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Abstract

An architecture was developed to support decision
aids in which formal concept analysis(FCA) coupled to
a Peircean reasoning engine was implemented to create
a tailorable foundation for unique applications. The
mathematical foundations associated with FCA permits
transformations into alternative representations to take
advantage of unique capabilities of information tech-
nologies maximizing the effectiveness of the information
processing system. The reasoning engines and inte-
grated modal logics provide a basis for verifiable in-
formation processing which is missing from many in-
formation processing systems.

1. Introduction

Development of reasoning based systems such as
decision aids or data and information fusion engines
requires attention to a knowledge representation tech-
nology that is flexible and enables one to transform the
information into alternative representation domains to
support the functional needs of a user community. In
addition, the system must implement a robust suite of
modal logics to ensure a theoretical rigor on all opera-
tions on information and knowledge processed by the
information system. There are many examples of frag-
ile systems that violate the most basic principles in
logic and require process fixes to mitigate the potential
problems. This class of systems also make the use of
optimal technologies difficult if not impossible because
of an inflexibility in representational space.

Our effort focused on the formal concept analysis
technology with its strong mathematical foundations.
Modifications or extensions permit us to treat continu-
ous valued attributes and, with minor changes in our
system state paradigm, to easily integrate temporal in-
formation into our information and knowledge space.
Our application domain requires an extensive integra-
tion of modal logic into the system to deal with knowl-
edge, knowledge update, belief, belief revision and
temporal logics. While not completely implemented,

zero and first order solutions and the structure support-
ing these logics is in place.

In this short article the knowledge representation ap-
proach and its extensions will be defined as well as the
overarching reasoning system that supports decision aid
design.

1.1. Architecture of Decision Aids

The problem addressed in the research and develop-
ment of these technologies addresses the problem of
decision support technologies in command systems.
Decision support must be approached from a non-
intrusive perspective and support a model of command.
The command model is represented in the next figure.
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Figure 1. Model of the decision making process.

While simplistic in design it captures a couple key
elements that seem to have missed in the design of



many decision aids. The first is the fact that data/
information collected must be convolved with knowl-
edge in order to construct situational awareness. The
belief state representing situational awareness, provides
the basis for decisions by a decision maker. Second, a
belief state, can be in error due to errors in the data/
information collected, or in the knowledge used to con-
volve that information. Any system design and its sup-
porting logic systems must address both types of errors
to deal with knowledge and belief modification.

2. Theoretical foundations of FCA

Formal concept analysis(FCA) is a knowledge repre-
sentation development effort initiated by Ganter &
Wille with foundations in ordered set theory. The
mathematics of FCA lends itself to lattice theory and
the rich representation capabilities of that domain. FCA
is based on the idea of a formal context, Krc, defined
by a “triple” as the one in equation 1.

K = (G, M, I) Eqgn 1

In this equation G and M are sets of objects and at-
tributes respectively and I is a binary relation between
the two sets. Within our problem domain we have re-
fined the relation operator, I, to be a set of relations,
each member corresponding to a specific predicate in
the information domain. This permits us to correlate
information with a source or assign some descriptive
property to the binary relationship between the objects
and attributes. The structure enables us to apply spe-
cially designed operators to blocks of information to
enhance user understanding.

There is an operator defined, (1) which aids in the
definition of formal concepts from the formal context.
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In this expression, the operator action on the object
set A produces the set of attributes common to objects
within the ‘A’ set. Likewise, application of the operator
on a set of attributes B produces the set of objects
which posses those attributes in common. This opera-
tor permits us to construct concepts associated with a
particular context providing a basis for constructing
lattices for use in visual interpretations of information
and knowledge within the knowledge base.

The linkage to lattice theory provides avenues into a
robust representation domain that can aid an analyst in
developing an understanding of the collected informa-
tion. The technologies use the “Begriff” of an identi-

fied context as the basis for the construction of that
lattice. The Begriff, B(G,M,]), is the ordered set of all

concepts within a context. A concept, consisting of the
set-of-sets (A,B), is defined by conditions in equation 3.

(A,B) —— (G, M,])
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The ordering of the concepts in B(G,M,]) is defined
in the next expression.
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An example of a lattice is provided from information
developed by K. Wolff for his FCA tutorial. This exam-
ple is a simple model capturing aspects of a knowledge
base dealing with animals. The cross table of the in-
formation is the following.

Animals | Preying | Flying Bird | mammal
Lion X X
Finch X X
Eagle X X X
Hare X

Ostrich X
Bee X
Table 1. Cross-table representation of an animal

context.

