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ABSTRACT

In this paper, we present an optimal method for
calculating turning maneuvers for an unmanned aerial
vehicle (UAV) developed for ecological research. The
algorithm calculates several possible solutions using
vectors represented in complex notation, and selects the
shortest turning path given constraints determined by the
aircraft. This algorithm considers the UAV’s turning
capabilities, generating a two-dimensional path that is
feasible for the UAV to fly. We generate a test flight path
and show that the UAV is capable of following the turn
maneuvers.
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1. Introduction

Unmanned aerial vehicles (UAVs) have become
increasingly common for both military and civilian
applications. Autopilots are now commercially available
for small aircraft, simplifying the development of an
UAV. Typically, the navigation system of the autopilot in
a UAV is provided with a series of waypoints defining a
task for the UAV to complete. Using Cloud Cap
Technology’s Piccolo autopilot, researchers at Kansas
State University developed a small UAV, named ECat.
ECat, shown in Figure 1, is a hand-launched electric-
powered UAV modified from a hobby-grade Sig Kadet
airframe to incorporate a larger payload bay.

Figure 1: ECat UAYV used for collecting data for
environmental and agronomy research

Landing skids were also added to allow ECat to land in
grassy fields. This system is being used to collect data for
environmental and agricultural research. Typical missions
require collecting image and multi-spectral data from test
fields or prairie reserve wildlife areas.

Figure 2 depicts a typical mission where the ECat UAV
must fly a grid over an area collecting images. At the end
of each pass, the plane must maneuver to align itself for
the next straight line segment. It is straightforward to
define the waypoints for straight line segments. However,
the autopilot often does not efficiently reverse directions,
align itself for the next pass, and track the path well on its
own. To provide for efficient turning, the autopilot
navigator code on ECat was modified to perform turn
maneuvers consisting of arc and straight line segments.
This paper describes a closed form method for
automatically generating these arcs and lines that
minimizes the time required for turning and realignment
maneuvers. The solution generates smooth trajectories
that align the UAV for its next segment while taking into
account the aircraft’s limited turning capabilities.
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Figure 2: A general flight path for an ECat mission
over a field



Similar work was done by Anderson, et al [1] and they
offer a solution to the re-alignment problem. However,
their solution requires iteratively solving a set of
differential equations whereas our solution is closed form.
Other path planning methods, such as [2], determine
waypoints on a course through a dangerous area based on
risk assessment algorithms, but do not necessarily take the
vehicle’s turning capabilities into account. Whang and
Hwang describe a method for smoothing flight path
trajectories in [3], but relax the constraint that the vehicle
passes through specified waypoints. Yang and Kapila
address optimal path planning in [4], describing method
similar to [1] and this work, but do not address three-arc
turning paths. Other methods such as those in [3] and [5]
find a minimum length path by minimizing a cost
function. In this paper, we assume the solution to the
optimization problem and present a means of
algebraically calculating it. Dubins [6] proves that a
solution involving either three arcs of a minimum radius
or two arcs and a line is optimal.

In this paper, we present a method for generating an
optimum turning maneuver. The method expresses the
path as a set of complex vector equations which are then
solved in closed form to generate an optimal path. To
demonstrate the effectiveness of our procedure, we used
ECat to fly a path generated using the method described
here. The resulting flight data clearly demonstrates the
efficacy of the method. The remainder of this paper is as
follows. First, in Section II, we derive the optimum turn
maneuver in closed form. In Section III we show
simulation and real flight data. Finally our conclusions are
discussed in Section IV.

2. Problem Statement and Solution

There exist an infinite number of trajectories which
maneuver the aircraft from an arbitrary initial position and
heading to another arbitrary final position and heading
while maintaining constant speed and altitude. Our goal is
to select a two-dimensional path which minimizes the
time of the maneuver. Typically, minimum time
optimizations result in maximum control inputs. Based on
this fact and heuristic arguments, we conclude that an
optimal maneuver consists of a sequence of segments of
either maximum left- or right-handed arcs or straight
lines. Figure 3 demonstrates that the initial and final
segment of an optimal maneuver will always be an arc
segment. It also demonstrates that the optimal maneuver
can be accomplished with at most three segments.
Sometimes the middle segment can be a straight line and
sometimes it is another arc. Up to eight unique possible
paths can be generated using combination of maximum
left- or right- handed turns and line segments. Our
algorithm generates all possible paths of this type, and
then selects the shortest one.
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Figure 3: Comparison of different path types

2.1 Three-Turn Solutions

Referring to Figure 4, we show an arbitrary three-turn
solution. The initial and final headings are known and
denoted as 6; and6,. The unknown subtended angles of

each arc are6 ., 05, and O, . The points A,B,andC are

the centers of the arcs and D is the destination position.
We scale all distance measurements to the turn radius,
i.e., one unit equals the turn radius.

