
κ-compatible Tessellations

Philippe P. Pébay1 and David Thompson2

1 Sandia National Laboratories∗

P.O. Box 969, MS 9051, Livermore CA 94551, U.S.A.
pppebay@sandia.gov

2 Sandia National Laboratories∗

P.O. Box 969, MS 9152, Livermore CA 94551, U.S.A.
dcthomp@sandia.gov

1 Introduction

Finite element methods have advanced significantly since their conception
several hundred years ago. Much more recently, a class of techniques known
as hp-adaptive methods have been developed in an effort to converge to a
solution faster than previously possible, or to provide more accurate approxi-
mations than traditional finite element simulation within the same amount of
computational time. These new techniques can increase both the hierarchical
(h) and polynomial (p) levels of detail – or degrees of freedom – during a sim-
ulation. Finite element solvers that incorporate hp-adaptivity are becoming
popular since they often converge to a solution with fewer total degrees of
freedom than hierarchical adaptivity alone.

Once these solution approximations have been computed, they must be
characterized in some way so that humans can understand and use the results.
This paper develops a technique for partitioning higher-order cells in order
to characterize the behavior of their geometric and scalar field curvatures
during post-processing. We call these partitions curvature- or κ-compatible
tessellations. While a past paper [6] has presented our software framework for
creating these partitions, this paper contains a rigorous proof of the conditions
under which the algorithm will work and terminate.

Currently, visualization techniques for quadratic, cubic, and higher order
finite element solutions are very limited in scope [1, 3, 6]. This prevents ana-
lysts from exploiting such simulations. For instance, although some tools can
currently render boundary surfaces of higher-order elements (see [6] for sur-
face rendering examples), they do not always do so correctly. As an example,

∗These authors were supported by the United States Department of Energy,
Office of Defense Programs. Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed-Martin Company, for the United States Department of
Energy under contract DE-AC04-94-AL85000.

SAND2007-3644C

2 Philippe P. Pébay and David Thompson

consider the following scalar field:

Φ1 : [−1, 1]3 −→ IR
(x, y, z)T 7→ x2 + y2 + 2z2,

interpolated over a single Q2 Lagrange element (hexahedron with degree 2
Lagrange tensor-product interpolation over 20 nodes), with linear geometry,
where one is interested in the isocontours Φ1 = 1 and Φ1 = 2.

Fig. 1. Isocontours of Φ1 for the isovalues 1 (cyan) and 2 (green): linear isocon-
touring approach (left), and our new topology-based approach (right).

As shown in Figure 1, left, the linear isocontouring approach (implemented
here in ParaView) completely misses the Φ1 = 1 isocontour, because it is
entirely contained within the cell. Meanwhile, the topology of the Φ1 = 2
isocontour is correct, but its geometry is poorly captured. On the other hand,
our new method (Figure 1, right) captures the correct topologies of both
isocontours, and provides a much better geometric approximation of the Φ1 =
2 isocontour than linear isocontouring does.

1.1 Higher Order Finite Elements

Here we briefly review the finite element method to develop notation used
throughout the paper. Recall that the finite element method approximates
the solution, f : Ω 7→ IR, of some differential equation as a set of piecewise
functions over the problem domain, Ω ⊂ IRd. Although Ω may be any general
d-dimensional domain, we’ll assume it is 3-dimensional. The fact that we have
a piecewise approximant divides Ω into subdomains Ωe ⊆ Ω, e ∈ EΩ that
form a closed cover of Ω. Each Ωe is itself a closed set that is parameterized
with a map (usally polynomial in form) from parametric coordinates r =
(r, s, t) ∈ R ⊂ IR3 to geometric coordinates x = (x, y, z) ∈ Ωe:

Ξe(r) = B0,0,0 + B1,0,0r + B0,1,0s + B0,0,1t + B1,1,1rst + · · ·

κ-compatible Tessellations 3

where Bi,j,k ∈ IR3 such that Ξe is invertible for all points of Ωe. Therefore,
the approximate solution to the differential equation may be written in terms
of parametric coordinates (as Φe) or in terms of geometric coordinates:

fe(x) = Φe ◦Ξ−1
e ,

where

Φe : R ⊂ IR3 −→ IR
(r, s, t)T 7→ Φe(r, s, t).

Φe is the approximating function over Ωe expressed in terms of parametric
coordinates. Furthermore, we require that each Φe is polynomial in the pa-
rameters:

Φe(r) = A0,0,0 + A1,0,0r + A0,1,0s + A0,0,1t + A1,1,1rst + · · ·

These coefficients, Ai,j,k ∈ IR, are known as degrees of freedom (DOFs). Each
one corresponds to a particular modal shape, and sets of modal shapes can
be grouped together into nodes by the regions of parameter-space over which
they have an effect (a given corner, edge, face, or the interior volume).

A global approximant f(x) can then be constructed from the piecewise
elemental approximants. This leaves only the matter of what to do where
Ωe and Ωj,j 6=e intersect. Usually, these subdomains intersect over (d − 1)-
dimensional or lower regions (2-dimensional faces, 1-dimensional edges, and
“0”-dimensional vertices in our case). In these regions, Φ is not well-defined
since Φe and Φj may disagree. Usually, the finite element method constrains
Φe and Φj to be identical in these regions, however some methods such as the
discontinuous Galerkin method do not require this and subsequently have no
valid approximant in these regions.

