SAND2007-4317C

An Approximate Version of Kernel PCA

Shawn Martin
Sandia National Laboratories
PO Box 5800
Albuquerque, NM 87185-0310
smartin@sandia.gov

October 2, 2006

Abstract are other data analysis methods similar in spirit to PCA.
These include Projection Pursuit [4], Independent Com-
We propose an analog of kernel Principal Component ponent Analysis [8], [6], Isomap [18], and Locally Linear
Analysis (kernel PCA). Our algorithm is based on an ap- Embedding [12].
proximation of PCA which uses Gram-Schmidt orthonor- In this paper we propose an approximate version of the
malization. We combine this approximation with Support nonlinear kernel version of PCA [15]. Kernel PCA com-
Vector Machine kernels to obtain a nonlinear generaliza- bines the computation of PCA by diagonalizing the covari-
tion of PCA. By using our approximation to PCA we are ance matrix with nonlinear preprocessing using Support
able to provide a more easily computed (in the case of Vector Machine (SVM) kernels [2], [16]. This results in
many data points) and readily interpretable version of ker- a nonlinear version of PCA which reduces to the standard
nel PCA. After demonstrating our algorithm on some ex- linear version when using a linear kernel. We propose an
amples, we explore its use in applications to fluid flow and approximate version of this method in order to overcome
microarray data. two inherent difficulties.
First, the method of nonlinear preprocessing using ker-
nels makes it difficult to return to the original input space.
1 Introduction In the case of kernel PCA, it is difficult to interpret the

The goal of Principal Component Analysis (PCA) is to nonlinear principal components pecause they do not typi-
find a coordinate representation for a data set such thatally correspond to vectors in the input space. Second, ker-
the most variance in the data is captured in the leastn€l PCA is performed by diagonalizing am x m matrix,
number of coordinates. This representation is typically wherem is the number qf Qata pomts.under consideration.
found by performing a linear transformation of the original !N the case of largen this is not feasible. Both of these
data via the Singular Value Decomposition (SVD). The Problems are addressed by using our approximate version
resulting singular vectors provide an orthonormal basis for ©f kernel PCA. These problems are also addressed, using
the data while the singular values provide information on different approaches, in [14] and [17].
the importance of each basis vector. A review of PCA, its Our version of kernel PCA is based on the use of an
history, examples of applications, and information about @PpProximation to standard PCA. In our modification of
the SVD can be found in [7], [9], [3], and [19]. standard PCA we locate a basis using the same criterion
In addition to the standard linear version of PCA, some €mployed by PCA but subject to an additional constraint.
nonlinear variants have been proposed. These methods inQUr basis is required to correspond directly to a linearly
clude Hebbian networks [3], multi-layer perceptrons [3], independent subset of our original data. Essentially, we

Principal Curves [5], and kernel PCA [15]. Finally, there find an ordered linearly independent subset of our data
which best approximates the PCA expansion when used

_ o with Gram-Schmidt orthonormalization. When coupled
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2 Background 2.3 SVM Kernels. SVM kernels were orginally used
Our version of kernel PCA is a combination of Gram- in the context of integral operators, but have also been
Schmidt orthonormalization and PCA, all rewritten in interpreted as inner products in feature spaces for use in
terms of inner products so that SVM kernels can be used.Machine learning. Kernels have been applied to Support
We therefore provide some background on Gram-Schmidt, Vector Machines [2], Principal Component Analysis [15],

PCA, and SVM kernel functions. Fisher's Linear Discriminant [10], and a host of other
algorithms.
2.1 Gram-Schmidt. Gram-Schmidt orthonormalization A SVM kernelis a functiork : R" x R" — R with an

[19] is a procedure for transforming a set of linearly in- @ssociated mag : R" — F such that

dependent vectorgxy, . . . x,,, } into an orthonormal basis

{uy,...,u,}. This basis is constructed iteratively via pro- k —(® o 21
jections. Specifically, (e,y) = (2(x), &), @1

X1
[ES

uy = PP P2 = (X3, u2)u + (X3, w1)w

= X, pr = (X2, un)w whereF is an inner product space. The m@s typically
nonlinear and the relation (2.1) is used to avoid explicit
computation ofp(x). Some simple kernels are the linear
kernelk(x,y) = (x,y), the polynomial kernek(x,y) =

X — P 1 ((x,y) +¢)?, d € Z and the gaussian radial basis function
T%m—Pm—1l’ kernelk(x,y) = exp(—||x — y||*/20?), o # 0.

