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Abstract

In this paper, we propose a solution to improving the quality of hexahedral
meshes derived from volumetric data using insights obtained from the
structure of the dual of a hexahedral mesh. Our solution is to add a layer of
hexes along the boundary, composed of well-shaped elements. The
additional flexibility provided by this layer enables the optimization of the
original poorly-shaped elements that are no longer on the boundary
allowing for creation of a high-quality hexahedral mesh while maintaining
a conformal mesh on both sides of the inserted layer. An extra benefit of
our technique is being able to capture sharp features using a Boolean-like
cutting operation and inserting multiple layers to maintain the high quality
of the hexahedral mesh. Our experimental results demonstrate the
successful removal of all bad elements (i.e. those elements of the mesh
that have a scaled Jacobian measure of less than 0.2) in a number of
complex examples.

Introduction

Mesh generation deals with the problem of decomposing complex geometry into discrete
elements (meshes), which can be used for modeling, simulation, and visualization. These
meshes play a significant role in computationally-based science and engineering.

Our work in this paper demonstrates quality improvement and feature capture in
hexahedral meshes of complex geometries. We build on the work of Zhang et al. [1,2] for
creating topological hexahedral meshes from volumetric isosurfaces, and the fundamental
hexahedral mesh concepts outlined by Shepherd in [3] to improve the quality of the final
hexahedral meshes. To create the final hexahedral mesh, sheet insertion [4,5] and mesh
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optimization algorithms [6,7] available in CUBIT [8] are utilized. A key result of our
paper is to demonstrate high-quality hexahedral mesh generation for complex geometries
derived from volumetric images.

Our specific contributions are:

* A method for quality improvement in hexahedral meshes of an arbitrarily complicated
domain generated from octree-based algorithms.

* We describe the necessary topologic structures needed within a hexahedral mesh to
capture boundary discontinuities (i.e. sharp features).

* Finally, we demonstrate our technique on several models indicating the realized
improvement in the overall quality of the final meshes on these models over previous
algorithms.

Mesh Acquisition

The base meshes generated in this paper were constructed from volumetric data using the
LBIE-Mesher [1,2] The LBIE-Mesher is based on a surface topology preserving octree-
based algorithm coupled with a dual contouring method to create a uniform hexahedral
mesh boundary-fitted to an isovalue. The uniform mesh is decomposed into finer hexes
adaptively using predefined templates without introducing any hanging nodes, and the
positions of all boundary vertices are recalculated to approximate the boundary surface
more accurately. A final smoothing step is also performed to improve the final surface
mesh [2]. The final meshes demonstrated in this paper were built in CUBIT [8] using
the original meshes from the LBIE-Mesher as the starting point. In CUBIT, a hexahedral
layer insertion was performed along with mesh smoothing, optimization and mesh quality
verification. These steps will be discussed in more detail in later sections.

Hexahedral Mesh Structures

A hexahedral mesh can be viewed as a collection of intertwined layers of hexahedra. A
single hexahedron will belong to, at most, three separate layers of hexahedra. Each layer
of hexahedra can be visualized in a dual representation as a single manifold surface,
known as a ‘sheet’. We will utilize the dual representation of a hexahedral mesh as
defined by Mitchell [9] in his hexahedral mesh existence proof, but also use some
concepts from Murdoch [10]. We also utilize the hexahedral constraints for maintaining a
hexahedral topology and sufficient quality as outlined in [3].

Surface Capture

The boundary of any hexahedral mesh is a quadrilateral mesh. As shown in Figure 1, the
quadrilaterals on the boundary will belong to one or more layers of hexahedra. For a
smooth and continuous boundary, a hexahedral mesh consisting of a single layer of
hexahedra reduces skew and improves element orthogonality at the boundary, and offers
the highest level of topologic regularity in the mesh. Therefore, if we assume no
discontinuities in the boundary surface description, meshes which utilize a single layer to
capture all of the boundary quadrilaterals will invariably admit elements whose potential



quality is higher than meshes which utilize multiple layers to capture the boundary
surface.

Figure 1: When multiple layers of hexahedra capture boundaries, the quality and
regularity of the mesh is affected. Image A shows elements from a single layer
capturing the upper boundary of the solid. Image B and C use multiple layers of
hexahedra to capture the upper boundary of the solid. In image B and C, note how
the regularity of the mesh is affected and the resulting skew in the transition
element as the hexahedral layer curves away from the boundary.

