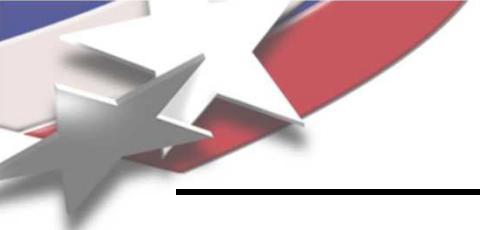


Derivative-free Optimization Methods in DAKOTA, with Applications

Brian M. Adams
Sandia National Laboratories
Optimization and Uncertainty Quantification

August 15, 2006

Derivative-free Nonlinear Programming Session
Nonlinear Optimization Software Stream
ICCOPT II & MOPTA-07, Hamilton, ON



Outline

Design Analysis Kit for Optimization and Terascale Applications (DAKOTA)

is an SNL toolkit for optimization, uncertainty quantification, and sensitivity analysis with large-scale computational models.

<http://www.cs.sandia.gov/DAKOTA>

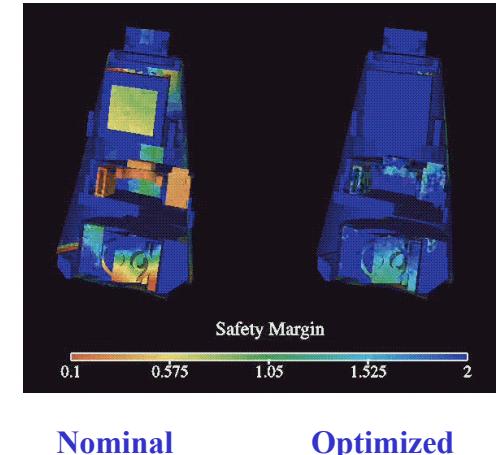
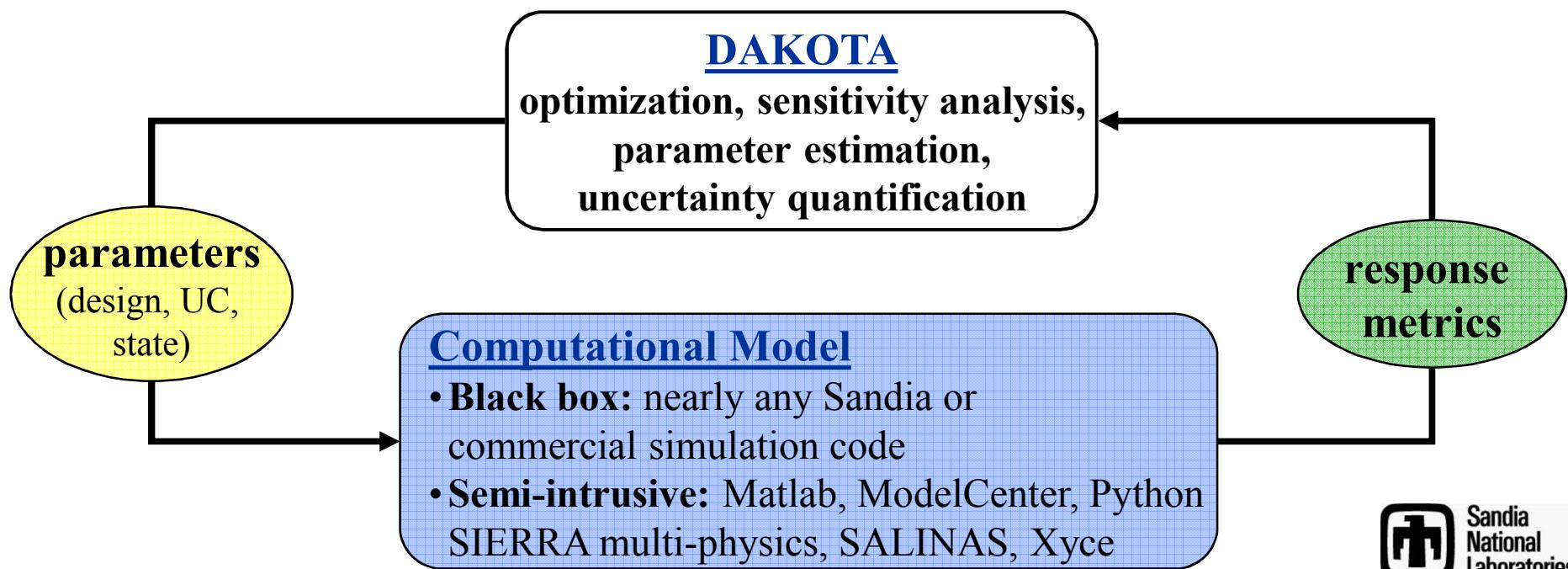
- Survey DAKOTA framework and its key capabilities
- Current and developing capabilities for local and global derivative-free optimization
- Demonstrate powerful combination of algorithms

