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• microscale electrical contacts

S. Kim and David Asay, Pennsylvania State U.

• vapor phase lubrication

J. Krim and Adam Hook, North Carolina State U. 

• MEMS surface treatment, tribology in extreme environments

K. Komvopoulos and Shannon Timpe, U. of California, Berkeley

• MEMS adhesion and friction

Tony Ohlhausen, Sandia National Laboratories:  ToF-SIMS
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Fully-Assembled MEMS Limit Surface 
Treatment Options

“no assembly required”

• fabricated using deposition, pattern, 
and etch techniques borrowed from 
microelectronics

• contain on-chip actuators 
(electrostatic or thermal)

– limited actuation and restoring forces

• take advantage of complexity 
afforded by multiple layer process

– deeply buried sliding surfaces

500 m
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What Factors Limit the Reliability of 
Microsystems?

Silicon most popular due to mature fabrication infrastructure

• processes well known to grow, pattern, and etch

• can control residual stress

Particles (more sensitive than microelectronics)

Fracture (handling or overshock)

Adhere after fabrication

• “in-process adhesion”

Adhere during use

• “in-use adhesion”

Friction exceeds available actuation force (monolayer wear)

Wear (solid wear and debris formation)

Aging changes surface interaction forces
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SiC Has Been Explored As A Structural MEMS 
Material For Harsh Environments

Sensors for measurement of temperature, pressure, and 
combustion gases in high-temperature environments

• M. Mehregany et. al, (Case Western) Proc. IEEE vol. 86 (1998) p. 1594.

• high temperature CVD required to avoid excess Si; delaminated from 
SiO2 with higher growth temperature

• etch in KOH > 600°C, or O2/CHF3 plasmas; selectivity compared to 
mask only ~5:1

Multi-User Silicon Carbide (MUSiC) 

• fabricated by FLX Micro

• process for SiC device fabrication similar to MUMPS

• no longer available

Processing challenges precluded the development of complex, 
multilayer devices
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Wear and Aging are the Main Impediments to 
MEMS with Sliding Surfaces

Wear

• abrasion of oxidized silicon leads to 
debris generation in air 

• adhesion and grain pull-out in 
vacuum (Patton et. al)

• removal of surface treatment due to 
mechanical contact

Aging

• changes in surface forces in the 
absence of mechanical contact

• desorption or decomposition of 
surface treatment

• contaminant adsorption from within 
package

• reaction with environmental species

600,000 rev, 1.8% RH

D. Tanner et. al 
IRPS 1998
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Numerous Monolayer Chemistries Have Been 
Explored for Si MEMS Surface Treatment

Challenges

• Reproducibility

– reduced steps with vapor phase processing; still exhibit variability

• Scale Up

– treat at wafer level as opposed to individual device; dice after release

• Wear

– coatings few nm thick – easily worn off 

W.R. Ashurst et. al, IEEE Trans Devices 
and Mat. Rel. vol 3 (2003) p. 173
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TRA Device at 300 deg C
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Device failure is associated with the presence of 
water in the exposure environment

Device experiments
Danelle Tanner, SNL

• MIL spec for microelectronic packaging 
5000 ppm H2O

• low levels of water may impact monolayer 
behavior over long term storage

fixture for 
controlled 
environment 
aging of 
packaged 
MEMS

Torsional Rotary Actuator 
(TRA) for functional tests
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Crack length changes yield apparent surface 
energy changes due to environment
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+ Automated eXpert Spectral Image Analysis (AXSIA) 

• solve D=C*ST using constrained alternating 
least squares

• constrain to physically realistic solutions

• number of components C is the minimum 
needed to reconstruct the original data, 
minus noise

• no bias or assumptions; rapidly identifies 
subtle changes 

Multivariate statistical analysis of SIMS data can 
identify subtle changes in chemistry

Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS)

M. Keenan and P. Kotula, Surf. Interface 
Anal. 36 (2004) 2433.
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TOF-SIMS+AXIA reveals different composition 
on exposed vs hidden surfaces

AXSIA is a very efficient data-mining tool, maximizing contrast between 
areas with different chemistry on the surface

• capability developed in-house, now applied to surface analysis
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Coverage of as-deposited PFTS and 
FOTAS

• monolayer coverage is non-uniform on exposed vs. occluded surfaces

• vapor deposition yields improved coverage compared to liquid process

• FOTAS fragmentation varies on exposed vs occluded surfaces

PFTS – liquid deposition

FOTAS – vapor deposition
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Exposure to water vapor reduces the 
coverage of the FOTAS monolayer

Reaction of FOTAS-coated flaps with water vapor at 300ºC reduces 
coverage in both exposed and occluded areas

high mass 
FOTAS

low mass 
FOTAS

control
(stored in N2)

aged (300ºC, 2000 
ppm H2O, 16 hrs)

spectral data processed as a 
montage of individual datasets
each image 140x140 m
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Changes in static friction are due to reduced 
monolayer coverage

• hydrolysis leads to loss of chemisorbed monolayer

• shear strength decreases as coverage increases

1.7 1.8 1.9 2.0 2.1 2.2
0.0

0.2

0.4

0.6

0.8

F
ri

ct
io

n
 C

o
e

ff
ic

ie
n

t

Molecules/cm
2
 x 10

14

environmental cell

10 m

2 N applied load
N2 environment



0709 Dugger MicroNanoReliability 2007.ppt:16

A Mobile Phase Needed to Impart a “Self Healing” 
Capability to Lubricant Film

Perfluoropolyether lubricant 
dramatically improved the 
operating life of a lateral 
actuator

