
Abstract
An architecture was developed to support decision 

aids in which formal concept analysis(FCA) coupled to 
a Peircean reasoning engine was implemented to create 
a tailorable foundation for unique applications.  The 
mathematical foundations associated with FCA permits 
transformations into alternative representations to take 
advantage of unique capabilities of information tech-
nologies maximizing the effectiveness of the information 
processing system.  The reasoning engines and inte-
grated modal logics provide a basis for verifiable in-
formation processing which is missing from many in-
formation processing systems.

1. Introduction

Development of reasoning based systems such as 
decision aids or data and information fusion engines 
requires attention to a knowledge representation tech-
nology that is flexible and enables one to transform the 
information into alternative representation domains to 
support the functional needs of a user community.   In 
addition, the system must implement  a robust suite of 
modal logics to ensure a theoretical rigor on all opera-
tions on information and knowledge processed by the 
information system.  There are many examples of frag-
ile systems that violate the most basic principles in 
logic and require process fixes to mitigate the potential 
problems.  This class of systems also make the use of 
optimal technologies difficult if not impossible because 
of an inflexibility in representational space.

Our effort focused on the formal concept analysis 
technology with its strong mathematical foundations.  
Modifications or extensions permit us to treat continu-
ous valued attributes and, with minor changes in our 
system state paradigm, to easily integrate temporal in-
formation into our information and knowledge space.  
Our application domain requires an extensive integra-
tion of modal logic into the system to deal with knowl-
edge, knowledge update, belief, belief revision and 
temporal logics.  While not completely implemented, 

zero and first order solutions and the structure support-
ing these logics is in place.  

In this short article the knowledge representation ap-
proach and its extensions will be defined as well as the 
overarching reasoning system that supports decision aid 
design.  

1.1. Architecture of Decision Aids

The problem addressed in the research and develop-
ment of these technologies  addresses the problem of 
decision support technologies in command systems.  
Decision support must be approached from a non-
intrusive perspective and support a model of command.  
The command model is represented in the next figure.

Figure 1.  Model of the decision making process.
While simplistic in design it captures a couple key 

elements that seem to have missed in the design of 
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many decision aids.  The first is the fact that data/
information collected must be convolved with knowl-
edge in order to construct situational awareness.  The  
belief state representing situational awareness, provides 
the basis for decisions by a decision maker.  Second, a 
belief state, can be in error due to errors in the data/
information collected, or in the knowledge used to con-
volve that information.  Any system design and its sup-
porting logic systems must address both types of errors 
to deal with knowledge and belief modification.  

2. Theoretical foundations of FCA

Formal concept analysis(FCA) is a knowledge  repre-
sentation development effort initiated by Ganter & 
Wille with foundations in ordered set theory.  The 
mathematics of FCA lends itself to lattice theory and 
the rich representation capabilities of that domain. FCA 
is based on the idea of a formal context, KFC, defined 
by a “triple” as the one in equation 1.

KFC = (G, M, I )  Eqn 1

In this equation G and M are sets of objects and at-
tributes respectively and I is a binary relation between 
the two sets.  Within our problem domain we have re-
fined the relation operator, I, to be a set of relations, 
each member corresponding to a specific predicate in 
the information domain.   This permits us to correlate  
information with a source or assign some descriptive 
property to the binary relationship between the objects 
and attributes.   The structure enables us to apply spe-
cially designed operators to blocks of information to 
enhance user understanding.  

There is an operator defined, (⋅)′ which aids in the 
definition of formal concepts from the formal context.  

(A l) / {m ! M |(g,m)! I,6g ! A}

(B l) / {g ! G |(g,m)! I,6m ! B}  
Eqn 2

In this expression, the operator action on the object 
set A produces the set of attributes common to objects 
within the ‘A’  set.  Likewise, application of the operator 
on a set of attributes B produces the set of objects 
which posses those attributes in common.  This opera-
tor permits us to construct concepts associated with a 
particular context providing a basis for constructing 
lattices for use in visual interpretations of information 
and knowledge within the knowledge base. 

The linkage to lattice theory provides avenues into a 
robust representation domain that can aid an analyst in 
developing an understanding of the collected informa-
tion.   The technologies use the “Begriff” of an identi-

fied context as the basis for the construction of that 
lattice.  The Begriff, B(G,M,I), is the ordered set of all 
concepts within a context.   A concept, consisting of the 
set-of-sets (A,B), is defined by conditions in equation 3.

(A,B) fc (G,M, I)
+

A 3 G, B 3 M

(A l) = B& (B l) = A  

 
Eqn 3

The ordering of the concepts in B(G,M,I) is defined 
in the next expression.

(A1,B1) # (A2,B2)

+

A13 A2 0 B2 3 B1  

 Eqn 4

An example of a lattice is provided from information  
developed by K. Wolff for his FCA tutorial. This exam-
ple is a simple model capturing aspects of a knowledge 
base dealing with animals.  The cross table of the in-
formation is the following.

