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» Accurate mass flows require knowledge of

* TRUO, Mass Fraction
» Charge Mass

* Discharge Mass
 Blending Ratios

» Charge Vector

» Discharge Vector

« Performance requirements rule out detailed physics modules

* Therefore, require simplified interpolation equations
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ng&J [nert Matrix Fuel (IMF)

 LWR-IMF system is one of nuclear fuel cycles considered in
scenario study under AFCI project of US-DOE

« Pu, Np, and Am extracted from spent nuclear fuel

e Placed in an inert matrix material which is:
* Neutron transparent
» Chemically stable
» Radiation damage resistant
* Economically reasonable

« Zirconia stabilized by yttrium oxide and combined with spinel to
compensate for zirconia matrix’s low conductivity



W‘ IMF Fuel Assembly Geometry

 Homogeneous Fuel Assemblies

— IMF fuel pins are located at all fuel pins positions of 17x17 typical
PWR assembly

— IMF fuel pins are made by blending TRUs of previous IMF cycle and
LWR spent fuel

— Blending ratio and TRUO, mass fraction are key parameters to
maintain a desired cycle length
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IMF Cycle
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IMF Calculations

 TRUO, mass fraction

» Radius of zirconium center
r, =—0.0019* MF,,, ., +0.2453

* 95% theoretical density

0.95*V 4 Prvio P 2o
[MFTRUO *Pro+ (1 —MFipyo )* P umo ](1 T Df)

Pivr,, =

* Charge mass

M = MF o MF 3V, *p IMFys

charge

* Discharge mass

* Blending ratio

 Critical burnup
_n+l

B = B
c 21’l d




e Three independent variables
— Burnup of UO, fuel
* 33,60, and 100 GWd/t
— Cooling time after initial UO, cycle
5,28, and 50 years
— Cooling time between IMF cycles

* 5and 10 years

» Five cycles for each data set

* Two test cases
— 45 GWd/t burnup, 10 year 1nitial cooling, 7 year IMF cooling
— 75 GWd/t burnup, 45 year 1nitial cooling, 7 year IMF cooling
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W/ Initial Homogeneous Assembly Results
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« TRUO, Mass Fractions

45 GWd/t burnup, 10 year initial cooling, 75 GWd/t burnup, 45 year initial cooling,
and 7 year IMF Cooling and 7 year IMF Cooling

Error Error

Predicted | Actual (%) Predicted | Actual (%)
Cycle 0 24.21 23.75 1.95 Cycle 0 59.61 59.61 0.01
Cycle 1 35.40 37.21 4.86 Cycle 1 63.93 64.28 0.54
Cycle 2 44.01 46.70 5.75 Cycle 2 68.72 69.13 0.60
Cycle 3 50.48 53.45 5.55 Cycle 3 72.47 72.87 0.55
Cycle 4 55.46 58.50 5.19 Cycle 4 75.35 75.78 0.56

 Errors higher with lower cooling time due to Pu-241 decay to Am-241
* 57.8% and 93.6% of 109 predicted values had errors less than 5% for
45 and 75 GWd/t burnup cases, respectively



Eftects of Pu-241

Pu-241 half-life: 14.4 years
Decays to Am-241

Fissile 1sotope to strong absorber

Mass change varies greatly
* 5 years: 78.61% remains
28 years: 26.61% remains

* 50 years: 9.01% remains

Cooling times of approximately 10.6 (60%) and 17.5
(43%) years should be added



e Three independent variables
— Burnup of UO, fuel
* 33,60, and 100 GWd/t
— Cooling time after initial UO, cycle
« 5,10, 17, 28, and 50 years
— Cooling time between IMF cycles

* 5and 10 years

» Five cycles for each data set

* Two test cases
— 45 GWd/t burnup, 14 year 1nitial cooling, 7 year IMF cooling
— 75 GWd/t burnup, 40 year 1nitial cooling, 7 year IMF cooling



W/ Improved Results

e Case 45-14-07

» Average error on TRUO, mass fraction: 1.3%
— Overall

* Values with less than 5% error: 102 of 109

» Average error: 1.7%

e Maximum error: 6.1%

e (Case 75-40-07

» Average error on TRUO, mass fraction: 1.1%
— Overall

* Values with less than 5% error: 104 of 109

« Average error: 1.4%

e Maximum error: 4.9%
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W/ Conclusions and Recommendations

* Mass flows of LWR-IMF fuel cycles were
calculated using WIMS9

 Efficient interpolation schemes were proposed to
predict system study variables

* Interpolations can now be used to accurately
estimate various values within scenario analysis
codes
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W/ IMF Fuel Assemblies (Cont.)