For a given decomposition of Ω, the finite element method may not con-
verge to the correct (or indeed, any) solution. When Φe and Ξe are trilin-
ear polynomials for all e, a technique called h-adaptation is often used to
force convergence and/or increase solution accuracy. In this technique, some
subdomains E ⊆ EΩ are replaced with a finer subdivision E′ such that⋃

e∈E Ωe =
⋃

e∈E′ Ωe but |E′| > |E|3. Similarly, p-adaptation is the tech-
nique of increasing the order of polynomials Φ and/or Ξ rather than the
number of finite elements. hp-adaptation is then some combination of h- and
p-adaptation over Ω. In the end, the finite element method provides an ap-
proximation to f = Φ◦Ξ−1 by solving a collection of equations for coefficients
(A and B in the examples above). Our task is then to charactize the maps Φ
and Ξ in a way that aids human understanding of the solution.

The rest of this paper presents a method for partitioning higher-order
finite elements into regions that have guarantees on their derivatives and the
restrictions of these derivatives to the boundaries of the regions. �

3In temporal simulations, we do allow |E′| < |E| in regions where Ω has been
adapted to some time-transient phenomenon.

4 Philippe P. Pébay and David Thompson

2 Partitioning Finite Elements

Now that we’ve developed some notation for higher order elements, let’s ex-
amine the application driving the development of κ-compatible tessellations.
A common assumption made by linear visualization algorithms is that critical
points (points where all partial derivatives of fe vanish) may only occur at
vertices. This one assumption can show up in many different ways. Algorithms
that iterate over an element’s corner vertices to identify minima and maxima
(e.g., thresholding) all make this assumption. Other examples include (but
are not limited to) isosurfacing, cutting, and clipping.

This paper is concerned with tessellating finite elements into regions where
the critical-points-at-vertices assumption holds as part of an overall strategy
to adapt existing techniques to work with higher order elements. As the paper
proceeds we’ll show how these tessellations can be applied to adapt linear
tetrahedral isocontouring to higher order isocontouring. The only requirement
we impose is that the higher order interpolant have only isolated critical points
(or that it has been perturbed slightly to meet this condition).

The linear tetrahedral isosurfacing algorithm assumes:

(C10) each tetrahedron edge intersects an isocontour of a particular value at
most once,

(C20) no isocontour intersects a tetrahedron face without intersecting at least
two edges of the face,

(C30) no isocontour is completely contained within a single tetrahedron, and
(C40) the map from parametric to geometric coordinates must be bijective.

Let’s examine how changing to a higher-order interpolant affects these as-
sumptions.

Remark 1. (C40) only regards Ξe, and is satisfied by hypothesis. Note that it
can be restated as:

(C4) ∀x ∈ Ωe, ∃! r ∈ R such that Ξe(r) = x.

Note that the example provided in § 1 and illustrated in Figure 1 violates
(C30) in the case of the Φ1 = 1 isocontour. This is precisely why the corre-
sponding isosurface is entirely missed by the linear isocontouring technique.

We now translate the criteria into requirements on Φe, that are slightly
stronger for reasons that are discussed later on.

Proposition 1. Conditions (C10), (C20) and (C30) are implied by, respec-
tively,

(C1) for each edge E of R, with direction vector (ax, ay, az),

ax
∂Φe

∂r
+ ay

∂Φe

∂s
+ az

∂Φe

∂t
6= 0

over the interior of E.

κ-compatible Tessellations 5

(C2) for each face F of R, with vector basis ((ax, ay, az), (bx, by, bz)),
ax

∂Φe

∂r
+ ay

∂Φe

∂s
+ az

∂Φe

∂t
6= 0

bx
∂Φe

∂r
+ by

∂Φe

∂s
+ bz

∂Φe

∂t
6= 0

over the interior of F .
(C3) ∇Φe 6= 0 over the interior of R.

Proof. By definition, (C10), (C20) and (C30) can be equivalently restated as
follows:

(C10) No restriction of Φe to a finite element edge has extrema interior to the
edge unless the restriction is constant on the edge.

(C20) No restriction of Φe to a finite element face has extrema interior to the
face unless the restriction is constant on the face.

(C30) Φe has no extrema inside the interior of the finite element unless the
interpolant is constant over the entire element.

