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ABSTRACT  
In this paper, we present an optimal method for 
calculating turning maneuvers for an unmanned aerial 
vehicle (UAV) developed for ecological research.  The 
algorithm calculates several possible solutions using 
vectors represented in complex notation, and selects the 
shortest turning path given constraints determined by the 
aircraft.  This algorithm considers the UAV’s turning 
capabilities, generating a two-dimensional path that is 
feasible for the UAV to fly.  We generate a test flight path 
and show that the UAV is capable of following the turn 
maneuvers.  
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1.  Introduction

Unmanned aerial vehicles (UAVs) have become 
increasingly common for both military and civilian 
applications.  Autopilots are now commercially available 
for small aircraft, simplifying the development of an 
UAV.  Typically, the navigation system of the autopilot in 
a UAV is provided with a series of waypoints defining a 
task for the UAV to complete.  Using Cloud Cap 
Technology’s Piccolo autopilot, researchers at Kansas 
State University developed a small UAV, named ECat. 
ECat, shown in Figure 1, is a hand-launched electric-
powered UAV modified from a hobby-grade Sig Kadet 
airframe to incorporate a larger payload bay. 

Figure 1:  ECat UAV used for collecting data for 
environmental and agronomy research

Landing skids were also added to allow ECat to land in 
grassy fields. This system is being used to collect data for 
environmental and agricultural research. Typical missions 
require collecting image and multi-spectral data from test 
fields or prairie reserve wildlife areas.

Figure 2 depicts a typical mission where the ECat UAV 
must fly a grid over an area collecting images. At the end 
of each pass, the plane must maneuver to align itself for 
the next straight line segment. It is straightforward to 
define the waypoints for straight line segments. However, 
the autopilot often does not efficiently reverse directions, 
align itself for the next pass, and track the path well on its 
own.  To provide for efficient turning, the autopilot 
navigator code on ECat was modified to perform turn 
maneuvers consisting of arc and straight line segments. 
This paper describes a closed form method for 
automatically generating these arcs and lines that 
minimizes the time required for turning and realignment 
maneuvers. The solution generates smooth trajectories 
that align the UAV for its next segment while taking into 
account the aircraft’s limited turning capabilities.   
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Figure 2:  A general flight path for an ECat mission 
over a field
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Similar work was done by Anderson, et al [1] and they 
offer a solution to the re-alignment problem. However, 
their solution requires iteratively solving a set of 
differential equations whereas our solution is closed form.  
Other path planning methods, such as [2], determine 
waypoints on a course through a dangerous area based on 
risk assessment algorithms, but do not necessarily take the 
vehicle’s turning capabilities into account.  Whang and 
Hwang describe a method for smoothing flight path 
trajectories in [3], but relax the constraint that the vehicle 
passes through specified waypoints.  Yang and Kapila 
address optimal path planning in [4], describing method 
similar to [1] and this work, but do not address three-arc 
turning paths.  Other methods such as those in [3] and [5] 
find a minimum length path by minimizing a cost 
function.  In this paper, we assume the solution to the 
optimization problem and present a means of 
algebraically calculating it.  Dubins [6] proves that a 
solution involving either three arcs of a minimum radius 
or two arcs and a line is optimal.  

In this paper, we present a method for generating an 
optimum turning maneuver.  The method expresses the 
path as a set of complex vector equations which are then 
solved in closed form to generate an optimal path. To 
demonstrate the effectiveness of our procedure, we used 
ECat to fly a path generated using the method described 
here. The resulting flight data clearly demonstrates the 
efficacy of the method. The remainder of this paper is as 
follows. First, in Section II, we derive the optimum turn 
maneuver in closed form. In Section III we show 
simulation and real flight data. Finally our conclusions are 
discussed in Section IV.

2.  Problem Statement and Solution

There exist an infinite number of trajectories which 
maneuver the aircraft from an arbitrary initial position and 
heading to another arbitrary final position and heading 
while maintaining constant speed and altitude. Our goal is 
to select a two-dimensional path which minimizes the 
time of the maneuver.  Typically, minimum time 
optimizations result in maximum control inputs. Based on 
this fact and heuristic arguments, we conclude that an 
optimal maneuver consists of a sequence of segments of 
either maximum left- or right-handed arcs or straight 
lines. Figure 3 demonstrates that the initial and final 
segment of an optimal maneuver will always be an arc 
segment.  It also demonstrates that the optimal maneuver 
can be accomplished with at most three segments. 
Sometimes the middle segment can be a straight line and 
sometimes it is another arc.  Up to eight unique possible 
paths can be generated using combination of maximum 
left- or right- handed turns and line segments. Our 
algorithm generates all possible paths of this type, and 
then selects the shortest one.  
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Figure 3:  Comparison of different path types

