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Abstract

We propose an analog of kernel Principal Component
Analysis (kernel PCA). Our algorithm is based on an ap-
proximation of PCA which uses Gram-Schmidt orthonor-
malization. We combine this approximation with Support
Vector Machine kernels to obtain a nonlinear generaliza-
tion of PCA. By using our approximation to PCA we are
able to provide a more easily computed (in the case of
many data points) and readily interpretable version of ker-
nel PCA. After demonstrating our algorithm on some ex-
amples, we explore its use in applications to fluid flow and
microarray data.

1 Introduction

The goal of Principal Component Analysis (PCA) is to
find a coordinate representation for a data set such that
the most variance in the data is captured in the least
number of coordinates. This representation is typically
found by performing a linear transformation of the original
data via the Singular Value Decomposition (SVD). The
resulting singular vectors provide an orthonormal basis for
the data while the singular values provide information on
the importance of each basis vector. A review of PCA, its
history, examples of applications, and information about
the SVD can be found in [7], [9], [3], and [19].

In addition to the standard linear version of PCA, some
nonlinear variants have been proposed. These methods in-
clude Hebbian networks [3], multi-layer perceptrons [3],
Principal Curves [5], and kernel PCA [15]. Finally, there
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are other data analysis methods similar in spirit to PCA.
These include Projection Pursuit [4], Independent Com-
ponent Analysis [8], [6], Isomap [18], and Locally Linear
Embedding [12].

In this paper we propose an approximate version of the
nonlinear kernel version of PCA [15]. Kernel PCA com-
bines the computation of PCA by diagonalizing the covari-
ance matrix with nonlinear preprocessing using Support
Vector Machine (SVM) kernels [2], [16]. This results in
a nonlinear version of PCA which reduces to the standard
linear version when using a linear kernel. We propose an
approximate version of this method in order to overcome
two inherent difficulties.

First, the method of nonlinear preprocessing using ker-
nels makes it difficult to return to the original input space.
In the case of kernel PCA, it is difficult to interpret the
nonlinear principal components because they do not typi-
cally correspond to vectors in the input space. Second, ker-
nel PCA is performed by diagonalizing anm × m matrix,
wherem is the number of data points under consideration.
In the case of largem this is not feasible. Both of these
problems are addressed by using our approximate version
of kernel PCA. These problems are also addressed, using
different approaches, in [14] and [17].

Our version of kernel PCA is based on the use of an
approximation to standard PCA. In our modification of
standard PCA we locate a basis using the same criterion
employed by PCA but subject to an additional constraint.
Our basis is required to correspond directly to a linearly
independent subset of our original data. Essentially, we
find an ordered linearly independent subset of our data
which best approximates the PCA expansion when used
with Gram-Schmidt orthonormalization. When coupled
with SVM kernels we get an approximate version of kernel
PCA which is easier to compute (in the case of large
datasets) and more readily interpretable.
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2 Background

Our version of kernel PCA is a combination of Gram-
Schmidt orthonormalization and PCA, all rewritten in
terms of inner products so that SVM kernels can be used.
We therefore provide some background on Gram-Schmidt,
PCA, and SVM kernel functions.

2.1 Gram-Schmidt. Gram-Schmidt orthonormalization
[19] is a procedure for transforming a set of linearly in-
dependent vectors{x1, . . .xm} into an orthonormal basis
{u1, . . . ,um}. This basis is constructed iteratively via pro-
jections. Specifically,

u1 = x1
‖x1‖ , p1 = (x2,u1)u1

u2 = x2−p1
‖x2−p1‖ , p2 = (x3,u2)u2 + (x3,u1)u1

...

um = xm−pm−1
‖xm−pm−1‖ ,

where we use(x,y) to denote the inner product (dot
product) ofx with y. Now we can represent our original
data{x1, . . . ,xm} in the new basis as the upper triangular
matrix  (x1,u1) · · · (xm,u1)

...
...

...
(x1,um) · · · (xm,um)

 .

We can also include linearly dependent data
{xm+1, . . . ,xn} as additional columns in the matrix

U =

 (x1,u1) · · · (xm,u1) · · · (xn,u1)
...