SVM kernels are useful in machine learning because
they allow the application of linear methods to nonlinear
problems. In principle, an appropriate mé&pan be used
to change a nonlinear problemRf into a linear problem

Uy =

where we use(x,y) to denote the inner product (dot
product) ofx with y. Now we can represent our original
data{xy,...,x,,} in the new basis as the upper triangular

matrix in F'. Once the problem has undergone this transformation,
(ciug) oo (i, w) a linear method can be applied.
: . : SVM kernels come into play because a given non-
(X1, W) - (X, W) linear map® usually results in a large (sometimes infi-

. ) nite) increase in the dimension of the original problem.
We can also include linearly dependent data 1o avoid this dimensional increase, the inner products in

{Xm+1,...,x,} as additional columns in the matrix a linear method are replaced by kernels. This substitu-
tion yields a nonlinear method which never explicity uses
(xi,w) o (Xmywr) e (X, ) the map®. By replacing inner producté;, x;) with ker-
U= : : : . nelsk(x;,x;) = (®(x;), ®(x;)) we effectively remap our
(X1, Um) o Ky Um) o0 (X Upn) problem using® before applying an inner product in a
higher dimensional space.
2.2 PCA. PCA s typically formulated as an eigenvalue Additional information on kernels and their use in

problem which is closely related to the SVD [9], [3]. It Machine learning can be found in [16].
also typically described as a procedure for successively .
capturing the maximal variance in the data. The PCA 3 Algorithm

eigenvectors (singular vectors) satisfy [9] Having provided the background on Gram-Schmidt, PCA,
and SVM kernels, we can describe the basic strategy of our
w = argmax Y., (u,x;)? algorithm. First, a linearly independent subset of our data
u, = argmax, > . (u,x; — (x;,u1)uy)? is chosen using the PCA criterion. Next, a kernel version

of Gram-Schmidt is performed using that subset. The
implementation of this strategy involves rewriting Gram-

u, = argmaxy..  (u,x; — E;.":_ll(xi,uj)uj)z, Schmidt in terms of inner products and constraining the
PCA criterion so that each; corresponds directly to an
where{uy, ..., u,,} are also required to be orthonormal. actual data point. This is our approximation to PCA

PCA is often illustrated by finding the major and (APCA). By replacing inner products with kernels we get
minor axes in a cloud of data filling an ellipse. The first the approximate version of kernel PCA (AKPCA).
eigenvector corresponds to the major axis of the ellipse AKPCA is based on a reformulation of the Gram-
while the second eigenvector corresponds to the minor axis.Schmidt procedure. To describe this reformulation we
This example is shown later in Figure 1. observe that Gram-Schmidt is recursive and that we can



rewrite it as follows

(x1,%1)

(w) = = G
(x2,%x1) _ (x2,%x1)
(x2, 1) EINRECED
(x2,u2)* = |x2 — p1f* = [Ix2]* — [l
(x2,u2) = ﬁ [(X27X2) - (X27111)2]
Cow) = G
(x3,u2) = ﬁ [(x3,%2) — (%2, u1)(x3, )],
and in general
1 =
(xi,u;) = W (xi,%;) — Z(Xj»uk)(xmuk)
= k=1

This formula can also be used for the remainder of our
(linearly dependent) datgx,, 1, - . ., X, } to arrive at the
matrix U in Section 2.1.