Thanks to Barron Bichon, Mike Eldred, and Jean-Paul Watson for slide content.

DAKOTA Motivation

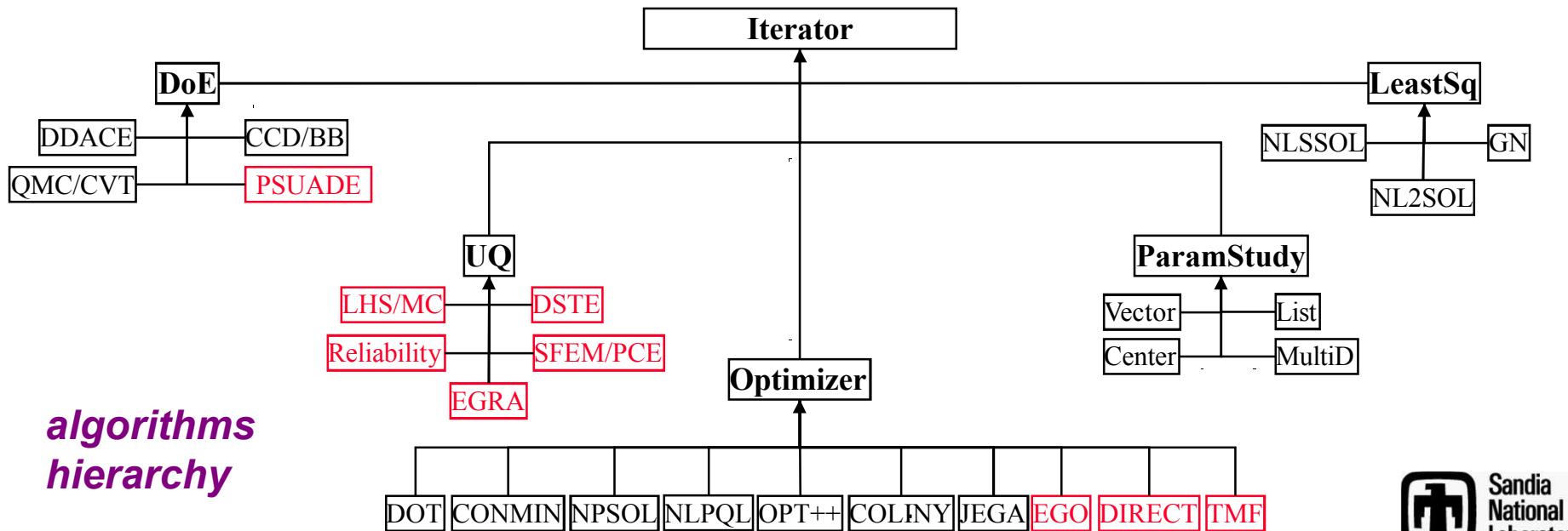
Goal: perform iterative analysis on (potentially massively parallel) simulations to answer fundamental engineering questions:

- **What is the best performing design?**
- **How safe/reliable/robust is it?**
- **How much confidence do I have in my answer?**