...
...

...
...

(x1,um) · · · (xm,um) · · · (xn,um)

 .

2.2 PCA. PCA is typically formulated as an eigenvalue
problem which is closely related to the SVD [9], [3]. It
also typically described as a procedure for successively
capturing the maximal variance in the data. The PCA
eigenvectors (singular vectors) satisfy [9]

u1 = arg maxu
∑n

i=1(u,xi)2

u2 = arg maxu
∑n

i=1(u,xi − (xi,u1)u1)2
...

um = arg maxu
∑n

i=1(u,xi −
∑m−1

j=1 (xi,uj)uj)2,

where{u1, . . . ,um} are also required to be orthonormal.
PCA is often illustrated by finding the major and

minor axes in a cloud of data filling an ellipse. The first
eigenvector corresponds to the major axis of the ellipse
while the second eigenvector corresponds to the minor axis.
This example is shown later in Figure 1.

2.3 SVM Kernels. SVM kernels were orginally used
in the context of integral operators, but have also been
interpreted as inner products in feature spaces for use in
machine learning. Kernels have been applied to Support
Vector Machines [2], Principal Component Analysis [15],
Fisher’s Linear Discriminant [10], and a host of other
algorithms.

A SVM kernel is a functionk : Rn×Rn → R with an
associated mapΦ : Rn → F such that

k(x,y) = (Φ(x),Φ(y)), (2.1)

whereF is an inner product space. The mapΦ is typically
nonlinear and the relation (2.1) is used to avoid explicit
computation ofΦ(x). Some simple kernels are the linear
kernelk(x,y) = (x,y), the polynomial kernelk(x,y) =
((x,y) + c)d, d ∈ Z and the gaussian radial basis function
kernelk(x,y) = exp(−‖x− y‖2/2σ2), σ 6= 0.

SVM kernels are useful in machine learning because
they allow the application of linear methods to nonlinear
problems. In principle, an appropriate mapΦ can be used
to change a nonlinear problem inRn into a linear problem
in F . Once the problem has undergone this transformation,
a linear method can be applied.

SVM kernels come into play because a given non-
linear mapΦ usually results in a large (sometimes infi-
nite) increase in the dimension of the original problem.
To avoid this dimensional increase, the inner products in
a linear method are replaced by kernels. This substitu-
tion yields a nonlinear method which never explicity uses
the mapΦ. By replacing inner products(xi,xj) with ker-
nelsk(xi,xj) = (Φ(xi),Φ(xj)) we effectively remap our
problem usingΦ before applying an inner product in a
higher dimensional space.

Additional information on kernels and their use in
machine learning can be found in [16].

3 Algorithm

Having provided the background on Gram-Schmidt, PCA,
and SVM kernels, we can describe the basic strategy of our
algorithm. First, a linearly independent subset of our data
is chosen using the PCA criterion. Next, a kernel version
of Gram-Schmidt is performed using that subset. The
implementation of this strategy involves rewriting Gram-
Schmidt in terms of inner products and constraining the
PCA criterion so that eachui corresponds directly to an
actual data point. This is our approximation to PCA
(APCA). By replacing inner products with kernels we get
the approximate version of kernel PCA (AKPCA).

AKPCA is based on a reformulation of the Gram-
Schmidt procedure. To describe this reformulation we
observe that Gram-Schmidt is recursive and that we can



rewrite it as follows

(x1,u1) = ‖x1‖ = (x1,x1)
(x1,u1)

(x2,u1) = (x2,x1)
‖x1‖ = (x2,x1)

(x1,u1)

(x2,u2)2 = ‖x2 − p1‖2 = ‖x2‖2 − ‖p1‖2

(x2,u2) = 1
(x2,u2)

[
(x2,x2)− (x2,u1)2

]
(x3,u1) = (x3,x1)

(x1,u1)

(x3,u2) = 1
(x2,u2)

[(x3,x2)− (x2,u1)(x3,u1)] ,

and in general

(xi,uj) =
1

(xj ,uj)

[
(xi,xj)−

j−1∑
k=1

(xj ,uk)(xi,uk)

]
.