Animals Preying Flying Bird mammal

Lion x x

Finch x x

Eagle x x x

Hare x

Ostrich x

Bee x
Table 1.  Cross-table representation of an animal 

context.
The lattice representation of this information is 

shown in figure 2.
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Figure 2.  Lattice of animal domain.
The expansion capability of this technology is cap-

tured by the “Bee” entry in the matrix.   The lattice prior 
to the addition of the information related to the bee con-
sists of information in figure 2 with the upper right 
node (BEE) removed.  Expanding a knowledge base is 
a simple task in this technology.  Likewise,  the parsing 
of a lattice can be accomplished nearly as easily.  What 
this does is give us the ability to structure the lattice at 
varying levels of knowledge abstraction and when addi-
tional detailed information is of interest we can “zoom” 
into an object node to see the additional structure of the 
knowledge base under the selected node.  This me-
chanical process adds to the potential understanding of 
knowledge and data being worked with.

The situation we find in the real world is that attrib-
utes are often defined by continuous real or probabilis-
tic variables.   Formal concept analysis deals with at-
tributes with continuous variables by defining a special 
construct called a “many valued context”.   This type of 
context is defined in the next expression.

Kmv= (G,M,W, I)  Eqn 6

As before, G is the set of objects, M is a set of attrib-
utes with values from the set W, defined by a ternary 
relational operator I.  In this extension, the set of all 
values an attribute may assume is defined by the do-
main of that attribute. 

D(m) / g d G |(g,m,w) d I,w d W    Eqn 7

To use many-valued contexts in formal concept 
analyses these attributes must go through a scaling 
process in order to generate a formal context that identi-
fies the presence or absence of an attribute.  The scaling 
processes proposed in the literature did not suite our 

needs.  In order to handle real continuous valued attrib-
utes we employed fuzzy set theory with overlapping 
sets. 

Fuzzy set theory

Formal concept analysis is based on a binary rela-
tionship between objects and attributes, an attribute is 
associated  with an object or it is not.  The problem is 
that in real situations many of the attributes may be real 
or even spectral in character.  In order to transform real 
world information into a form amenable to FCA we use 
a process based on fuzzy set theory.   Within a context,  
basically a block of information, we assume that a real 
attributes posses common interpretation.  Temperature 
in a materials context, might represent a melting tem-
perature or a phase transition temperature.  This tem-
perature is not be associated with temperature defined 
to be an engine operating temperature.  If all tempera-
tures were lumped and fuzified over the combined 
range, significant biases could be introduced as well as 
introducing fidelity issues into the knowledge reposi-
tory.  

Fuzzy set theory is an extension of set theory in 
which the membership function associated with an ele-
ment of the set can be represented by the next expres-
sion.

crisp

nA : X "{0,1}

fuzzy

nA : X "[0,1]  

Eqn 8

In a crisp set the membership values are 0 or 1 while 
for a fuzzy set the membership function value ranges 
over the interval 0 to 1.  The membership function used 
in this application is based on a Gaussian distribution as 
is defined in equation 9.

nk = e- x-ck] g
2 /2v27 A

 Eqn 9

Identifying and isolating a real variable is the first 
step of the process.   The range of that variable is deter-
mined and “padding” of 10% is added to the maximum 
and minimum values to ensure a degree of robustness to 
the context classification enabling a small degree of 
projection.  
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Figure 3.  Fuzzification of a real variable over a 
range of -10 to 10.

The figure above shows a real fuzzification using 5 
fuzzy levels.  The membership functions are assumed to 
use the Gaussian membership function with sigmoid 
functions on either end of the range of values.

A variable value within the range covered by the 
fuzzy sets permits us to estimate the likelihood that the 
attribute belongs to each of the fuzzy intervals.  In the 
implementation of the process we use an over lapping 
structure which permits a greater combinatory represen-
tation of a variable.  For example a variable value of 
‘5’, has non-zero membership in 3 quantiles of the fuz-
zified variable.  Effectively we have a 3-bit code repre-
senting the real attribute in some information domain.   

A second feature of our implementation permits a 
user to define a threshold for membership.  In this case 
the likelihood values must exceed the threshold in order 
for that quantile to be considered an attribute of an ob-
ject.  By defining the level of fuzzy set overlap and the 
threshold value we can change the degree of representa-
tion of real values in a particular context(information 
domain) .  This gives us the ability to find a balance 
between uniqueness and computational effort.  It also 
provides an analyst with a great deal of flexibility to 
discriminate information for use in a reasoning system.

3. Peircean Reasoning

Reasoning is the process we as humans use to solve 
problems or make decisions.   We all use reasoning, 
some use sophisticated philosophies, others use ad hoc 
reasoning, we all seem to be imbued with an inductive 
reasoning capability.   The form taken is a function of 
our training and experience.  Modal logic enters the 
equation in attempts to describe the flavors or nuances 
of reasoning we employ.  The ultimate form of reason-
ing is  the method of scientific inquiry which was de-
fined by C.S. Peirce.