2.1 Three-Turn Solutions

Referring to Figure 4, we show an arbitrary three-turn 
solution.  The initial and final headings are known and 

denoted as i and f .  The unknown subtended angles of 

each arc are A , B , and C .  The points A


, B


, andC


are 

the centers of the arcs and D


is the destination position.  
We scale all distance measurements to the turn radius, 
i.e., one unit equals the turn radius.  
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Figure 4:  An arbitrary 3-turn solution

Taking the start of the first turn as the origin of the 
coordinate system, without loss of generality, we can 
represent this path as the sum of five complex vectors as 
follows:
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where s denotes the direction of the starting turn and is 
equal to +1 for a CCW turn or -1 for a CW turn.  

Simplifying (1) by rotating by i and by
2


s , 

rearranging the equation, and noting that 1ise

regardless of s we get
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Since the right hand side of (2) is known, the equation can 
be rewritten in the following form: 

  GBAA jsjsj eGee    ( 3 )
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Rotating by G , equation (3) can be rewritten as

0)(   jbajaj eGee ( 5 )

where
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From (4) there are two values for G and G

corresponding to  
1

,1 GG  for 1s and  
2

,2 GG  for 

1s .  If 2G then (5) has no solution and a straight 
line solution is needed.  This situation will be addressed 
in the next section.  Otherwise, we may solve for the two 
unknowns a and b using Euler’s identity and equating real 
and imaginary parts of (5) as follows: 

    Gbaa  coscos ( 7 )

and

   baa  sinsin . ( 8 )

Equation (7) reduces to

nb 2 ( 9 )

where n = 0, 1, 2, … or

  anb 212   . ( 10 )

Equation (9) is an obvious solution of (8), and represents 
the case where a single arc is sufficient to optimally 
complete the maneuver.  This case will be handled in the 
Two-Turn solution when the line length equals zero and 
the subtended angle for this situation will be equal 
to if   .  Otherwise, equation (10) applies.  Substituting 

(10) into (7), and simplifying yields four solutions for a :
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Substituting (11) into (6) yields the angles A , B .  

Noting that C is dependent on the difference between 

f and i as well as the angles A and B , we have 

 CBAif s   .  Solving for A , B and C

we have
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Since values for A , B , and C greater than 2 do not 

provide an optimal solution, we restrict all the magnitude 
of all angles to be between 0 and 2 .

2.2  Two Turn Solutions with Straight Line Segment

As mentioned the previous subsection, if 2G , then a 
straight line solution is needed.  Also, there are some 
solutions where 2G and a straight line is a part of the 
shortest path.  In order for a straight line solution to occur, 
the heading at the end of the initial turn and at the 
beginning of the final turn must be the same.  
When 2G , a single arc is sufficient to complete the 
turn.  Regardless of whether the initial and final turns are 
in the same direction or in opposite directions, the two-
turn solutions are calculated the same way. 
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Figure 5:  Two turn plus straight line situations

Similar to the solution method in Section 2.1, we refer 
to Figure 5 and write a vector loop equation
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Here 1s denotes the direction of the initial turn and 2s is 

the direction of the final turn.  Rearranging (13) we have
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There are up to four possible two turn solutions: 
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We will look the cases 21 ss  and 21 ss  separately.    

First, we let 21 ss  , then the first and third terms on 

the right-hand side of (15) represent vectors of equal 
magnitudes pointing in opposite directions.  Therefore 
these terms cancel and we have

 AiG jj eLeG    . ( 18 )

For two vectors to be equal, both the magnitude and 
direction must be equal.  Therefore 
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and
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for 21 ss  .  Since G will has two values (one for 

121  ss and 121  ss ), A will have two values

Now let 21 ss  .  The first and third terms on the 

right-hand side of (15) are vectors of equal length 
pointing in the same direction.  Thus (15) becomes
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Rotating (21) by Ai   we have
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Using Euler’s identity and simplifying yields
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12 s we can write
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We can solve for A by dividing equation (25) by (23) and 

simplify to get
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and we can square (23) and (25), add the result together 
and rearrange to get

22 2 GL . ( 27 )

Since L represents a magnitude, the negative solution in 
(27) is invalid.  If 2G , then L can be determined.  If 

2G , then 0L and a single arc completes the turn 

maneuver.  These equations are valid if 21 ss  .

From equations (20) and (26), we have values for A .  