This formula can also be used for the remainder of our
(linearly dependent) data{xm+1, . . . ,xn} to arrive at the
matrixU in Section 2.1.

Another useful addition to Gram-Schmidt is a change
of basis matrix for switching from{u1, . . . ,um} to
{x1, . . . ,xm}. This matrix, T = (t1, . . . , tm), can be
computed columnwise by

t1 = 1
(x1,u1)

e1

t2 = 1
(x2,u2)

[e2 − (x2,u1)t1]
...

tm = 1
(xm,um)

[
em −

∑m−1
i=1 (xm,ui)ti

]
,

where{e1, . . . , em} are the standard basis vectors. Now
TU expresses our data in terms of the basis{x1, . . . ,xm}.

This formulation of Gram-Schmidt has two principal
advantages over the standard formulation for use with
AKPCA. First, it is expressed in terms of inner products to
allow the use of SVM kernels. Second, the change of basis
matrix T allows us to express our data in terms of actual
examples in our data set. This will allow us to interpret the
results of any nonlinear remapping of our data.

We next modify our reformulation of Gram-Schmidt
by a constrained version of the PCA criterion. Specifically,
we use the PCA criterion to select the linearly independent
subset used in Gram-Schmidt. Abandoning our previous
labeling{x1, . . . ,xm} in favor of the more accurate label-
ing {xi1 , . . . ,xim

}, this subset is selected by

xi1 = arg maxxi

1
‖xi‖2

∑n
j=1(xi,xj)2

xi2 = arg maxxi

1
‖xi‖2

∑n
j=1 [(xi,xj)− (xi,u1)(xj ,u1)]

2

...

xim = arg maxxi

1
‖xi‖2

n∑
j=1

[
(xi,xj)−

m−1∑
l=1

(xi,ul)(xj ,ul)

]2

,

Figure 1. Ellipse and Parabola. In this illustra-
tion we compare the singular vectors found
by PCA with those found by APCA for an el-
lipse (left) and a parabola (right). In both ex-
amples, a PCA singular vector is shown as a
solid line, while a APCA singular vector (an
actual point in the data set) is marked with
an X.

where the inner products(x•,ul) are computed using the
reformulation of the Gram-Schmidt procedure described
above.

This combination of Gram-Schmidt and PCA is APCA
(our approximate version of PCA). APCA provides an in-
teresting approximation of PCA because it selects points
in the actual data set with properties similar to those of
PCA. In addition, APCA is readily generalized to AKPCA
(our approximate version of kernel PCA) by replacing in-
ner products with kernels. AKPCA then combines the ad-
vantages of our reformulation of Gram-Schmidt (kernel use
and interpretation after remapping) with the approximate
statistical properties of APCA.

4 Examples and Applications

Here we illustrate the use of AKPCA by various examples
and applications. Our first example uses an ellipsoid and
a parabola. We compare the singular vectors found by
PCA with those found by APCA (or AKPCA using a
linear kernel) on the ellipse filling data cloud mentioned
previously, and on a parabola with gaussian noise. These
examples are shown in Figure 1.

In our next example we use AKPCA on the parabola
with different polynomial kernels. In this parabola,x-
values are drawn from a uniform distribution on[−1, 1]
andy-values are the squares of thex-values plus Gaussian
noise with a standard deviation of.2. This example was
also used in [15] so provides some comparison with that
work. Following [15] we use polynomial kernels with
c = 1 andd = 2, 3, and4. Our results are shown in Figure
2. In the casesd = 2 andd = 3 the first two singular
vectors point in the directions of the arms of the parabola
and the third singular vector points in the direction of the
noise. Whend = 4, the first two singular vectors point in
the directions of the parabola arms, the second two point in
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Figure 2. Parabola Revisited. Illustrated here
are the singular vectors found by AKPCA
using the polynomial kernel with c = 1 and
d = 2, 3, and 4 for a parabola. The first column
(from top to bottom) shows the first three
singular vectors when d = 2, the second
column shows the first three singular vectors
when d = 3, and the third and fourth columns
show the first five singular vectors when
d = 4. In each plot, the origin is marked with
a circle and connected via a line to a singular
vector marked by an X.

the directions of the noise in the arms, and the fifth points
in the direction of overall noise.