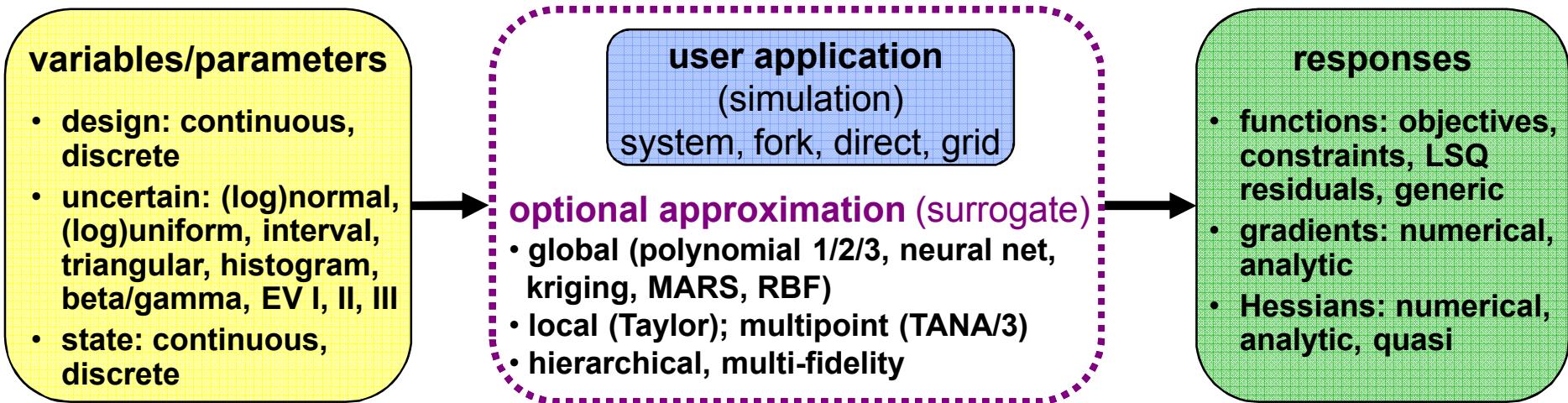
DAKOTA C++/OO Framework Goals

- **Unified software infrastructure:** reuse tools and common interfaces; integrate commercial, open-source, and research algorithms
- **Enable algorithm R&D**, e.g., for non-smooth/discontinuous/multimodal responses, probabilistic analysis and design, mixed variables, unreliable gradients, costly simulation failures
- **Facilitate scalable parallelism:** ASCI-scale applications and architectures
- **Impact:** tool for DOE labs and external partners; broad application deployment; free via GNU GPL (>3000 download registrations)