The reasoning engine implemented in this effort is 
based on C.S. Peirce’s model of scientific inquiry.  This 
philosophical construct provides the foundation for how 
we as humans reason about situations new to us.  It 
consists of the three fundamental forms of reasoning 

;deduction, induction and abduction.  The logic associ-
ated with the abductive, deductive, and inductive forms 
of reasoning are captured in figure 4.

Figure 4.  Formal representation of Peircean rea-
soning.

Peircean reasoning is a hybrid form that integrates 
these three foundational forms of reasoning into his 
method of scientific inquiry.   Abduction is the more 
complex form of reasoning, it provides plausible hy-
potheses to explain an observation.  deduction provides 
a basis for selecting from that set of hypotheses.  De-
ductive reasoning is based on a structure that concludes 
if the premise of an argument is true the resultant must 
be true, and provides the foundation for identifying 
what to expect with the selection of one of the abduc-
tively generated hypotheses.

Induction is the mechanism for validating the hy-
pothesis selected.  Induction can be viewed as a statisti-
cal collection of data used to confirm or support a hy-
pothesis.  Induction is used to support a reasoning proc-
ess called inductive reasoning.  Inductive reasoning 
operates on a principle that if “... I have thrown a ball in 
the air, and it fell to the ground every time...” I believe 
that the next time I throw the ball in the air it will fall to 
the ground. 

 The statistical validation must be tempered by max-
ims such as “severe” testing as defined by Mayo.  A 
second nuance of this problem is the frequentist per-
spective.  Peirce and Mayo are frequentists and have 
developed theories from this perspective.   The problem 
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domain of decision support in command is really a 
Bayesian problem and these decision makers do not 
have the luxury of being frequentists,  so the application 
must be tempered by Bayesian statistics.

Not addressed in this effort is analogical reasoning 
which is a form of abductive reasoning.  The classic 
example of analogical reasoning is the Bohr atom ex-
ample.  Electron’s were believed to revolve around the 
nucleus like planets revolve around the sun.  Therefore, 
the forces in an atom should be able to be modeled us-
ing an inverse-square law.  This form of hypothesis 
generation examines the detail of phenomena and looks 
for similarities at these levels of abstraction to draw 
higher level hypotheses.

4. Application

The focus of the effort is to provide decision support 
capabilities and / or augment the efforts of an intel ana-
lyst.  The architecture to support these functions is de-
fined in the next figure. 
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Figure 5.  Decision support architecture.

The focus is the construction or assembly of knowl-
edge which provides the basis for evaluation informa-
tion collected through sensor and intelligence sources.  

The system enables the inclusion of modal logics in 
support of the various functions of the system.  Many of 
these linkages are zero order at this point and can be 
tailored to support the application domain.  For exam-
ple, the requirements on the disjunctive logic required 
in an automated system are going to be more stringent 
than for an application supporting an intel analyst.  
Similar arguments apply to the modal logics associated 
with knowledge construction and revision.  

The first application has been in support of an ana-
lyst.  One task of the system was to assimilate terror 
incidents documented in a State Department database 
over the years 1992 - 1998.  The incidents were charac-
terized by date, target,location, result, and the group 
responsible for the incident.   This data was used by an 
inductive learning algorithm to provide a predictive 
capability for assessing which group might be involved 
in some future or past incident.  The zero order tempo-
ral logic provided a means to look for tactical trends by 
a group over time.  This becomes critical, as behaviors 
can change over time and knowledge must be revised to 
reflect these shifting trends to ensure the hypothesis 
generation mechanism reflects a current understanding.  
The lattice representing a subset of the information is 
given in figure 6.

Figure 6.  Lattice of terror incidents 1992-1998.

The structure of the information makes it practical to 
identify which groups might strike in North America, 
which groups prefer bombing tactics as opposed to kid-
napping and what their main targets are.  This knowl-
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edge becomes part of the basis for hypotheses generated 
by the system reflecting information collected.

5. Conclusion

What has been produced in this effort is a robust 
flexible decision support functionality.  The system is a 
hybrid solution using a number of technologies in 
which function is matched to a technology strength.  
The knowledge representation methodology provides a 
mathematical basis permitting transformations to other 
representation technologies that support different tech-
nologies, ensuring an effective total solution.  Currently 
, there are 3 one-to-one transformations that can be used 
to take advantage of matrix based technologies, or neu-
ral net technologies.  This permits the development of 
fast real time engines as well as take advantage of tech-
nologies better suited for temporal analysis. 

What we need to do is tailor the different modal lo-
gics to the needs and requirements of the application.  
Additionally, we need to expand the knowledge opera-
tor set to increase the flexibility of the hypothesis gen-
eration function.  The system uses implementations of 
Mill’s first two canons.  The final extension would be to 
develop an analogical reasoning capability to give the 
system a more naturalistic ability to solve unique prob-
lems.
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