» Heterogeneous Fuel Assemblies

— IMF fuel pins are located at peripheral 52 positions of 17x17 typical
PWR assembly

— IMF fuel pins are made by blending TRUs of previous IMF cycle and
LWR spent fuel

— Cycle length is controlled by Uranium enrichment, blending ratio, and
TRUOQO, mass fraction under power peaking of 1.2
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W, LWR-UO, Cycle Interpolations
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e Uranium Enrichment

~ 33 GWd/t (2.992% U-235), 60 (5.049%), 100 (8.500%)

Actual Predicted Errors for Predicted Errors for
Uranium Uranium Linear Uranium Quadratic
Enrichment Enrichment | Interpolation | Enrichment | Interpolation
(linear) (%) (quadratic) (%)
45 GWd/t | 3.872 3.918 1.18 3.879 0.18
75 GWd/t | 6.294 6.394 1.56 6.287 0.12

« TRU vector after aging for varied cooling times
— Three burnups (33, 60, and 100 GWd/t)
— Five cooling times (5, 14, 28, 40, and 50 years)




* Four test cases
— 45 GWd/t burnup with 10 and 35 year cooling
— 75 GWd/t burnup with 22 and 45 year cooling
— Quadratic interpolation for burnup

— Linear interpolation for cooling time

e Results
Error (%) | Number | Percentage
(out of 56)
<1 38 67.8
1-5 16 28.6
> 5 2 3.6

— Larger errors observed with smaller cooling times



Heterogeneous Results

« TRUO, Mass Fractions

45 GWd/t burnup, 10 year initial cooling,
and 7 year IMF Cooling

75 GWd/t burnup, 45 year initial cooling,

and 7 year IMF Cooling

Cycle 0
Cycle 1
Cycle 2

Predicted | Actual | % Error
20.49 21.47 4.58
26.18 27.42 4.53
29.93 31.50 4.99

Cycle 0
Cycle 1
Cycle 2

Predicted | Actual | % Error
36.97 37.05 0.22
38.57 38.00 1.50
40.76 40.67 0.22

e Uranium Enrichments

45 GWd/t burnup, 10 year initial cooling,
and 7 year IMF Cooling

75 GWd/t burnup, 45 year initial cooling,

and 7 year IMF Cooling

Cycle 0
Cycle 1
Cycle 2

Predicted | Actual | % Error
4.61 4.60 0.65
4.75 4.75 0.14
4.86 4.86 0.12

Cycle 0
Cycle 1
Cycle 2

Predicted | Actual | % Error
4.93 4.94 0.15
5.03 5.02 0.28
5.10 5.11 0.17

* 72.1% and 97.1% of 68 predicted values had errors less than 5% for

45 and 75 GWd/t burnup cases, respectively




Background

AFCI (Advanced Fuel Cycle Initiative)
— Reduce volume and toxicity of nuclear waste
— Reduce proliferation threat posed by plutonium

— Reclaim energy contained in spent fuel

Transuranic Recycling in Commercial Light Water Reactors (LWRs)

— Manages the inventory of transuranics (TRU) in commercial spent nuclear
fuel (CSNF) and impedes further accumulation

— Helps increase the loading capacity of high-level wastes in the Yucca
Mountain repository

— Capable of utilizing a large capacity of existing nuclear reactor facilities
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‘ Methodology - Codes

 WIMSO

172 group neutron library based on JEF2.2

Heavy nuclides and about 100 fission products are explicitly traced in
irradiation

Calculates physics parameters (eigenvalues and power peaking)
Creates one group cross sections for ORIGEN2.1 calculations

 ORIGEN2.1

— Performs depletion calculation to generate spent fuel composition using one

group cross sections generated by WIMS9

— Simulates cooling, reprocessing, and aging processes



Trends Observed

« Values increase with burnup, cooling time, and cycle number
* TRUO, mass fraction
» Charge mass
» Discharge mass

e Uranium Enrichment

« Blending ratio decreases between cycle 1 and cycle 2 in high burnup and
initial cooling time cases

* Exponential interpolation between cooling times can improve predictions
for >'Pu mass fraction

— No closed form solution for increasing quantities



