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Realistic models of foam structure enable
prediction of structure-property-processing relationships
development of constitutive models

What are the important characteristics of foam structure?
How much do they influence foam properties?

Which models of foam structure are realistic?
Which are useful?
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Familiar Foams

Low-Density Foams Dense Foams

Liquid Foams

“Wet” Foam
Fresh Beer Foam

Solid Foams

Low-Density Open-Cell Foam Dense Closed-Cell Foam
Flexible Polyurethane Foam Rigid Polyurethane Foam



Predicting structure-property-processing relationships involves
the fluid mechanics and solid mechanics of foams

@ Foam Structure: Micrographs and Models @ Foam Micromechanics: Fluids and Solids

Surface Evolver Models

Random Foams

Wet Foam
Buckling
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Ordered Foams

Kelvin Cell
Weaire-Phelan (A15)

Random Foams

Monodisperse Polydisperse Bidisperse



Cell Shapes in Random Monodisperse Foam
Kraynik, Reinelt & van Swol (2003) Phys Rev E 67, 031403.
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Random Foam Structure

Liquid Foams Surface Evolver Models




X-ray microtomography of open-cell foams

Jerry Seidler, Physics Department, University of Washington




Foam skeleton from image analysis of MRI and XMT data
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Strut length distribution

Matt Montminy, PhD thesis, Univ. Minnesota (2001)

M.D. Montminy, A.R. Tannenbaum and C.W. Macosko,
The 3D structure of real polymer foams, J. Coll. Int. Sci. 280 202-211 (2004).



Modeling low-density open-cell foams
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Simulation of Uniaxial Compression
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Animation by Mike Neilsen
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Uniaxial Compression of a Closed-Cell Weaire-Phelan Foam
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Microstructure of Closed-Cell Kelvin Foam

Simple model based on flat plates and
spherical cavities

Mike Neilsen

Use GOMA to model foam evolution by
simulating bubble growth in viscous fluids.

Animation by Tom Baer RIS



Confocal microscopy of Plateau borders in emulsions

Eric Weeks, Physics, Emory University and Doug Wise, Physics, Harvard University



Sandia
Surface Evolver Simulations of Wet Foams @ National

with 8% liquid Laboratories
Andy Kraynik

amkrayn@sandia.gov

Kelvin

Confocal microscopy of Plateau borders
in an emulsion

Eric Weeks (Emory), Doug Wise (Harvard)

“Dry” Random foam
with 27 cells

“Dry” Kelvin
Random foam with 27 bubbles

Plateau borders
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Bubble Overlap




Wet Kelvin Foam
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Very Wet Kelvin Foam

| ! | L | : | ! |
1_ Kelvin 1 7]
_\ « =« very wel Kelvin 1
08— "--__- =— = Kelvin2 ]
G | -“--"""-._‘_._\ |
0.6k :
--.\ |
\\
41 N
0 _ 1 _
\

0.2 \ a
| \ i

0 ] ]

1 I 1 1 I 1 1 I 1
0 005 01 015 02 025 03
Liquid Volume Fraction

¢ =0.12

¢ =0.15

0.2 0.3

(I):

<
I



Wet Rhombic Dodecahedra — T
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Wet Weaire-Phelan
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Overview

Foams are ubiquitous materials but the connection between the macroscopic behavior
and cell-level microstructure is poorly understood.

Accurate structure-property-processing relationships and constitutive models are
needed to develop foams and predict response.

Complementary experiments and theoretical studies are needed to accomplish this
goal.

Micromechanical analysis is used to predict the connection between foam structure and
behavior.