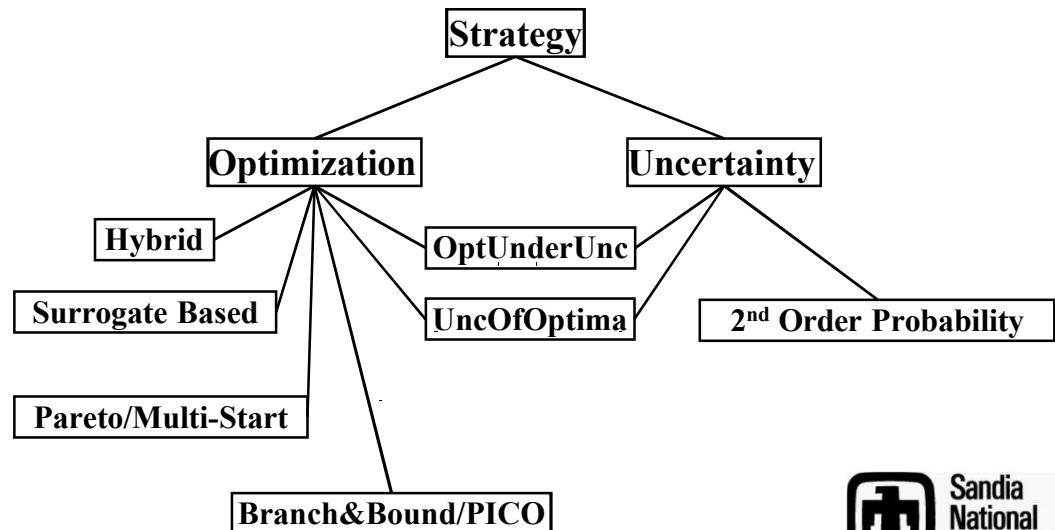
Flexibility with Models & Strategies

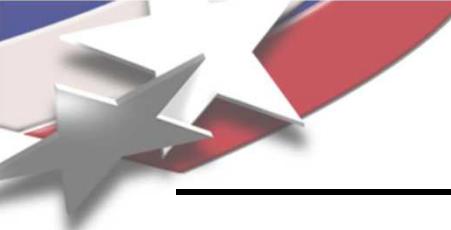
DAKOTA models map inputs to response metrics of interest:



*DAKOTA strategies enable
flexible combination of multiple
models and algorithms. These
can be:*

- **nested**
- **layered**
- **cascaded**
- **concurrent**
- **adaptive / interactive**

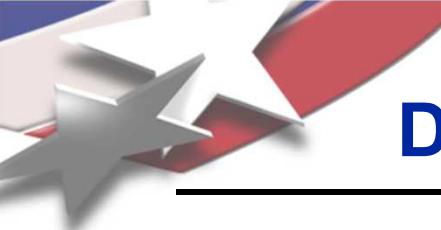




Current Derivative-free Methods

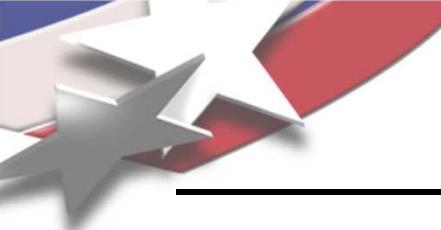
- **COLINY** (interfaced through ACRO; W.E. Hart, et al.)
 - Asynchronous Parallel Pattern Search (APPSPACK; T.G. Kolda, et al.)
 - Pattern Search (*enhanced with basis and move selection options*)
 - Solis-Wets (*greedy local search heuristic w/ MV Gaussian distribution*)
 - COBYLA2 (*Nelder-Mead w/ linear & non-linear constraint support*)
 - Evolutionary Algorithms (*several variants*)
 - Division of Rectangles (DIRECT)
- **OPT++ Parallel Direct Search** (PDS; J.C. Meza, et al.)
- **John Eddy's Genetic Algorithms** (JEGA)
 - Single-objective (SOGA)
 - Multi-objective Pareto (MOGA)
- **DIRECT** (as implemented by J.M. Gablonsky, et al.)

Excepting OPT++, these all support general nonlinear constraints, either natively or through framework-supplied penalty functions.



Developing Derivative-free Methods

- **Templatized Metaheuristics Framework (TMF; J-P. Watson):** Includes text-based parameter initialization, solution-attribute caching, analysis observers / functors, eventually algorithm engineering.
Algorithms include:
 - Metropolis sampling
 - Simulated annealing
 - Iterated local search
 - Basin hopping
 - Variable-neighborhood search
 - Elite pool maintenance schemes
 - (eventually) Evolutionary computing, constructive heuristics
- **Efficient Global Optimization (EGO; B.J. Bichon):** Uses a Gaussian Process model with expected improvement function to manage exploit vs. explore samples in search of optimum (due to Jones, et al., 1998).
- **Direct interface to APPSPACK / NAPPSPACK (Kolda & Griffin):** APPS now supports nonlinear constraints through l_1, l_2, l_∞ penalty fns and solving a sequence of linearly constrained subproblems.