As Φe is a polynomial function, it is C1 over R. So are its restrictions to
the edges and faces of R. Let E be an edge of R that passes through the point
(px, py, pz), with direction vector (ax, ay, az). This edge can be parameterized
with one variable as follows:

η : I ⊂ IR −→ IR3

t 7−→

axt + px

ayt + py

azt + pz

 ,

from which we obtain the restriction of Φe to E:

Φe|E = Φe ◦ η : I −→ IR,

and its derivative dΦe|E ∈ L(IR) can be calculated at any arbitrary point
t0 ∈ I with

dΦe|E(t0) = dΦe (η(t0)) ◦ dη(t0), (1)

or, in expanded form,

dΦe|E(t0) =
(

∂Φe

∂r

∂Φe

∂s

∂Φe

∂t

)∣∣∣∣
η(t0)

ax

ay

az

 dt. (2)

As Φe|E is C1 over I, a necessary condition for Φe|E to have an extremum in
t0, interior to I, is that dΦe|E(t0) = 0, i.e.,

ax
∂Φe

∂r
(t0) + ay

∂Φe

∂s
(t0) + az

∂Φe

∂t
(t0) = 0

6 Philippe P. Pébay and David Thompson

Similarly, let F be a face of R that passes through the point (px, py, pz) and
has basis ((ax, ay, az), (bx, by, bz)). This face can be parameterized with two
variables as follows:

η : U ⊂ IR2 −→ IR3(
u
v

)
7−→

axu + bxv + px

ayu + byv + py

azu + bzv + pz

 ,

and the restriction of Φe|F to F ,

Φe|F = Φe ◦ η : U −→ IR,

has a derivative dΦe|F ∈ L(IR2, IR) that we find with

dΦe|F (u0, v0) = dΦe (η (u0, v0)) ◦ dη (u0, v0) , (3)

or, in expanded form,

=
(

∂Φe

∂r

∂Φe

∂s

∂Φe

∂t

)∣∣∣∣
η(u0,v0)

ax bx

ay by

az bz

 (
du
dv

)
. (4)

As Φe|F is C1 over U , a necessary condition for Φe|F to have an extremum in
(u0, v0), interior to U , is that dΦe|F (u0, v0) = 0, which may also be expressed
as

ax
∂Φe

∂r
(η (u0, v0)) + ay

∂Φe

∂s
(η (u0, v0)) + az

∂Φe

∂t
(η (u0, v0)) = 0

bx
∂Φe

∂r
(η (u0, v0)) + by

∂Φe

∂s
(η (u0, v0)) + bz

∂Φe

∂t
(η (u0, v0)) = 0.

Finally, as Φe is C1 over R, a necessary condition for Φe to have extremum in
(r0, s0, t0), interior to R, is that dΦe(r0, s0, t0) = 0, i.e., ∇Φe(r0, s0, t0) = 0.

Note that the proof mainly relies on the fact that, for a C1 function over
an open domain, an extremal point is a critical point. However, the converse is
not true and thus each (Ci) condition is stronger than the corresponding (Ci0).
This means that using (Ci) rather than (Ci0) can yield critical points that
are not extremal – just consider r 7→ r3 in 0. In order to eliminate such “false
positives”, we would need to evaluate second- and higher-order derivatives,
which would incur further computational costs, and even this would not always
suffice as degenerate critical points may occur as well. Therefore, rather than
degrading computational performance, the tradeoff we make is to accept the
stronger (Ci) conditions and extra points that are not required by the (Ci0)
conditions. This may even be beneficial in terms of geometric approximation,
as critical points that are not extremal can be the locus of important geometric
features (e.g., saddle points). In short, the (Ci) conditions mean that all of the
differences between the linear and higher order isocontouring implementations
can be attributed to critical points of Φe.

κ-compatible Tessellations 7

2.1 Creating the Partition

In Section 2, we presented the requirements a tetrahedral element must meet
for isocontouring algorithm to work. As we noted earlier, higher order finite
elements that have non-simplicial domains (such as hexahedra, pyramids, etc.)
will have to be decomposed into tetrahedra T . However, these tetrahedra must
additionally meet the requirements (C1) to (C4). As explained in Remark 1,
(C4) is satisfied by hypothesis on the class of finite elements; according to
Proposition 1, satisying (C1) through (C3) is achieved if no edge, triangle, or
tetrahedron of the tessellation contains in its interior a critical point of Φe or
one of Φe’s restrictions to triangles and edges of the partition. Therefore the
partition is subdivided until it meets all criteria: (C1), (C2), and (C3); once
this is achieved, we say that the final partition is Φ-compatible.

Remark 2. From now onwards, it is assumed that all critical points are
isolated. This additional requirement is necessary so that the set of all critical
points is finite, since a polynomial function can only have a finite number of
isolated critical points. The implications of this additional requirement will
be discussed at the end of this section.

In this context, the general scheme of our method applied to the input pa-
rameters M (initial mesh) and Φ (field interpolated over M) is

Partition-Mesh(M,Φ)
1 C ← DOF-Criticalities(M,Φ)
2 (T0, S)← Triangulate-Boundaries(M,C)
3 Correct-Triangle-Topology(M,Φ, S, T0)
4 (T1, S)← Tetrahedralize-Interior(M,T0, C)
5 Correct-Tetrahedral-Topology(M,Φ, S, T1)
6 return T1

The output of the scheme is a tetrahedral subdivision T1 of M . In the fol-
lowing paragraphs, we provide a detailed discussion of each step, along with
theoretical results that justify our approach.

DOF-Criticalities

The first step in the process is the location of the critical points of Φe inside
each element, as well as of the restrictions of Φe to all element faces and
edges. Because finding critical points is a time-consuming process, we do not
wish to process same shared edge or face multiple times. This extra work can
be avoided by storing critical points indexed by the DOF with which they
are associated – critical points on a face are stored with the index used to
retrieve the coefficients for that face’s degrees of freedom, and likewise for
edges. Therefore, DOF-Criticalities operates on the mesh a whole, and
not independently on each element.

