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1. Ion qubit

2. Trap development

Overview

a. Cadmium: hyperfine qubit
b. Ytterbium: ion-photon 

entanglement
c. Cadmium MOT: combining 

neutrals and ions

a. General requirements/hurdles of 
microfabricated traps

b. Anomalous heating
c. Specific fabrication examples



111Cd+ Energy Level Diagram
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1a.  Cadmium qubit
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Initialization
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Detection
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Qubit rotations: microwaves

1,11,01,-1

0,0
2S1/2

|

|

 (s)

P
ro

b
(b

ri
g
h
t

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40



Raman transitions: motional sidebands
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Cadmium vs. Ytterbium

Cadmium
Pros:
• simple atomic structure

Cons:
• difficult wavelength

– quadrupled diode-laser 
(complex, expensive)

– low power
– always free space

Ytterbium
Cons:
• more complicated atomic 

structure
• more lasers

Pros:
• nice wavelengths

– direct diode lasers 
(simple, cheap)

– more power
– fibers



The Ytterbium (171Yb+) Ion
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Single Photon Source

0

1

2

3

4

5

6

7

-1000 -500 0 500 1000
Correlation time [ns]

g(2)



Two Photon Interference

polarizers

~ 2 
cubits



Remote Ion Entanglement
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This projects the ions into
|-ions = |a|b - |a|b

Coincidence “heralds” the 
entanglement preparation.
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Coincidence projects ions onto:
|-ions = |a|b - |a|b



Qubit state measurements

Expected ion state is: |-ions = |a|b - |a|b

Success probability per trial P = ¼[½ηζTβPexc(ΔΩ/4π)] = 3 10-9



Entangled!



Quantum Repeater Network Duan et. al., Quan. Inf. Comp. 4, 165 (2004)

Scalable even though probabilistic

Cluster State Quantum Computing Raussendorf and Briegel, PRL 86, 910 (2001)
Duan and Raussendorf, PRL 95, 080503 (2005)



Combining ions and neutrals

S=0 neutrals

“hole”
with spin

Cd+ ion

Cd MOT

Single ion and a magneto-optical trap



Combining ions and neutrals
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Cadmium Energy Level Diagram
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Pros:
•simple structure
•good vapor pressure at room 
temperature
•triplet manifold useful for optical 
clock studies

Cons:
•Low power!  (few mW) (Isat=1W/cm2)
•Small beams (few mm)
•Large excited state 

linewidth requires large 
B-field gradient (500G/cm)
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2 mW total -> 2000 atoms



2a. Microfabricated traps
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Trap geometriesRF DC
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Comparative geometries
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Chiaverini, et al. QIC 5 (2005)



1 mm

T junction trap

Hensinger, W.K., Appl. Physics Lett. 88, 034101
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Results: Shuttling

Probability of successfully:

1. Turning the corner, from electrode 8 to 
10:  
 881/882 ~ 100%

2. Returning, from electrode 10 to 8:
 116/118 ~ 98%

3. Separation
 37/64 ~ 58%

4. Total success rate:
 12/51 ~ 24%



2b.  Motional heating vs. ion-electrode 
distance
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Characterizing anomalous ‘patch 
potential’ heating
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Needle trap

Deslauriers, L., PRL 97 103007



Sideband 
thermometry
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Results: Heating vs. distance
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Results: Heating vs Frequency
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2c.  Examples of microfabricated 
traps



Advantages of microfabricated 
traps

• No assembly (except wire 
bonding)
– No alignment

• Small electrodes

• Scalable – change 
photolithographic mask
– Easy to change design

• On board filters for DC 
electrodes, control 
electronics integration



Disadvantages of microfabricated 
traps

• Material properties

– Lossy conductors, high parasitic capacitance, 
low breakdown insulators

– Power dissipation: V2 Ω C (R C Ω + tanδ)

• Restricted physical dimensions

– Limited vertical thicknesses

• Small size drastically increases heating



Trapping 
Parameters

Depth = 3 x room temperature
ω/2π = 1 MHz

Stick, D., Nature Physics 2, 36-39



Results: lifetime with and 
without cooling



Results: heating rate

Heating rate:
1±.5 quanta/microsecond
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Heating rate relative to other traps
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Polysilicon MEMS trap
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Polysilicon MEMS trap



Si/SiO2 “surface” trap
R. Slusher, Lucent

S. Seidelin, et al. Phys. Rev. Lett. 96, 253003 (2006)
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Results: Tilting the principal axes
The principal axes are the directions in which 
the ion’s motion is uncoupled from the other 
directions.  The laser cannot cool the ion’s 
motion if it is perpendicular to one of the 
principal axes.



Tungsten traps
M. Blain, C. Tigges, J. Hudgens, Sandia



Summary
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