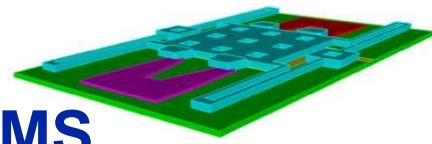
Sample Algorithm Combinations

- **Global/local optimization:** perform (1) sampling, parameter study, or global opt; then (2) local (gradient or non-gradient) opt at each promising point.
- **Surrogate globalization** of derivative-free local methods such as pattern search (*however not close-coupled as Taddy, et al.*).

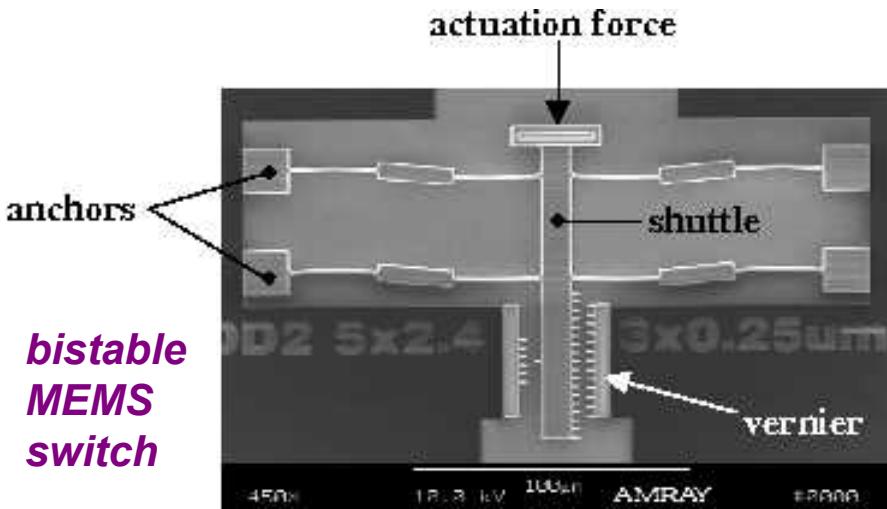
detailed examples coming up

- Optimization under uncertainty for MEMS
- **EGRA:** Efficient Global Reliability Analysis