Referring to Figure 5 we can add angles to 

get fCAi   or rewriting this we have
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and we have four solutions sets for  CA  , :
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where G is calculated from (16) using the indicated 

values for 1s and 2s .

2.3  The Quickest Solution.  

There are up to eight possible solutions for any turn 
maneuver – up to 4 three-turn solutions and up to 4 two-
turn plus line segment solutions.  Since we want the 
quickest (i.e. shortest) path, we need to pick the quickest 
solution.  For the three-turn solutions, since all the turn 
radii are equal, we can add A , B , and C together for 

each solution and choose the minimum sum.  (We must 



also keep track of which thetas give the quickest three-
turn solution.) 

All units in the preceding equations are normalized to 
the turn radius, thus one unit of linear travel is equal to 
one unit (i.e. radian) of angular travel.  We find 

LCA  for each two-turn plus line segment 

solution, choose the smallest sum, and keep track of the 
thetas and lengths that comprise the minimum sum.  At 
this point, we have determined the shortest three-turn
solution and the shortest two-turn plus line segment
solution.

Comparing  CBA   and LCA  , we choose 

the smallest sum to get the minimum overall solution.  If 
the three-turn solution is the quickest, we choose A , 

B , and C to correspond to A , B , and C from the 

quickest three-turn solution.  If the two-turn solution is 

quickest, we choose  A and C to correspond to A

and C from the quickest two-turn solution and select 

minLB  where minL is the line segment from the 

shortest two-turn solution.  
Figure 6 provides a summary of the algorithm.

Calculate 
3-turn 
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Calculate 
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solutions

Find quickest 3-
turn solution

Find quickest 
2-turn solution

Compare 3- and 
2- turn solutions 
to find quickest 

solution

Obtain Initial 
Conditions

Figure 6:  Algorithm summary

3. Example, Simulation, and Flight Test

3.1  Algorithm Example 

In this section, we use the method described in Section 
2 to demonstrate the results of the optimal turning 
algorithm.  We begin with initial conditions:
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where the angles are in radians and D is in meters.  Since 
the autopilot’s bank angle limit is 30 degrees, we set the 
maximum bank angle needed to track the path at 15 

degrees.  This will allow the autopilot to have authority to 
correct the UAV’s position.  For the 15 degree bank angle 
and a 15 m/s velocity, it can be shown, assuming a 
coordinated turn, that the minimum turning radius, R of 
the UAV will be approximately 85 meters.  Given these 
initial conditions, the algorithm was used to calculate six 
possible solutions shown in Figure 7.  Clearly some 
solutions in the figure have longer path lengths than 
others.  Calculating the quickest solution confirms that the 
3-Turn Solution 4 is the shortest path for the given initial 
conditions.  Using this turning maneuver, we assembled a 
flight path for simulation and flight testing.  These test 
results are discussed in the following sections.
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Figure 7: Six possible turning solutions calculated for 
the conditions given the in example

3.2  Simulation and Flight Test Results 

Using the optimal turn maneuver result from the 
previous section, we rotated the turning path and 
constructed a “bulbous racetrack” flight path as shown in 
Figures 8 and 9.  Ten waypoints were used to describe the 
flight path:  three arc waypoints for each complete turn 
maneuver, and four waypoints to describe the lines 
connecting the turning maneuvers.  

The flight plan was first tested in simulation.  Figure 8
shows a plot of this test.  The UAV simulation tracked the 
path reasonably well.  We believe that the tracking errors 
are due to problems inside the navigator and will be 
addressing them in future work.  

The same path was also flown with the ECat UAV in an 
open area near Manhattan, KS on a day with little wind.  
The ECat was remotely piloted for take-off and landing, 
and the same autopilot used for the simulation was used.  
Figure 9 shows the desired flight path along with the 
results of the flight test.  Only the autopilot-controlled 
section of the flight is displayed to avoid cluttering the 
figure.    
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Figure 9:  Actual flight of optimal turn path.

4.  Conclusions

A closed-from method for generating turning 
maneuvers for a UAV was developed.  This method 
assumes that the solution will consist of full right- or left-
handed turns and utilizes vectors represented in complex 
form.  This method determines the quickest turning 
maneuver for a given situation, and is easily implemented 
in software.  The aircraft’s turning capabilities are also 
taken into account with this method, resulting in a feasible 
UAV trajectory.  To test the turning maneuver algorithm, 
a simulation flight and an actual test flight in an open area
were performed.  These flight tests showed that the UAV 
is able to fly paths generated with the method presented 
here.  Future work includes combining the turn 
maneuvers with path segments to generate complete paths 
for an entire UAV mission.  
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