• successful in magnetic 
recording tribology

• carbon film needed to 
prevent Zdol 
decomposition and silicon 
roughening

• carbon film present in 
hidden areas
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Alcohols Explored for Reducing Adhesion 
Between Silicon Surfaces

Alcohol dissolves surface contaminants and water, creating a 
lower surface tension film
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ATR-FTIR measurement of adsorbed film 
thickness

• 1-3 monolayers at 0.1 < P/Psat < 0.9

AFM measurement of adhesion

• very low concentrations of alcohol in the 
environment significantly reduce adhesion
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Vapor Phase Lubrication of Silicon Reduces 
Friction in Macroscale Sliding
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ToF-SIMS With Multivariate Analysis Shows 
Formation of High MW Product

Reaction product forms when, and where, it is needed
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Wear is Minimized with In Situ Vapor Phase 
Lubrication

Deposit collected adjacent to asperity locations (real contact) on 
sidewall of MEMS tribometer
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Vapor Phase Lubrication of Silicon by 
Tribochemical Reactions

S.M. Wiederhorn and D.E. Roberts, Wear 32 (1975) 51-72

• reduced friction when abrading silicate glass in alcohols

Y. Hibi and Y. Enomoto, Wear 231 (1999) 185-194

• alcohols reduce friction when cutting Si3N4

• very low wear rate in “higher” alcohols (4<n<11)

• postulate silicon alkoxide and hydrocarbon formation

Y. Hibi, Y. Enomoto and A. Tanaka, J. Mat. Sci. Lett. 19 (2000) 1809-1812

• postulate metal alkoxides condense to polymer and act as lubricant
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Degradation mechanisms:

• thermal
• melting
• arcing

• physical damage
• adhesion
• delamination

• contamination
• oxidation
• segregation

Real contact spots in MEMS can be few in number (<50) 
and small in size (~100 nm diameter)

MEMS contacts more susceptible to cyclical  
degradation than macro-scale switches

Example: Contact Degradation due to 
Corrosion [Neufeld and Rieder 1995]

100 m

Dynamic Electrical Contacts
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Electrical Contact Resistance

references available
upon request

Resistance increases with decreasing contact force

MEMS contact forces ~ 10 – 100 N
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Proper operation of MEMS electrical contacts depends 
on the balance between 

conductivity and separability 

of the surfaces

Degradation Mechanisms

D. Dickrell, U. Florida
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MTS Nano-UTM System

Experimental Set-up

Force, displacement, and resistance 
simultaneously recorded during each 
contact cycle

Fn = 150 N
Vs = 3.3 V
RL = 1.1 k
I = 3 mA
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Contact Cycle Example
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Resistance degrades
to levels far above initial
values in relatively few
(<75) repeated contact
cycles

Cyclic Degradation of Electrical Contact 
Resistance

What is the mechanism
causing this sudden
increase in resistance?

Air
Fn = 150 N
Vs = 3.3 V
I = 3 mA
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Nominal Temperature Rise Accumulated Mechanical Surface Damage

Test A – Hot-switched from cycle 1
Test B – Contact for 100 cycles with
no current present, then hot-switched
until degraded

Degradation insensitive to accumulated cold 
contacts and calculated temperature rise too 
small to affect surface

Non-degraded voltage drop
across contact (corresponding to Rc = ~ 1 )
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Thermal and Surface Damage Testing
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Degradation Sensitivity to 
Transient Electrical Events at Contact

The presence of electrical energy at 
contact appears strongly related to 
resistance degradation

Resistance degradation occurs shortly after 
the arc-quenching element in parallel to the 
contact is removed, strongly suggestive 
that arcing and degradation are related

Hot/Cold-Switch Tests Capacitive Arc-Quench Tests
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Number and frequency of voltage transients increases
when the arc-quenching circuit removed

Contact Oscillograms – Before and After 
Capacitive Quench Removal
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Similar analysis of a suspected 
contamination site (Point 2)
on the flat showed essentially pure 
carbon 

Auger Electron Spectroscopy of an 
apparently clean area (Point 1) showed 
various surface species, including 
carbon

Auger Electron Spectroscopy Analysis of
Suspected Surface Contaminant
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Summary

A robust solution for reliable sliding contacts in silicon MEMS will enable new 
device concepts to be explored

Alternative materials are being explored for MEMS, but challenges remain
• residual stress and strain gradients must be mitigated
• potential opportunity for integrating carbon films with Si micromachining

Chemisorbed monolayers alone are not durable enough for sliding MEMS contacts
• wear, and aging in storage are main issues

Mobile phases are the most promising for lubrication of MEMS sliding contacts
• surface mobile, relies on diffusion to contact zone
• vapor phase, with formation of reaction product at exposed Si

Electrical contacts in MEMS require balance between low resistance (high contact 
stress) and low adhesion (low contact stress)

• adsorption and decomposition of hydrocarbons on contacts during long term storage 
leads to increased contact resistance

• optimized film structure (passivating yet conductive) could lead to mechanically 
robust electrical contacts for MEMS
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