The last example, found in an expanded version [13]
of [15], consists of three Gaussian clusters in the region
[−1, 1]× [−.5, 1]. Each cluster has a standard deviation of
.1. In this example we use AKPCA with an RBF kernel
(following [13]) of width σ = .22. Our results are shown
in Figure 3. Since we are using a Gaussian kernel which
matches our Gaussian clusters, AKPCA performs center
selection. This occurs because the three centers given by
the first three singular vectors are most representative of
the data when viewed through the eyes of our Gaussian
kernel. This is illustrated by both the singular vectors,
which are seen to be centers, and the singular values, which
are dominated by the first three nearly equal values.

4.1 Taylor-Couette Fluid Flow. Next, we investigated
the application of APCA to a larger data set. Specifically,
we apply APCA to a problem in Taylor-Couette fluid flow.
Taylor-Couette flow occurs in fluid trapped between con-
centric cylinders. When the cylinders are rotated indepen-
dently, the resulting flow often contains toroidal vortices
known as Taylor-Couette cells. The Taylor-Couette data
we used was generated by numerical simulation [1], and
consists of 799 cross-sectional snapshots of the flow as time
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Figure 3. Clusters. Here we show singular
vectors and values for three Gaussian clus-
ters found using AKPCA with an RBF ker-
nel. The first three plots show the singular
vectors and the last plot shows the singular
values. The singular vectors are displayed
as in Figure 2, with the origin marked by a
circle, each singular vector marked with an
X, and contours are shown corresponding to
hyperplanes in the remapped data space.

Figure 4. Taylor-Couette Flow. Shown here
are the first four APCA eigenflows from left
to right. Each plot shows streamlines of the
flow based on the radial and axial velocities.

progresses. Each snapshot contains three velocities and one
pressure at points on a49 × 21 dimensional grid. We re-
shaped each snapshot into a 4116 dimensional vector and
put the data into a4116×799 matrix. We performed APCA
on this matrix to obtain the first four eigenflows shown in
Figure 4.

Our first remark concerning these eigenflows is that
the corresponding singular values account for96% of the
energy of the flow. In other words, the first four singular
values added together make up96% of the sum of all the
singular values. This means that the eigenflows under
consideration characterize the flow to a high degree of
accuracy.

Next we remark that when we project the entire flow
onto these eigenflows, we get periodic graphs, as shown in
Figure 5. Based on our previous remark, we may conclude
with high confidence that the flow under consideration is
periodic.

Finally, we remark on the eigenflows themselves.



0 100 200 300 400 500 600 700 800
200

250

300

0 100 200 300 400 500 600 700 800
−100

0

100

200

0 100 200 300 400 500 600 700 800
−50

0

50

100

0 100 200 300 400 500 600 700 800
−50

0

50

100

Figure 5. Taylor-Couette Projections. These
plots show the projections of the entire
Taylor-Couette flow onto the first four eigen-
flows. The top plot is for the projection onto
the first eigenflow, the next plot is for the pro-
jection onto the second eigenflow, et cetera.
In each plot the x-axis represents time and
the y-axis the value of the projection.

These particular snapshots of the flow represent what the
flow is doing most of the time. In this case, the flow con-
sists of three Taylor-Couette cells. The upper cell is stable
while the lower cells periodically grow and shrink, at some
point even spawning and re-absorbing smaller sub-cells.
All these events are captured by the eigenflows in Figure
4. In fact, by comparing Figures 4 and 5, it is almost pos-
sible to visualize the entire flow, including the appearance
and disappearance of the sub-cells in the fourth eigenflow.

4.2 DNA Microarray Data. Finally, we describe an ap-
plication of APCA to microarray data. In this application,
we discuss a new way to assess leukemia microarray data
quality. This data used was from a study of acute infant
leukemia using gene expression profiling [11]. The dataset
consisted of 140 acute lymphoid leukemia (ALL) and acute
myeloid leukemia (AML) cases, profiled using Affymetrix
U95AV2 gene chips to obtain 12,625 expression values for
each patient.