Figure 4: An arbitrary 3-turn solution

Taking the start of the first turn as the origin of the
coordinate system, without loss of generality, we can
represent this path as the sum of five complex vectors as
follows:
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where s denotes the direction of the starting turn and is
equal to +1 for a CCW turn or -1 for a CW turn.
Simplifying (1) by rotating by -6, and by s%,
rearranging the equation, and noting that " =_|
regardless of s we get
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Since the right hand side of (2) is known, the equation can
be rewritten in the following form:

e/t _ e./'s'("rgs) =G-el% (3)

where

Rotating by -0, , equation (3) can be rewritten as

e./-a _e./(a+b) =G ,e./-O ( 5 )
where
=s0,-60
a S A G ( 6 )
b=—-s50,

From (4) there are two values for G and 6
corresponding to (GI,QGI) for s=1 and(Gz,er) for

s=-1. If G>2then (5) has no solution and a straight
line solution is needed. This situation will be addressed
in the next section. Otherwise, we may solve for the two
unknowns a and b using Euler’s identity and equating real
and imaginary parts of (5) as follows:

cos(a)—cos(a+b)=G (7)
and
sin(a)=sin(a +b). (8)
Equation (7) reduces to
b=2nn (9)
wheren =20, 1, 2, ... or
b=02n+1)r—2a. (10)

Equation (9) is an obvious solution of (8), and represents
the case where a single arc is sufficient to optimally
complete the maneuver. This case will be handled in the
Two-Turn solution when the line length equals zero and
the subtended angle for this situation will be equal
to, -6, . Otherwise, equation (10) applies. Substituting

(10) into (7), and simplifying yields four solutions for a:
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Substituting (11) into (6) yields the anglesf,, 0.
Noting that 6. is dependent on the difference between

0, and 0, as well as the angles 0, and 605, we have
0,-0,=5(0,-05+06.). Solving for 6, 0, and 0
we have
9/11 = +(a1 +9G1)= 931 = +(2a1 —n),
0 =+0,-0,+a,-7-6;)
04, = —(a2 +9G2)= Op, = _(2a2 —ﬂ),
0, =0, -6, +a,-7-0;,)

0, =+as+0g) 04 =+(a3-7), (12)
0, =+0,-6,+a,-n-6;)
0,, = —(a4 +0, )= Op, = _(2a4 - ﬂ),

0c, =0, -0, +a,-7-0,)

Since values for0,, 0, and 0, greater than 2r do not

provide an optimal solution, we restrict all the magnitude
of all angles to be between 0 and 27 .

2.2 Two Turn Solutions with Straight Line Segment

As mentioned the previous subsection, if G > 2, then a
straight line solution is needed. Also, there are some
solutions where G <2 and a straight line is a part of the
shortest path. In order for a straight line solution to occur,
the heading at the end of the initial turn and at the
beginning of the final turn must be the same.
WhenG =2, a single arc is sufficient to complete the
turn. Regardless of whether the initial and final turns are
in the same direction or in opposite directions, the two-
turn solutions are calculated the same Way
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Figure 5: Two turn plus straight line situations

Similar to the solution method in Section 2.1, we refer
to Figure 5 and write a vector loop equation

e_/‘.(9,+sl%) 4 ej-(Ql—sl%JrQA) i L. ej.(9’+9A) +

ej.(9,+944+s2%) -D. ej_gD 4 e_/‘.(Qersz%).

Here s, denotes the direction of the initial turn ands, is

(13)

the direction of the final turn. Rearranging (13) we have
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There are up to four possible two turn solutions:

s =+1, 8§, =+1
s =-1 5, =—1
! 2 . (17)
s =+1, 8§, =—1
s =-1 8§, =+1

We will look the cases s, =s,and s, = —s, separately.
First, we let s, =s,, then the first and third terms on

the right-hand side of (15) represent vectors of equal
magnitudes pointing in opposite directions. Therefore
these terms cancel and we have

G .e./'ec; =L .e./'(91+944)' ( 18)

For two vectors to be equal, both the magnitude and
direction must be equal. Therefore

G=L (19)
and

1

(20)

for s, =s5,. Since G will has two values (one for
s, =8, =+1 and s, =5, =-1), 0, will have two values
Now let s; =—s,. The first and third terms on the

right-hand side of (15) are vectors of equal length
pointing in the same direction. Thus (15) becomes

Grotts oo 0 a00) o0 ()
Rotating (21) by -0, —6 , we have
G 0600 i) i) (22)
Using Euler’s identity and simplifying yields
Gcos(QG—Qi—QA)zL (23)

and

Gsin(GG—Gi—GA):2sin(s2%). (24)

Since 2sin(s2 %) will equal -1 for s, =—land 1 for

s, =+1 we can write
Gsin(05 -0, -60,)=2s,. (25)

We can solve for 6 , by dividing equation (25) by (23) and
simplify to get

0,=0,-0, —tan‘{%) (26)

and we can square (23) and (25), add the result together
and rearrange to get

L=vG>-22. (27)

Since L represents a magnitude, the negative solution in
(27) is invalid. IfG > 2, then L can be determined. If
G =2, thenL=0and a single arc completes the turn
maneuver. These equations are valid if s, =—s, .