8 Philippe P. Pébay and David Thompson

The algorithm DOF-Criticalities takes the mesh M and a scalar field
Φ as its input and yields a set C of critical points: critical points of Φ, and of
the restrictions of Φ to all faces and edges of M . Given an element e in M ,
let Bdy1(R) and Bdy2(R) respectively denote the set of 1-dimensional and
2-dimensional boundaries of the parametric domain R of e.

DOF-Criticalities(M)
1 for e← |M |
2 do Find critical points of Φe in R
3 Store critical points indexed by volumetric DOF node.
4 for f2

i ∈ Bdy2(R)
5 do if ∇Φe|f2

i
= 0 not marked,

6 then Find critical points of Φe|f2
i

7 Store critical points of Φe|f2
i

in Cf2
i

8 Mark Φe|f2
i

as done
9 for f1

i ∈ Bdy1(R)
10 do if ∇Φe|f1

i
= 0 not marked,

11 then Find critical points of Φe|f1
i

12 Store critical points of Φe|f1
i

in Cf1
i

13 Mark Φe|f1
i

as done

14 return
(
C = ∪iCf1

i

)
∪

(
∪iCf2

i

)
The issue of how to actually find the critical points is a complex and challeng-
ing problem of its own. We have not specifically researched this issue, and we
handle it as follows:

• for edge critical points, where the problem amounts to finding all roots of
a polynomial in a bounded interval, we have implemented exact solvers
for up to quartic equations (and hence, quintic interpolants), and a Lin-
Bairstow solver for higher order equations;

• for face and body critical points, where the problem amounts to finding all
roots of a polynomial system within a bounded domain, we solve exactly
if the system is linear, and otherwise make use of the PSS package [4, 5].
However, we think that this aspect deserves much further investigation.

If one makes the assumption that the polynomial system solver always ter-
minates in finite time, then DOF-Criticalities does as well. Note that, as
restrictions of the field to edges and faces are marked as they are done, each
is processed only once even when it is shared by several elements.

Remark 3. The methodology we present requires the ability to detect all criti-
cal points on arbitrary line segments and triangular faces in the domain of an
element . Most polynomial system solvers require a power-basis representation
of a system to be solved and that is not usually how finite elements are rep-
resented. Given that we wish to perform this change of basis as infrequently

κ-compatible Tessellations 9

as possible, it behooves us to find a way to derive the restriction of Φe to a
line or face from the full representation of Φe.

Triangulate-Boundaries

Once the critical points have been located, the second step of our scheme,
consists of triangulating the two-dimensional boundaries of all elements. This
ensures that any volumetric elements that reference a particular face use the
same triangulation – otherwise our model could have cracks along element
boundaries4. In order to satisfy (C2) on a given element e, the restriction of
Φe to the face of an element of the tessellation of e is not permitted to have a
critical point; therefore, we “eliminate” the critical points of the restriction of
Φe to the faces of e by inserting them in the list of points to be triangulated.
The algorithm Triangulate-Boundaries thus takes the mesh M and its
related set of critical points C as inputs, and returns a triangulation T0 of the
set of faces in M . In this algorithm, the method Face-Center takes a face as
its input and returns its parametric center, and Star2(c,Q1, . . . , Qn) creates
a triangulation composed of triangles cQ1Q2,..., cQnQ1 (with the requirement
that c is contained in the interior of the convex hull of {Q1, . . . , Qn}. With
these conventions, the algorithm is as shown in Table 1.

All the sets involved in Triangulate-Boundaries are finite, and no
recursion is involved. Therefore, Triangulate-Boundaries terminates in
finite time. It is important to acknowledge that, upon completion, there
is no guarantee that (C1) is satisfied. Nonetheless, upon completion of
Triangulate-Boundaries, (C1) is satisfied on all the edges of T0 that ei-
ther belong to the initial mesh M or are subdivisions of edges or faces of M .
Moreover, at this stage (C2) is also satisfied as all critical points of restrictions
of the field to element faces have been inserted as vertices of T0, and no new
such critical point may have been created.

Example 1. Consider a face fi, illustrated in Figure 2(a) such that the restric-
tion of the field to the interior of fi has 3 critical points (denoted a, b, and
c), and each of the restrictions of the field to the edges of fi has at least one
critical point (denoted d, f , h, i, j, and k). The triangulation displayed in
Figure 2(b) is obtained once all Star2 procedures have performed by tak-
ing a as the first internal critical point to be inserted. The final tessellation,
shown in Figure 2(c), has eliminated the remaining interior critical points b
and c by making them nodes of the triangulation; however, as illustrated in
Figure 2(d), new critical points have appeared:, on the restrictions of Φe to
edges ab, ag, am, and cg.

4Discontinuous Galerkin elements can be accommodated by using different in-
dices (as opposed to a shared index i) for edges and faces of adjoining elements.
Cracks would occur, but they would be faithful representations of the interpolant
discontinuity.

10 Philippe P. Pébay and David Thompson

Table 1. An algorithm to create a triangulation of the boundaries of a higher-order
element that contains all critical points of the restriction of Φ to that boundary.