The lattice representation of this information is
shown in figure 2.



Figure 2. Lattice of animal domain.

The expansion capability of this technology is cap-
tured by the “Bee” entry in the matrix. The lattice prior
to the addition of the information related to the bee con-
sists of information in figure 2 with the upper right
node (BEE) removed. Expanding a knowledge base is
a simple task in this technology. Likewise, the parsing
of a lattice can be accomplished nearly as easily. What
this does is give us the ability to structure the lattice at
varying levels of knowledge abstraction and when addi-
tional detailed information is of interest we can “zoom”
into an object node to see the additional structure of the
knowledge base under the selected node. This me-
chanical process adds to the potential understanding of
knowledge and data being worked with.

The situation we find in the real world is that attrib-
utes are often defined by continuous real or probabilis-
tic variables. Formal concept analysis deals with at-
tributes with continuous variables by defining a special
construct called a “many valued context”. This type of
context is defined in the next expression.

Koo = (G, M, W, D) Eqgn 6

As before, G is the set of objects, M is a set of attrib-
utes with values from the set W, defined by a ternary
relational operator 1. In this extension, the set of all
values an attribute may assume is defined by the do-
main of that attribute.

D(im) =g € Gl(gmw) € Lw e W Eqn7

To use many-valued contexts in formal concept
analyses these attributes must go through a scaling
process in order to generate a formal context that identi-
fies the presence or absence of an attribute. The scaling
processes proposed in the literature did not suite our

needs. In order to handle real continuous valued attrib-
utes we employed fuzzy set theory with overlapping
sets.

Fuzzy set theory

Formal concept analysis is based on a binary rela-
tionship between objects and attributes, an attribute is
associated with an object or it is not. The problem is
that in real situations many of the attributes may be real
or even spectral in character. In order to transform real
world information into a form amenable to FCA we use
a process based on fuzzy set theory. Within a context,
basically a block of information, we assume that a real
attributes posses common interpretation. Temperature
in a materials context, might represent a melting tem-
perature or a phase transition temperature. This tem-
perature is not be associated with temperature defined
to be an engine operating temperature. If all tempera-
tures were lumped and fuzified over the combined
range, significant biases could be introduced as well as
introducing fidelity issues into the knowledge reposi-

tory.

Fuzzy set theory is an extension of set theory in
which the membership function associated with an ele-
ment of the set can be represented by the next expres-
sion.

crisp

Hat X - {0, 1}
Suzzy

uaz X ~[0,1]

Eqn 8

In a crisp set the membership values are 0 or 1 while
for a fuzzy set the membership function value ranges
over the interval 0 to 1. The membership function used
in this application is based on a Gaussian distribution as
is defined in equation 9.

= eltme/e] Eqn 9

Identifying and isolating a real variable is the first
step of the process. The range of that variable is deter-
mined and “padding” of 10% is added to the maximum
and minimum values to ensure a degree of robustness to
the context classification enabling a small degree of
projection.



Figure 3. Fuzzification of a real variable over a
range of -10 to 10.

The figure above shows a real fuzzification using 5
fuzzy levels. The membership functions are assumed to
use the Gaussian membership function with sigmoid
functions on either end of the range of values.

A variable value within the range covered by the
fuzzy sets permits us to estimate the likelihood that the
attribute belongs to each of the fuzzy intervals. In the
implementation of the process we use an over lapping
structure which permits a greater combinatory represen-
tation of a variable. For example a variable value of
‘5’, has non-zero membership in 3 quantiles of the fuz-
zified variable. Effectively we have a 3-bit code repre-
senting the real attribute in some information domain.

A second feature of our implementation permits a
user to define a threshold for membership. In this case
the likelihood values must exceed the threshold in order
for that quantile to be considered an attribute of an ob-
ject. By defining the level of fuzzy set overlap and the
threshold value we can change the degree of representa-
tion of real values in a particular context(information
domain) . This gives us the ability to find a balance
between uniqueness and computational effort. It also
provides an analyst with a great deal of flexibility to
discriminate information for use in a reasoning system.

3. Peircean Reasoning

Reasoning is the process we as humans use to solve
problems or make decisions. We all use reasoning,
some use sophisticated philosophies, others use ad hoc
reasoning, we all seem to be imbued with an inductive
reasoning capability. The form taken is a function of
our training and experience. Modal logic enters the
equation in attempts to describe the flavors or nuances
of reasoning we employ. The ultimate form of reason-
ing is the method of scientific inquiry which was de-
fined by C.S. Peirce.

