduces resistance to crack growth and fracture.

• Predictive capability to quantitatively assess hydrogen embrittlement effects 
on reservoir performance is critical for weapon certification but does not exist.
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Short Crack/J-Integral Methods

Specimen removal from 2.5” DIA                    
WR 21-6-9 Stainless Steel Bar Stock

Disk-Shaped CT Specimen Notched Tensile Experiments

Material:   2.5” DIA WR 21-6-9 Stainless Steel Bar Stock
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Annealed @ 1000C for 1 hour in dry Argon



Material Characterization - Experimental Results
(Hydrogen Charged Specimens)
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Results:  Effect of  Hydrogen level   (0% and 1 atm %) 
on Material Plasticity
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Results:  Effect of  Hydrogen level   (0% and 1 atm %) 
on Material Plasticity
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Comparison of EMMI Model with Experimental 
Data
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Elastic-Plastic J-Integral Validation Experiments 
(Hydrogen Charged Specimens)
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• Deliverable:

Complete hydrogen-charged planar elastic-plastic J-Integral validation experiments.

21-6-9 
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Axisymmetric Validation Specimen Design

• Q3 Deliverable:

Develop 3-dimensional axisymmetric elastic-plastic J-
Integral validation experiment, design experimental 
procedure, apparatus.



Axisymmetric Validation Precracking Fixture Design

• Two methods of precracking the axisymmetric specimens are planned:

 Axial fatigue loading on 50 Kip MTS test frame with precracking 
software (fixtures available)

 Bending fatigue loading on B972 lathe with newly designed 
adjustable displacement-controlled loading fixtures shown below

• Status:  Design complete, fixtures and specimens on order.



Asymmetric Validation Specimen Design

•Deliverable:

 Develop 3-dimensional asymmetric elastic-plastic J-
Integral validation experiment, design experimental 
procedure, apparatus.