Triangulate-Boundaries(M, C)

1 for f2
i ← each 2-boundary of every 3-D finite element

2 do if |Cf2
i
| > 0

3 then c← Cf2
i ,0

4 else c← Face-Center(Bdy2
i (IR))

5 Ti ← ∅
6 Q← corner points of face i

S
isolated critical points

of all bounding edges of face f2
i , ordered in a

counterclockwise loop around f2
i .

7 for j ∈ {0, . . . , |Q| − 1}
8 do Insert Star2(c, Qj , Q(j+1)mod|Q|) into Ti

9 Cf2
i

′ ← {Cf2
i
\ Ci,0}

10 for c ∈ Cf2
i

′

11 do Find t ∈ Ti such that c ∈ t
12 Remove c from Cf2

i

′

13 Remove t from Ti

14 Subdivide t into 2 or 3 triangles tk

15 Insert tk into Ti

16 return T0 = ∪iTi

h g

d

f

e

j

m

n

a

b

c

i

k

(a)

h g

d

f

e

j

m

n

a

b

c

i

k

(b)

h g

d

f

e

j

m

n

a

b

c

i

k

(c)

h g

d

f

e

j

m

n

a

b

c

i

k

(d)

Fig. 2. An example face f2
i with critical points shown as blue dots (max-

ima), red dots (saddles), and green dots (minima). Far left: The input to
Triangulate-Boundaries. Middle left: Resulting triangulation of f2

i after all
Star2 procedures of Triangulate-Boundaries have been performed. Mid-
dle right: The triangulation at the completion of Triangulate-Boundaries.
Far right: The new critical points introduced by the first stage of
Correct-Triangle-Topology.

Remark 4. Note that line 14 of Triangulate-Boundaries allows for 2 dif-
ferent ways to subdivide a triangle, depending on whether the face critical
point lies within or on the boundary of the triangle; for instance, in Fig-
ure 2(c), triangles ahm and afg are split in, respectively, 2 and 3 triangles.

κ-compatible Tessellations 11

In practice, to avoid unnecessary creation of quasi-degenerate triangles, the
implementation of Triangulate-Boundaries uses a predefined threshold
(that can be related to the distance of the critical point to the closest trian-
gle edge, or to a triangle quality estimate of the subdivided triangles) below
which a critical point is moved to the appropriate edge; for instance, in the
example illustrated in Figure 2(c), critical point b is considered as belonging
to ah, even if it slightly off.

Correct-Triangle-Topology

This algorithm searches for critical points in the restriction of Φe to each
unmarked edge of T0. When points are found, they are inserted into T0.

Correct-Triangle-Topology(M,Φ, S, T0)
1 while S not empty
2 do Pop t from S
3 C ← ∅
4 for e← marked edges of t
5 do Insert critical points of e into C
6 for c← C
7 do Find t ∈ T1 s. t. c ∈ t
8 Remove t from T1 and S
9 U ← Star2(c, t)

10 for t′ ← U
11 do if Mark-Triangle(t′)
12 then Push t′ onto S
13 Insert t′ into T0

Tetrahedralize-Interior

In the third step, each element interior is tetrahedralized, and although we
treat the whole mesh, there is here no issue of interelement consistency, as this
part of the scheme only regards element interiors. Tetrahedralizing the mesh
elements could be done using only element corners along with the face and
edge points that have been added in Triangulate-Boundaries; however,
in order to satisfy (C3) within a given hexahedral element e, no tetrahedron
of the partition of e may have a critical point of Φe in its interior. There-
fore, as in Triangulate-Boundaries, we “eliminate” critical points of Φe

that are interior to e by adding them to the set of points to be tetrahe-
dralized. Therefore, the initial tetrahedralization of each element e is con-
strained by the triangulations of the faces of e that have been computed by
Triangulate-Boundaries, and by the critical points of Φe that are interior
to e. Additionally, when the finite element is starred into a set of tetrahe-
dra, we know that the triangular base of each tetrahedron and its 3 bounding

12 Philippe P. Pébay and David Thompson

edges will not have any critical points since those have already been identified
and inserted into the triangulation of the two-dimensional boundary of the
element. However, the remaining 3 faces and 3 edges must be marked because
Φe restricted to their domain may contain critical points. This is accomplished
by Mark-Tetrahedron, which sets a bit code for each edge and face not
on the base of the given tetrahedron (which must be properly oriented when
passed to the subroutine). The algorithm is then as follows:

Tetrahedralize-Interior(M,T0, C)
1 S ← ∅
2 T1 ← ∅
3 for e← |M |
4 do Let T ⊆ T0 be all triangles on Bdy2(R)
5 if |Ce| > 0
6 then c← Ce,0

7 else c← Element-Center(R)
8 V ← Star3(c, T)
9 for t← V

10 do if Mark-Tetrahedron(t)
11 then Push t onto S
12 for c ∈ {Ce \ Ce,0}
13 do Find t ∈ V s. t. c ∈ t
14 Remove t from V and S
15 U ← Star3(c, t)
16 for t′ ← U
17 do if Mark-Tetrahedron(t′)
18 then Push t′ onto S
19 Insert t′ into V
20 Insert V into T1

21 Return (T1, S)

All the sets involved in Tetrahedralize-Interior being finite, and as there
is no recursion, this procedure terminates in finite time. In addition,

Proposition 2. (C3) is satisfied across the tetrahedralization T1 upon com-
pletion of Tetrahedralize-Interior. Moreover, any subtetrahedralization
of T1 satisfies (C3) as well.