The reasoning engine implemented in this effort is
based on C.S. Peirce’s model of scientific inquiry. This
philosophical construct provides the foundation for how
we as humans reason about situations new to us. It
consists of the three fundamental forms of reasoning

;deduction, induction and abduction. The logic associ-
ated with the abductive, deductive, and inductive forms
of reasoning are captured in figure 4.
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Figure 4. Formal representation of Peircean rea-
soning.

Peircean reasoning is a hybrid form that integrates
these three foundational forms of reasoning into his
method of scientific inquiry. Abduction is the more
complex form of reasoning, it provides plausible hy-
potheses to explain an observation. deduction provides
a basis for selecting from that set of hypotheses. De-
ductive reasoning is based on a structure that concludes
if the premise of an argument is true the resultant must
be true, and provides the foundation for identifying
what to expect with the selection of one of the abduc-
tively generated hypotheses.

Induction is the mechanism for validating the hy-
pothesis selected. Induction can be viewed as a statisti-
cal collection of data used to confirm or support a hy-
pothesis. Induction is used to support a reasoning proc-
ess called inductive reasoning. Inductive reasoning
operates on a principle that if “... I have thrown a ball in
the air, and it fell to the ground every time...” I believe
that the next time I throw the ball in the air it will fall to
the ground.

The statistical validation must be tempered by max-
ims such as “severe” testing as defined by Mayo. A
second nuance of this problem is the frequentist per-
spective. Peirce and Mayo are frequentists and have
developed theories from this perspective. The problem



domain of decision support in command is really a
Bayesian problem and these decision makers do not
have the luxury of being frequentists, so the application
must be tempered by Bayesian statistics.

Not addressed in this effort is analogical reasoning
which is a form of abductive reasoning. The classic
example of analogical reasoning is the Bohr atom ex-
ample. Electron’s were believed to revolve around the
nucleus like planets revolve around the sun. Therefore,
the forces in an atom should be able to be modeled us-
ing an inverse-square law. This form of hypothesis
generation examines the detail of phenomena and looks
for similarities at these levels of abstraction to draw
higher level hypotheses.

4. Application

The focus of the effort is to provide decision support
capabilities and / or augment the efforts of an intel ana-
lyst. The architecture to support these functions is de-
fined in the next figure.
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Figure 5. Decision support architecture.

The focus is the construction or assembly of knowl-
edge which provides the basis for evaluation informa-
tion collected through sensor and intelligence sources.

The system enables the inclusion of modal logics in
support of the various functions of the system. Many of
these linkages are zero order at this point and can be
tailored to support the application domain. For exam-
ple, the requirements on the disjunctive logic required
in an automated system are going to be more stringent
than for an application supporting an intel analyst.
Similar arguments apply to the modal logics associated
with knowledge construction and revision.

The first application has been in support of an ana-
lyst. One task of the system was to assimilate terror
incidents documented in a State Department database
over the years 1992 - 1998. The incidents were charac-
terized by date, target,location, result, and the group
responsible for the incident. This data was used by an
inductive learning algorithm to provide a predictive
capability for assessing which group might be involved
in some future or past incident. The zero order tempo-
ral logic provided a means to look for tactical trends by
a group over time. This becomes critical, as behaviors
can change over time and knowledge must be revised to
reflect these shifting trends to ensure the hypothesis
generation mechanism reflects a current understanding.
The lattice representing a subset of the information is
given in figure 6.

Target_UNK
Result_UNK
Killed

Figure 6. Lattice of terror incidents 1992-1998.

The structure of the information makes it practical to
identify which groups might strike in North America,
which groups prefer bombing tactics as opposed to kid-
napping and what their main targets are. This knowl-



edge becomes part of the basis for hypotheses generated
by the system reflecting information collected.

5. Conclusion

What has been produced in this effort is a robust
flexible decision support functionality. The system is a
hybrid solution using a number of technologies in
which function is matched to a technology strength.
The knowledge representation methodology provides a
mathematical basis permitting transformations to other
representation technologies that support different tech-
nologies, ensuring an effective total solution. Currently
, there are 3 one-to-one transformations that can be used
to take advantage of matrix based technologies, or neu-
ral net technologies. This permits the development of
fast real time engines as well as take advantage of tech-
nologies better suited for temporal analysis.

What we need to do is tailor the different modal lo-
gics to the needs and requirements of the application.
Additionally, we need to expand the knowledge opera-
tor set to increase the flexibility of the hypothesis gen-
eration function. The system uses implementations of
Mill’s first two canons. The final extension would be to
develop an analogical reasoning capability to give the
system a more naturalistic ability to solve unique prob-
lems.
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