Curve Capture

Where discontinuities exist in the geometry, it is often desirable to place a simply
connected set of mesh edges that align themselves with the discontinuity. These
discontinuities are often called sharp features, and in solid models are often the trimmed
boundaries of pairs of surfaces within the solid model (and known as curves)..

The intersection of two layers of hexahedral elements results in a column of hexahedra.
In the dual representation of a hexahedral mesh, this column of hexahedra is also known
as a chord (see Figure 2). For each chord, there are four sets of simply connected edges
running along the length of the column of hexahedra. For each sharp discontinuity in the
geometry, a conformal hexahedral mesh of that discontinuity will have one or more
columns of hexahedra running along the length of the discontinuity. (However, these
columns may be disjointed, similar to the layers of hexahedra shown in Figure 1.)

Methods

In octree-based hexahedral meshes, the quadrilaterals on the boundary of the mesh often
belong to multiple, disjointed layers of hexahedra. This structure results in diminished
element quality near the boundary. In this section we will outline an algorithm for
improving the quality of hexahedral meshes near the boundary by inserting a new layer of
hexahedra. This new layer effectively aligns the boundary hexahedra with the boundary
surface and of provides extra degrees of freedom for subsequent mesh optimization.

Mesh Quality Improvement using Boundary Sheets
In order to add a new layer of hexahedra near the boundary of the geometry, we use a
modified version of a pillowing algorithm as described by Mitchell [9].
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Figure 2: The intersection of two layers of hexahedra results in a column of
hexahedra, and a string of simply connected mesh edges sufficient to capture a
sharp geometric discontinuity.

The basic layer insertion algorithm is as follows (also refer to Figure 3):

1. Define a shrink set - For our purposes, this step involves dividing the existing mesh
into two sets of elements: one set for each of the half-spaces defined by the new layer to
be inserted. One of these two sets of hexahedral elements comprises the shrink set.

2. Shrink the shrink set - Create a gap region between the two previous element sets.

3. Connect with a new layer of elements — Because there is a one-to-one mapping
between the nodes on the boundaries of the two sets, a new layer of hexes can be created
by creating an edge between each node separated during the shrinking operation and
generating the connectivity of the new hexahedra in the layer using the quadrilaterals on
the boundary of the two sets of hexahedra.

When inserting a single layer next to the boundary, we define our shrink set as all of the
elements within the solid. We desire the original surface mesh to be undisturbed by any
of our modification operations, so a copy of the surface mesh is made prior to shrinking
the layer of elements near the boundary. For each face on the boundary, one new
hexahedral element is created. Figure 4 demonstrates a mesh with a newly inserted layer.

Cutting Operations

By inserting multiple layers of hexahedra, we can obtain a simply connected set of mesh
edges wherever new or existing layers intersect. Capitalizing on this concept, we can
strategically insert layers of hexahedra to perform Boolean-like CG operations in the
hexahedral mesh while still maintaining mesh conformity with all of the split-off pieces
[5]. At the intersection of the layers, edges can be aligned with any sharp discontinuities
in the geometry. In Figure 5 we demonstrate several successive spherical cuts from a



single hexahedral mesh of a cubical geometry. Where two layers intersect, a simply-
connected string of mesh edges exists and can be aligned with the cut enabling the sharp
features in the resulting model to be recognized.

Figure 3: A basic pillowing operation starts with an initial mesh (A). A shrink set is
defined and separated by ‘shrinking’ from the original mesh (B). A new layer of
elements (i.e. a sheet) is inserted (C) to fill the void left by the shrinking process.

Figure 4: A hexahedral mesh of a sphere with a human head embedded in the
center. The mesh on the left is an octree-based mesh that has been refined and
oriented capture the geometry of the embedded head. The hexahedral mesh on the
right is the same mesh with two additional layers of hexahedra at the interior and
exterior boundary. The mesh on the right has a higher quality and flexibility due to
the improved mesh topology capturing the geometric boundary.



Figure 5: By inserting spherical sheets into the geometry, we can perform Boolean-
like cutting operations in the mesh, while maintaining the integrity of the
hexahedral mesh.