Proof. Let p be a critical point of the field Φ; then, 2 cases may occur:

1. p is contained in the interior of an element e ∈M . In this case, p belongs
to Ce (and to no other Ce′) and thus, thanks to Star3, p is a tetrahedron
vertex in T1.

2. p is contained on the boundary of an element e ∈ M . In this case, it
is also a lower-dimensional critical point, i.e., a critical point for the re-
striction of Φe to one of its faces or edges, because the fact dΦe vanishes

κ-compatible Tessellations 13

in p ensures that the left hand side of (2) (if p is on a face) or (4) (if
p is on an edge) vanishes as well. Therefore, p belongs to Cf .

i
for a face

f2
i or an edge f1

i and hence has been made a triangle vertex of T0 by
Triangulate-Boundaries. Since all triangles of T0 become tetrahedral
faces in T1, then p is a tetrahedron vertex in T1.

In both cases, upon completion of Tetrahedralize-Interior, p is a tetra-
hedron vertex in T1. Therefore, for all t ∈ T1, p is not a critical point of Φt

interior to t. As this is true for any critical point p of the field Φ, it follows
that T1 satisfies (C3). Finally, as (C3) is satisfied on any tetrahedron t ∈ T1,
it is also satisfied on any tetrahedral subdivision of t: indeed, if one could find
a tetrahedron t′ ⊂ t and a critical point p of Φ contained in the interior of t′,
then p would also be in the interior of t, which would contradict the hypotheis;
ad absurdum, the result ensues.

Correct-Tetrahedral-Topology

A this point, a brief summary of what has been obtained through the 3 first
stages of our scheme will most likely be useful to the reader. A tetrahedral-
ization T1 of the initial mesh M has been obtained, such that

• (C3), and (C4) by hypothesis, are satisfied;
• (C1) is satisfied on all the edges of T1 that either belong to M or are

subdivisions of edges or faces of M .

However, there is no guarantee that (C1) is satisfied on all edges of T1 that
are not included (stricto or lato sensu) in M .

Example 2. Consider the scalar field defined by Φ2(x, y, z) = x2−y2 +z over a
single Lagrange Q2 element with linear geometry and coordinates in [−1, 1]3,
as illustrated in Figure 3(a): each restriction of Φ2 to the faces perpendicular
to the z-axis has a critical point at the corresponding face center (labeled 7
and 11), and each restriction of Φ2 to the edges perpendicular to the z-axis
has a critical point at the corresponding edge midpoint (labeled 6, 23, 20,
24, 22, 14, and 26 for those that are visible), whereas Φ2 proper does not
have any critical point. Upon completion of Tetrahedralize-Interior, all
of these points have been inserted in T1 which contains, among others, edges
from the element center to points 6, 20, 22, and 26. It is easy to check that
the restrictions of Φ2 to each of these edges have a critical point at the edge
midpoint, and thus, that (C1) is not satisfied across T1, which requires further
modifications.

We must therefore examine how, in general, T1 can be modified so in order to
satisfy (C1) and (C2). A natural question is to wonder whether it is possible
to perform a series of edge-face flips on the T1 so that the final tessellation
satisfies the desired properties.

14 Philippe P. Pébay and David Thompson

(a)

h g

d

f

e

j

m

n

a
i

k

c

b

(b)

h g

d

f

e

j

m

n

a

b

c

i

k

(c)

Fig. 3. (a) Topology-based tetrahedralization of a single Lagrange Q2 element with
linear geometry for the field Φ2(x, y, z) = x2− y2 + z. (b) A triangulation satisfying
(C1) with edge flips from Figure 2(c). (c) Another triangulation satisfying (C1)
using the proposed algorithm and the same initial tessellation.

Example 3. For instance, given the triangulation of a face in Figure 2(c) for
which additional critical points have appeared (critical points of the restric-
tions of the field to some of the new edges), it is evidently possible to perform
a series of edge flips on the so that the final connectivity satisfies (C1), as
shown in the resulting tessellation in Figure 3(b).

Nevertheless, it is unclear whether performing only edge flips allows in general
to find a face tessellation that satisfies (C1). Although this may be the case, we
have not further explored this path, because the matter is more complicated
here, because both (C1) and (C2) must be satisfied in a problem that is
intrinsically three-dimensional: for instance, although any 2-D triangulation
can always be converted to a Delaunay triangulation by a finite sequence of
edge flips, but this result does not extend to 3-D tetrahedralizations[2], which
is one reason we are skeptical of the flipping approach.