From equations (20) and (26), we have values for 6 ,.

Referring to Figure 5 we can add angles to
get0; +0, +60. =0, or rewriting this we have

0 =0, -6,-0, (28)
and we have four solutions sets for [9 A,QC] :

QA1 = QG(SIZSZZ+1) -0,
Oc =0, -6,-0,

QAZ = QG(SIZSZZ* ) _Qi’
QCZ :Qf _Qi _QAZ

9A3 = QG(Szzfslerl) - 91‘ - tanl(%j, ( 29 )

9C3 = Qf _Qi _9A3

4 =2
9A4 = QG(&:?SF?I) _Qi —tan I(Tj,
Qc4 :Qf _Qi _9A4

where 0 is calculated from (16) using the indicated
values for s, ands, .

2.3 The Quickest Solution.

There are up to eight possible solutions for any turn
maneuver — up to 4 three-turn solutions and up to 4 two-
turn plus line segment solutions. Since we want the
quickest (i.e. shortest) path, we need to pick the quickest
solution. For the three-turn solutions, since all the turn
radii are equal, we can addf,, O, and O together for

each solution and choose the minimum sum. (We must



also keep track of which thetas give the quickest three-
turn solution.)

All units in the preceding equations are normalized to
the turn radius, thus one unit of linear travel is equal to
one unit (i.e. radian) of angular travel. ~We find

0,+0. +|L| for each two-turn plus line segment

solution, choose the smallest sum, and keep track of the
thetas and lengths that comprise the minimum sum. At
this point, we have determined the shortest three-turn
solution and the shortest two-turn plus line segment
solution.

Comparing 0, +6; +0, and 0, +0, +|L| , we choose
the smallest sum to get the minimum overall solution. If
the three-turn solution is the quickest, we choose ® ,,
®p,and O to correspond to 6, 05, and 6, from the

quickest three-turn solution. If the two-turn solution is
quickest, we choose ® , and O, to correspond to 0,

and 6. from the quickest two-turn solution and select
(O3 =|Lmin| where L

shortest two-turn solution.
Figure 6 provides a summary of the algorithm.
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Figure 6: Algorithm summary

3. Example, Simulation, and Flight Test
3.1 Algorithm Example

In this section, we use the method described in Section
2 to demonstrate the results of the optimal turning
algorithm. We begin with initial conditions:

0.=", 0,=-"
T = (30)
=0,

0p D=35

where the angles are in radians and D is in meters. Since
the autopilot’s bank angle limit is 30 degrees, we set the
maximum bank angle needed to track the path at 15

degrees. This will allow the autopilot to have authority to
correct the UAV’s position. For the 15 degree bank angle
and a 15 m/s velocity, it can be shown, assuming a
coordinated turn, that the minimum turning radius, R of
the UAV will be approximately 85 meters. Given these
initial conditions, the algorithm was used to calculate six
possible solutions shown in Figure 7. Clearly some
solutions in the figure have longer path lengths than
others. Calculating the quickest solution confirms that the
3-Turn Solution 4 is the shortest path for the given initial
conditions. Using this turning maneuver, we assembled a
flight path for simulation and flight testing. These test
results are discussed in the following sections.
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Figure 7: Six possible turning solutions calculated for
the conditions given the in example

3.2 Simulation and Flight Test Results

Using the optimal turn maneuver result from the
previous section, we rotated the turning path and
constructed a “bulbous racetrack” flight path as shown in
Figures 8 and 9. Ten waypoints were used to describe the
flight path: three arc waypoints for each complete turn
maneuver, and four waypoints to describe the lines
connecting the turning maneuvers.

The flight plan was first tested in simulation. Figure 8
shows a plot of this test. The UAV simulation tracked the
path reasonably well. We believe that the tracking errors
are due to problems inside the navigator and will be
addressing them in future work.

The same path was also flown with the ECat UAV in an
open area near Manhattan, KS on a day with little wind.
The ECat was remotely piloted for take-off and landing,
and the same autopilot used for the simulation was used.
Figure 9 shows the desired flight path along with the
results of the flight test. Only the autopilot-controlled
section of the flight is displayed to avoid cluttering the
figure.
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Figure 8: Simulation flight of optimal turn path.
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Figure 9: Actual flight of optimal turn path.

4. Conclusions

A closed-from method for generating turning
maneuvers for a UAV was developed. This method
assumes that the solution will consist of full right- or left-
handed turns and utilizes vectors represented in complex
form. This method determines the quickest turning
maneuver for a given situation, and is easily implemented
in software. The aircraft’s turning capabilities are also
taken into account with this method, resulting in a feasible
UAV trajectory. To test the turning maneuver algorithm,
a simulation flight and an actual test flight in an open area
were performed. These flight tests showed that the UAV
is able to fly paths generated with the method presented
here. Future work includes combining the turn
maneuvers with path segments to generate complete paths
for an entire UAV mission.
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