In Figure 6, a planar layer of hexes is added behind the face of the head model. This
layer coupled with the layer of hexes previously added for the face results in string of
edges that can be used to capture the sharp discontinuity enabling the cutting operation.
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Figure 6: A layer of hexahedra elements is inserted behind the face in the head
model enabling the face to be cut cleanly from the rest of the head.

Results

In this section we display results detailing the quality differences after inserting a layer of
hexahedra at the boundary for several examples. The scaled Jacobian metric [11], as
implemented in VERDICT [12], is used as the definitive measure for hexahedral quality.
We will assume that any elements with scaled Jacobian less than zero are unsuitable for
analysis and any element with scaled Jacobian less than 0.2 is questionable for use in an
analysis.

Because correct and optimal placement of the new layer can be difficult, we also perform
a mesh optimization step on both meshes using the TSTT Mesh Quality and
Improvement Toolkit (MESQUITE) [7] library of smoothing algorithms as implemented
in Cubit [8]. In particular, we have utilized a mean ratio smoother [6], which
incorporates an L2-norm template with guarantees that (1) the mesh will remain



untangled if the initial mesh is untangled, and (2) the average value of the mean ratio will
either stay the same, or be decreased.

There are four examples given: a human knee model (Figure 7), a human head (Figure 8),
a meshed sphere around the human head (Figure 4), and a model of a mAChE
biomolecule (Figure 11). Element quality results are given for each of the meshes before
and after layer insertion (see Figures 9 and 10). The introduction of the boundary sheet
enables the rem

(cut-away in center). An additional layer of elements was added to the boundary to
improve quality resulting in a new mesh (right) with 2,682 total elements.

Figure 8: Human head model. The original mesh contains 6,583 total hexes (cut-
away view in center). An additional layer of hexahedra was added to the boundary
to improve quality resulting in a new mesh (right) with 9,487 total elements.
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Figure 9: Distribution of scaled Jacobian measure for the knee and the head meshes.
The original mesh (hatched, dark) of the knee contains 367 elements of questionable
or unacceptable quality, while the new mesh (solid, white) has all elements with
scaled Jacobian greater than 0.2. The original mesh (dark, hatched) of the head
contains 1025 questionable or unacceptable elements, and the new mesh (solid,
white) has one element of questionable quality (related to a poor quality boundary
quadrilateral).

Head Sphere Element Quality Distribution mAChe Element Quality Distribution

16000 70000

'

14000 (0000

Ciyestionable
Urjacceptable
Qestionable

12000
50000

10000 =

40000

5000

30000

6000

Element Count
I
Element Count

20000

4000

10000

2000

7

lessthan (00,02) (0204) (04,08) (06,08 (08 1.0) lessthan (0.0,0.2) (0.2,04) (04,08) (06,08 (08,10
0o 0o

Scaled Jacobian Scaled Jacobian

Figure 10: Distribution of scaled Jacobian measures for the head sphere mesh and
the mAChE mesh. The original mesh (dark, hatched) of the head sphere contains
2,485 elements of questionable or unacceptable quality, while the new mesh (solid,
white) has all elements with scaled Jacobian greater than 0.2. The original mesh
(dark, hatched) of the mAChE has 7,298 problematic elements, while the new mesh
(solid, white) has only 111 elements of questionable quality (due to poor quality
boundary quadrilaterals).
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Conclusion

In this paper, we have outlined a method utilizing a simple hexahedral layer insertion
process to improve the quality of the elements generated using an octree-based algorithm
with methodologies similar to the dual contouring approach that captures isosurfaces
within volumetric data. We demonstrate how by strategically inserting hexahedral layers
into the octree-produced hexahedral meshes, we can significantly improve the overall
mesh quality without changing the boundary mesh. We also show how insertion of
multiple sheets can be utilized to capture discontinuities, or sharp features, in the meshes.
We have demonstrated the quality improvement on several models. We ensure that the
quality comparisons are accurate by utilizing the MESQUITE mesh optimization
algorithms on the meshes both before and after the sheet insertion. The VERDICT
library is also used to verify and report the final mesh quality.
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Figure 11: Biomolecule mAChE model. The original mesh contains 70,913
hexahedra (cut-away view in center). An additional layer of elements was added to
the boundary to improve quality giving a new mesh (right) with 90,937 elements.
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