Therefore, we decided to take a different approach, guided by Proposi-
tion 2, as we not only have a tetrahedralization that satisfies (C3), but we
also know that subsequent tetrahedral subdivisions of T1 will not alter this
fact. Rather than attempting to identify a set of “problem” edges and prove
that they may always be flipped into a satisfactory configuration, we simply
introduce a new vertex along each internal edge that has a critical point on
the restriction of Φ to its domain. The vertex is then connected to each node
in its star. Any new edges and faces created by this operation must be exam-
ined for critical points of Φ restricted to their respective domains. However,
it is only be necessary to focus on critical points of the restrictions of Φ to
the previously marked edges and faces, as unmarked ones already satisfy (C1)
and (C2), thanks to Triangulate-Boundaries. Figure 3(c) shows this pro-

κ-compatible Tessellations 15

cedure applied to Example 3. Here is pseudocode for the fourth step of our
scheme:

Correct-Tetrahedral-Topology(M,Φ, S, T1)
1 while S not empty
2 do Pop t from S
3 C ← ∅
4 for e← marked edges of t
5 do Insert critical points of e into C
6 for f ← marked faces of t
7 do Insert critical points of f into C
8 for c← C
9 do Find t ∈ T1 s. t. c ∈ t

10 Remove t from T1 and S
11 U ← Star3(c, t)
12 for t′ ← U
13 do if Mark-Tetrahedron(t′)
14 then Push t′ onto S
15 Insert t′ into T1

Proposition 3. If, for all e in M , all critical points of the restriction of Φe to
any arbitrary face are isolated, then Algorithm Triangulate-Boundaries
terminates. In addition, upon termination, (C1), (C2) and (C3) are satisfied.

Proof. To establish this result, it is sufficient to make sure the algorithm
terminates, starting from any arbitrary face of an arbitrary element in M . So,
let fi be one of the faces of an arbitrary e ∈M , and we then shall prove that
Triangulate-Boundaries({fi}, C|fi

) terminates.
First, remark that if the restriction Φe|fij

of Φe to one edge fij of fi has
a non-isolated critical point, then this means that the derivative of Φe|fij

vanishes along a nonempty open segment of fij , and therefore has an infinity
of zeros. Because this derivative is itself a univariate polynomial function, it
can thus only be zero everywhere, and thus Φe|fij

is constant along the edge.
Therefore, the only case when non-isolated critical points along a bounding
edge of fi arises is when the interpolant is constant along that edge, and
therefore no other points than its endpoints are contained in P . P is indeed
a finite set, as polynomials can only have a finite number of isolated critical
points.

Now assume the restriction Φe|fi
of Φe to the interior of fi has n ∈ IN∗

critical points. The innermost loop of Algorithm Triangulate-Boundaries
will insert these n points, and yield a triangulation of fi in N ∈ IN∗ triangles
ti,k, such that

N⋃
k=1

◦
ti,k=

◦
fi

(∀ 1 ≤ k, k′ ≤ N) k 6= k′ ⇐⇒
◦

ti,k ∩
◦

ti,k′= ∅

(5)

16 Philippe P. Pébay and David Thompson

where all the points of C are vertices of some of ti,k (
◦
p denotes the interior of

the polygon p, in the sense of the natural topology induced on p by embedding
it in IR2). Therefore, none of the restrictions of Φe to ti,k has an internal critical
point (otherwise this point would belong to C, which is impossible because
all points of C are vertices of some of ti,k).

However, the restriction of Φe to some edges of this triangulation of fi may
have critical points5. Denote η such an edge. If the restriction of Φ to η has any
non-isolated critical point, then the same argument as above holds and thus
the corresponding edges do not need to be further refined. On the contrary, if
such an edge critical point is isolated (in this case, the edge must be internal
to fi, as all isolated critical points along the edges of fi have been inserted
priorly), then Algorithm Triangulate-Boundaries recursively proceeds on
η. However, the process terminates because all face critical points are supposed
to be isolated according to the hypothesis. Therefore, for each critical point
pi of the restriction of Φe to fi, there exists a neighborhood of pi in which all
directional derivatives of Φe are nonzero and thus, there exists a finite number
of triangle subdivisions after which no edge critical points are left (because
such a critical point implies one directional derivative is equal to 0).

Finally, upon completion of the algorithm, for the same reasons as for
Tetrahedralize-Interior, (C3) is satisfied for each tetrahedron of the
final partition (the final tetrahedra are subdivisions of initial tetrahedra that
all satisfied (C3), according to Proposition 2).

Example 4. Consider the same case as Example 2: the execution of Correct-
Tetrahedral-Topology results in the insertion of the 4 previously men-
tioned edge midpoints (3 of which are visible in Figure 3(a), labelled 3, 19,
and 25) in a subtetrahedralization of T1 that becomes the final tessellation,
across which conditions (C1) through (C4) are satisfied. In this case, only one
level of refinement was necessary, as none of the edges and faces created upon
insertion of the 4 aforementioned edge midpoints violates (C1) or (C2).

Remark 5. Note that the hypothesis of Proposition 3 is very stringent, as it is
not limited to faces of the mesh, but extends to all possible faces. In fact, it
is sufficient that the restrictions of Φe to any face of the successive partitions
of e only has isolated critical points. However, as this condition depends on
the particular subdivision path, it is, albeit weaker, more difficult to prove.