Another useful addition to Gram-Schmidt is a change

of basis matrix for switching from{ui,...,u,,} to
{x1,...,xm}. This matrix, T = (t4,...,t,), can be
computed columnwise by
1

ty (xl,ul)el

to = xz,u2) [62 - (X2’u1)t1]

b = ey [om — S o )t
where{ey, ..., e, } are the standard basis vectors. Now

TU expresses our data in terms of the bdsis, . . ., x,, }.
This formulation of Gram-Schmidt has two principal
advantages over the standard formulation for use with

AKPCA. First, itis expressed in terms of inner products to ,
allow the use of SVM kernels. Second, the change of basis

matrix T' allows us to express our data in terms of actual
examples in our data set. This will allow us to interpret the
results of any nonlinear remapping of our data.

We next modify our reformulation of Gram-Schmidt
by a constrained version of the PCA criterion. Specifically,
we use the PCA criterion to select the linearly independent
subset used in Gram-Schmidt. Abandoning our previous
labeling{xi,...,x,,} in favor of the more accurate label-
ing {x;,,...,x;, }, this subsetis selected by

Xi, = argmax pom 2o (Xi,X;)°
x;, = argmax,
2
Tl 2ot L% %) — (3¢, wn) (3, )
X;, = argmax,

m—1 2

i, %;) = Y (ki w) (g w) |

=1

n
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Figure 1. Ellipse and Parabola. In this illustra-
tion we compare the singular vectors found
by PCA with those found by APCA for an el-
lipse (left) and a parabola (right). In both ex-
amples, a PCA singular vector is shown as a
solid line, while a APCA singular vector (an
actual point in the data set) is marked with
an X.

where the inner productx,, u;) are computed using the
reformulation of the Gram-Schmidt procedure described
above.

This combination of Gram-Schmidt and PCA is APCA
(our approximate version of PCA). APCA provides an in-
teresting approximation of PCA because it selects points
in the actual data set with properties similar to those of
PCA. In addition, APCA is readily generalized to AKPCA
(our approximate version of kernel PCA) by replacing in-
ner products with kernels. AKPCA then combines the ad-
vantages of our reformulation of Gram-Schmidt (kernel use
and interpretation after remapping) with the approximate
statistical properties of APCA.

Examples and Applications

Here we illustrate the use of AKPCA by various examples
and applications. Our first example uses an ellipsoid and
a parabola. We compare the singular vectors found by
PCA with those found by APCA (or AKPCA using a
linear kernel) on the ellipse filling data cloud mentioned
previously, and on a parabola with gaussian noise. These
examples are shown in Figure 1.

In our next example we use AKPCA on the parabola
with different polynomial kernels. In this parabola;
values are drawn from a uniform distribution ¢n1,1]
andy-values are the squares of thevalues plus Gaussian
noise with a standard deviation &f. This example was
also used in [15] so provides some comparison with that
work. Following [15] we use polynomial kernels with
¢ =1andd = 2, 3, and4. Our results are shown in Figure
2. In the cased = 2 andd = 3 the first two singular
vectors point in the directions of the arms of the parabola
and the third singular vector points in the direction of the
noise. Whenl = 4, the first two singular vectors point in
the directions of the parabola arms, the second two point in



Figure 2. Parabola Revisited. lllustrated here
are the singular vectors found by AKPCA
using the polynomial kernel with ¢ =1 and
d = 2, 3,and 4 foraparabola. The first column

0 10

Figure 3. Clusters. Here we show singular
vectors and values for three Gaussian clus-
ters found using AKPCA with an RBF ker-
nel. The first three plots show the singular
vectors and the last plot shows the singular
values. The singular vectors are displayed
as in Figure 2, with the origin marked by a
circle, each singular vector marked with an
X, and contours are shown corresponding to
hyperplanes in the remapped data space.