APCA performed on the variables (genes) discovered
a cluster of approximately 33 patients (shown in Figure 6).
This cluster was apparent in the third singular vector and by
using alternates to that singular vector we produced a list of
genes correlated with the cluster. We discovered that most
of the genes in this list were down regulated and indicative
of low viability. When we found that 20 of the 33 patients
in the cluster had been profiled on the same day, we became
convinced that these experiments had suffered from some
systematic problem (perhaps one or more bad enzymes
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Figure 6. Anomalous Microarray Cluster.
This cluster, with members marked by X’s,
was found by performing APCA on the vari-
ables (genes) in the dataset. The plot shows
the values for each patient of the third and
fourth singular vector genes.

used during processing). This successful application of
APCA resulted in the identification of a list of genes that
can be monitored to suggest when microarray data should
be examined for other problems before analysis.

5 Discussion

5.1 Relation to PCA. AKPCA is based on an approxi-
mation of PCA. Consequently, AKPCA has approximately
the same properties as PCA. Some of these properties are
[9]: maximization of the statistical variance, minimization
of the mean square truncation error, maximization of the
mean squared projection, and minimization of entropy. In
the case of APCA these properties are directly approxi-
mated. In the case of AKPCA these properties apply (ap-
proximately) after the nonlinear remapping.

In practice, PCA is often used for low dimensional
representation and for visualization of data. AKPCA
inherits these attributes with the additional advantage of
the interpretability of the AKPCA singular vectors. This
advantage was illustrated with the applications of APCA to
the Taylor-Couette simulation data and to the microarray
data. In the case of the Taylor-Couette data we were able to
produce actual instances in the flow which best represented
the entire flow. This provided a very useful visualization
of the flow, especially in the case of the sub-cells in the
fourth APCA eigenflow. In the case of the microarray
data we were able to discover an interesting cluster and to
produce a set of genes which could be used to interpret the
corresponding cluster.



5.2 Comparison to Kernel PCA. Kernel PCA is very
similar to AKPCA. Kernel PCA is computed by perform-
ing an eigenvalue decomposition of a kernel version of the
covariance matrix. When using the linear kernelk(x,y) =
(x,y), kernel PCA reduces to PCA. Thus kernel PCA is a
direct generalization of PCA and requires only linear opti-
mization. In fact, the only difference between kernel PCA
and AKPCA is that AKPCA uses APCA to approximate
PCA before using an SVM kernel. This gives AKPCA two
advantages over kernel PCA. First, the nonlinear principal
components found by kernel PCA do not, in general, cor-
respond to points in the original data set. In fact, a kernel
PCA component may not correspond toany point in the
original dataspace. In comparison, each nonlinear princi-
pal component found by AKPCA corresponds directly to a
point in the original data set. This is an advantage when
interpreting the principal components that AKPCA finds.
Second, the computation of kernel PCA requires an eigen-
value decomposition of ann × n matrix, wheren is the
number of data points under consideration. Although lin-
ear, this is a difficult calculation for largen. In comparison,
AKPCA is matrix free. AKPCA uses the same matrix, but
the explicit formulation of the matrix is not required. Even
if the matrix is formed, an eigenvalue decomposition is not
necessary.

5.3 Conclusion. We have introduced both an interesting
appoximation to PCA and a nonlinear extension of that
approximation. APCA performs PCA constrained to the
original data set. This makes the singular vectors found
by APCA more interpretable than the analagous singular
vectors found by standard PCA. Thus APCA provides
information that is difficult to obtain by PCA alone. This
was illustrated using the Taylor-Couette simulation data.
AKPCA provides a nonlinear generalization of APCA
and so can be considered a nonlinear generalization of
PCA. AKPCA provides the interpretability of APCA in a
nonlinear setting.

The algorithm which performs AKPCA is also capable
of data analysis on very large data sets. It is parallelizable
and can be implemented to exploit computers with large
memory capacities. (It can also be used with minimal
memory requirements.) In addition, the AKPCA algorithm
is modular and can be easily changed to perform other
tasks. It can be extended for use with other algorithms such
as regression and classification.
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