3 Results

In the absence of other isosurfacing algorithms that work on higher-order finite
elements, we choose to compare our technique to a brute-force sampling and
degree-reduction algorithm that approximates the higher order interpolant by

5In other words, the subdivision of fi cannot create new face critical points, but
it can create new edge critical points.

κ-compatible Tessellations 17

resampling it onto a mesh of linear cells. This is a difficult comparison to make
because it is sensitive to the size of the input mesh and there are very few
large, higher-order meshes in existence.

A simple analytical example that illustrates how critical critical points are
is provided by he following scalar field:

Φ3 : [−1, 1]3 −→ IR
(x, y, z)T 7→ x2 + y2 + z2(z − 1),

interpolated over a single Q3 Lagrange element with linear geometry, i.e.,
a tricubic (hence with total degree 9) cell obtained by tensorization of cubic
Lagrange interpolants. The test consists of representing the 0-isocontour of Φ3,
which is tricky because an entire lobe of the resulting isosurface is contained
within the element.

Fig. 4. Tricubic isocontouring of Φ3 for the isovalue 0, using a linear isocontouring
technique (left), and using our approach (right).

Figure 4, left, shows that if a linear isocontouring marching cubes tech-
nique is applied (after uniform subdivision of the hexahedron into 48 tetrahe-
dra), then a substantial part of the isocontour Φ−1(0) is missing. This example
is interesting because the missing part of Φ−1(0) is not a disconnected com-
ponent and, therefore, (C3) is not violated for this particular isovalue. While
intuition may suggest that a linear isocontouring technique should retrieve
the correct topology of Φ−1(0) in the interior of the hexahedral element, in
fact Φ−1(0) is not a 2-dimensional submanifold of IR3 at (and only at) point
(0, 0, 0) (where Φ−1(0) is not simply connected). Therefore, Φ−1(0) is not a
surface and this causes the isocontouroing algorithm to fail, as illustrated.
Moreover, the implicit functions theorem shows that for any value of α in
]− 2, 0[, Φ−1(α) is a surface, but can also easily check that for such values of
α, it is not connected; in fact, it has 2 disjoined connected components, one of
which is entirely contained in the interior of the element. Hence, in this case,
(C3) is indeed violated; which also causes the linear isocontouring technque
to fail (by missing this connected component).

In the current example, Φ3 has 2 critical points: (0, 0, 0) and (0, 0, 2
3), re-

spectively a saddle point and a local minimum, and both are interior to the
unique element of the mesh. These points are indeed inserted in the tessel-
lation by Tetrahedralize-Interior, and this takes care of (C1) through

18 Philippe P. Pébay and David Thompson

(C3). Additionally, (0, 0, 0) belongs to Φ−1(0). And in fact, this not only an
anecdoctal effect valid for this example only, but we can see that this is al-
ways the case: by “eliminating” critical points from the final tesselation, the
method ensures that (thanks to the Implicit Function Theorem), the isocon-
tour is locally a 2-dimensional within the interior of each element. In other
words, the scheme produces a tessellation that not only satisfies criteria (C1)
through (C4), but additionally ensures that the isocontour is indeed a surface
inside each element. Note that this extends to the lower-dimensional case, for
the same reason: the isocontours inside the faces of the final tessellation are
simply connected curves.

4 Conclusions

We have outlined an algorithm for partitioning finite elements into regions
useful for characterizing some scalar field Φ. By forcing critical points of Φ –
and the restrictions of Φ to the boundaries of the partition – to be vertices
of the partition, we can easily adapt visualization and other post-processing
operations to higher order elements. This is illustrated by an adaptation of
linear isocontouring to higher order elements.

An estimation of the computational complexity of Correct-Tetrahedral-
Topology as a function of input parameters such as the order of the inter-
polant would be of great theoretical – and probably practical – interest but
beyond the scope of this paper. Improved multivariate polynomial system
solvers are another area of interest for future work.

References

1. Michael Brasher and Robert Haimes. Rendering planar cuts through quadratic
and cubic finite elements. In Proceedings of IEEE Visualization, pages 409–416,
October 2004.

2. Barry Joe. Three dimensional triangulations from local transformations. SIAM
Journal on Scientific and Statistical Computing, 10:718–741, 1989.

3. Rahul Khardekar and David Thompson. Rendering higher order finite element
surfaces in hardware. In Proceedings of the first international conference on
computer graphics and interactive techniques in Australasia and South East Asia,
pages 211–ff, February 2003.

4. Gregorio Malajovich. PSS 3.0.5: Polynomial system solver, 2003. URL http://

www.labma.ufrj.br:80/~gregorio.
5. Gregorio Malajovich and Maurice Rojas. Polynomial systems and the momentum

map. In Proceedings of FoCM 2000, special meeting in honor of Steve Smale’s
70th birthday, pages 251–266. World Scientific, July 2002.

6. W. J. Schroeder, F. Bertel, M. Malaterre, D. C. Thompson, P. P. Pébay,
R. O’Bara, and S. Tendulkar. Framework and methods for visualizing higher-
order finite elements. IEEE Trans. on Visualization and Computer Graphics,
Special Issue Visualization 2005, 12(4):446–460, 2006.

κ-compatible Tessellations 19