(from top to bottom) shows the first three
singular vectors when d = 2, the second
column shows the first three singular vectors
when d = 3, and the third and fourth columns
show the first five singular vectors when

d = 4. In each plot, the origin is marked with

a circle and connected via a line to a singular
vector marked by an X.

Figure 4. Taylor-Couette Flow. Shown here
are the first four APCA eigenflows from left
to right. Each plot shows streamlines of the
flow based on the radial and axial velocities.

the directions of the noise in the arms, and the fifth points
in the direction of overall noise.

The last example, found in an expanded version [13]
of [15], consists of three Gaussian clusters in the region
[—1,1] x [-.5, 1]. Each cluster has a standard deviation of
.1. In this example we use AKPCA with an RBF kernel
(following [13]) of width o = .22. Our results are shown progresses. Each snapshot contains three velocities and one
in Figure 3. Since we are using a Gaussian kernel whichpressure at points on49 x 21 dimensional grid. We re-
matches our Gaussian clusters, AKPCA performs centershaped each snapshot into a 4116 dimensional vector and
selection. This occurs because the three centers given byut the data into 4116 x 799 matrix. We performed APCA
the first three singular vectors are most representative ofon this matrix to obtain the first four eigenflows shown in
the data when viewed through the eyes of our GaussianFigure 4.
kernel. This is illustrated by both the singular vectors, Our first remark concerning these eigenflows is that
which are seen to be centers, and the singular values, whiclihe corresponding singular values accountdé¥; of the
are dominated by the first three nearly equal values. energy of the flow. In other words, the first four singular

values added together make 9% of the sum of all the

4.1 Taylor-Couette Fluid Flow. Next, we investigated singular values. This means that the eigenflows under
the application of APCA to a larger data set. Specifically, consideration characterize the flow to a high degree of
we apply APCA to a problem in Taylor-Couette fluid flow. accuracy.

Taylor-Couette flow occurs in fluid trapped between con- Next we remark that when we project the entire flow
centric cylinders. When the cylinders are rotated indepen-onto these eigenflows, we get periodic graphs, as shown in
dently, the resulting flow often contains toroidal vortices Figure 5. Based on our previous remark, we may conclude
known as Taylor-Couette cells. The Taylor-Couette data with high confidence that the flow under consideration is
we used was generated by numerical simulation [1], and periodic.

consists of 799 cross-sectional snapshots of the flow astime  Finally, we remark on the eigenflows themselves.
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Figure 5. Taylor-Couette Projections. These ) ’ B B N
plots show the projections of the entire _ '
Taylor-Couette flow onto the first four eigen- Figure 6. Anomalous Microarray Cluster.
flows. The top plot is for the projection onto This cluster, with members marked by X's,
the first eigenflow, the next plot is for the pro- was found by performing APCA on the vari-
jection onto the second eigenflow, et cetera. ables (genes) in the dataset. The plot shows
In each plot the z-axis represents time and the values for each patient of the third and
the y-axis the value of the projection. fourth singular vector genes.

These particular snapshots of the flow represent what theuSed during processing). This successful application of
flow is doing most of the time. In this case, the flow con- APCA resulted in the identification of a list of genes that
sists of three Taylor-Couette cells. The upper cell is stable ¢@n be monitored to suggest when microarray data should
while the lower cells periodically grow and shrink, at some D€ examined for other problems before analysis.
point even spawning and re-absorbing smaller sub-cells. ) )
All these events are captured by the eigenflows in Figure® Discussion
4. In fact, by comparing Figures 4 and 5, it is almost pos- 5.1 Relation to PCA. AKPCA is based on an approxi-
sible to visualize the entire flow, including the appearance mation of PCA. Consequently, AKPCA has approximately
and disappearance of the sub-cells in the fourth eigenflow. the same properties as PCA. Some of these properties are
[9]: maximization of the statistical variance, minimization
4.2 DNA Microarray Data. Finally, we describe an ap- of the mean square truncation error, maximization of the
plication of APCA to microarray data. In this application, mean squared projection, and minimization of entropy. In
we discuss a new way to assess leukemia microarray datahe case of APCA these properties are directly approxi-
quality. This data used was from a study of acute infant mated. In the case of AKPCA these properties apply (ap-
leukemia using gene expression profiling [11]. The datasetproximately) after the nonlinear remapping.
consisted of 140 acute lymphoid leukemia (ALL) and acute In practice, PCA is often used for low dimensional
myeloid leukemia (AML) cases, profiled using Affymetrix representation and for visualization of data. AKPCA
U95AV2 gene chips to obtain 12,625 expression values forinherits these attributes with the additional advantage of
each patient. the interpretability of the AKPCA singular vectors. This
APCA performed on the variables (genes) discovered advantage was illustrated with the applications of APCA to
a cluster of approximately 33 patients (shown in Figure 6). the Taylor-Couette simulation data and to the microarray
This cluster was apparent in the third singular vector and by data. In the case of the Taylor-Couette data we were able to
using alternates to that singular vector we produced a list ofproduce actual instances in the flow which best represented
genes correlated with the cluster. We discovered that mostthe entire flow. This provided a very useful visualization
of the genes in this list were down regulated and indicative of the flow, especially in the case of the sub-cells in the
of low viability. When we found that 20 of the 33 patients fourth APCA eigenflow. In the case of the microarray
in the cluster had been profiled on the same day, we becamelata we were able to discover an interesting cluster and to
convinced that these experiments had suffered from someproduce a set of genes which could be used to interpret the
systematic problem (perhaps one or more bad enzymesorresponding cluster.



5.2 Comparison to Kernel PCA. Kernel PCA is very

similar to AKPCA. Kernel PCA is computed by perform-
ing an eigenvalue decomposition of a kernel version of the

covariance matrix. When using the linear kerhet,y) =

(x,y), kernel PCA reduces to PCA. Thus kernel PCA is a
direct generalization of PCA and requires only linear opti-
mization. In fact, the only difference between kernel PCA
and AKPCA is that AKPCA uses APCA to approximate

PCA before using an SVM kernel. This gives AKPCA two

advantages over kernel PCA. First, the nonlinear principal
components found by kernel PCA do not, in general, cor-
respond to points in the original data set. In fact, a kernel

PCA component may not corresponddny point in the

original dataspace In comparison, each nonlinear princi-
pal component found by AKPCA corresponds directly to a
point in the original data set. This is an advantage when

(3]
(4]
(5]
(6]
(7]
(8]

(9]

interpreting the principal components that AKPCA finds. [10]

Second, the computation of kernel PCA requires an eigen-

value decomposition of an x n matrix, wheren is the

number of data points under consideration. Although lin-

ear, this is a difficult calculation for large In comparison,

AKPCA is matrix free. AKPCA uses the same matrix, but
the explicit formulation of the matrix is not required. Even
if the matrix is formed, an eigenvalue decomposition is not

necessary.

5.3 Conclusion. We have introduced both an interesting

appoximation to PCA and a nonlinear extension of that
approximation. APCA performs PCA constrained to the
original data set. This makes the singular vectors found

(11]

(12]

by APCA more interpretable than the analagous singular [13]

vectors found by standard PCA. Thus APCA provides
information that is difficult to obtain by PCA alone. This
was illustrated using the Taylor-Couette simulation data.
AKPCA provides a nonlinear generalization of APCA
and so can be considered a nonlinear generalization of
PCA. AKPCA provides the interpretability of APCA in a

nonlinear setting.

The algorithm which performs AKPCA is also capable
of data analysis on very large data sets. It is parallelizable
and can be implemented to exploit computers with large
(It can also be used with minimal

memory capacities.

(14]

(15]

memory requirements.) In addition, the AKPCA algorithm [16]

is modular and can be easily changed to perform other

tasks. It can be extended for use with other algorithms such[17]

as regression and classification.
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