Shape Optimization of Compliant MEMS



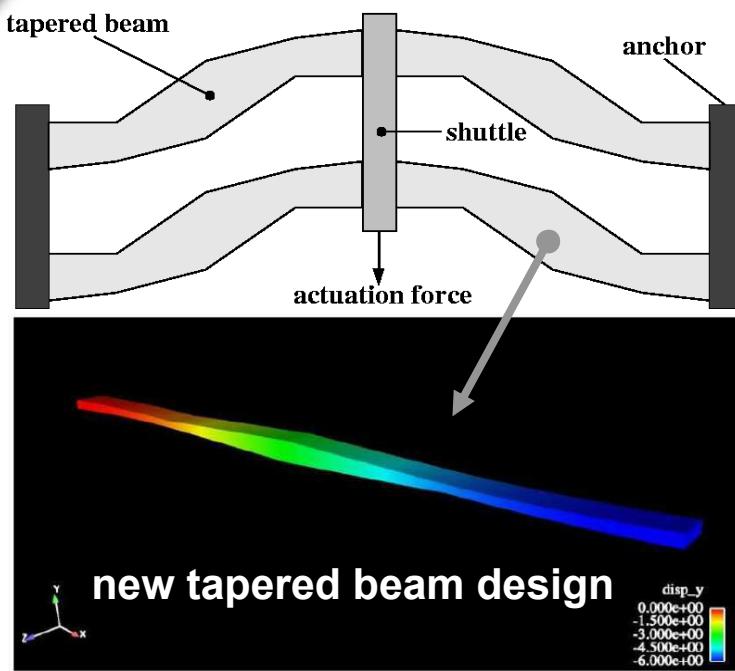
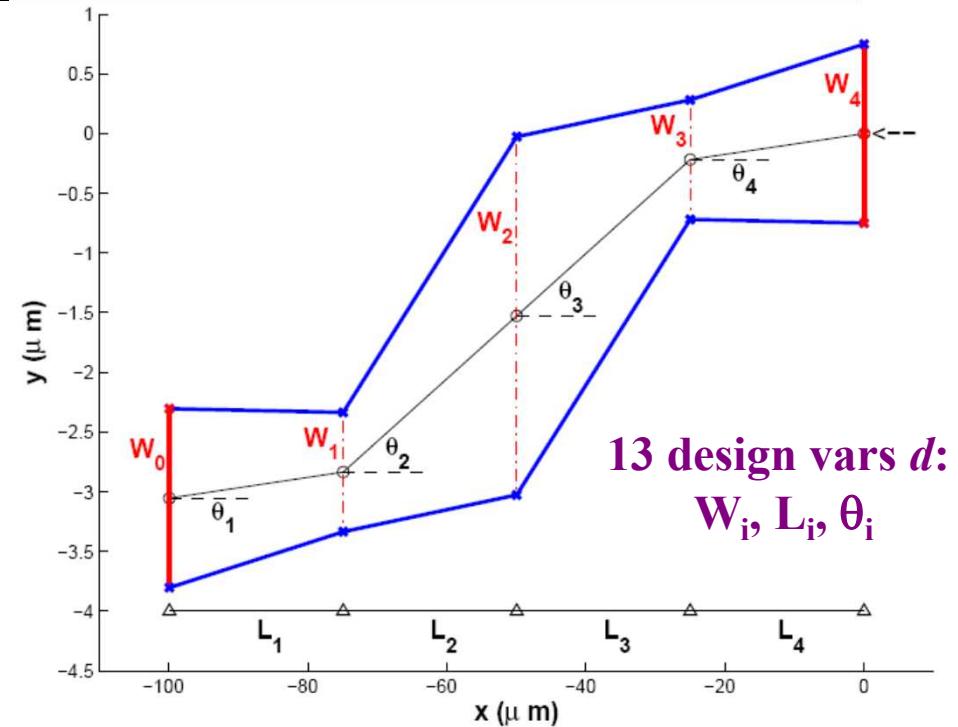
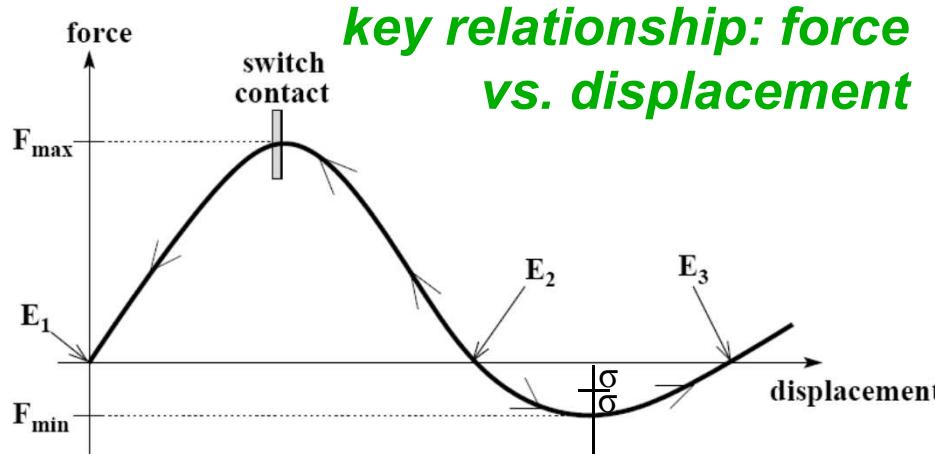
- Micro-electromechanical system (MEMS) made from silicon, polymers, and metals; used as micro-scale sensors, actuators, switches, and machines
- MEMS designs are subject to substantial variabilities and lack historical knowledge base. Micromachining, photo lithography, etching processes yield uncertainty:
 - Material properties, manufactured geometries, residual and yield stresses
 - Material elasticity and geometry key for bistability
 - Data can be obtained to inform probabilistic approaches
- Resulting part yields can be low or have poor cycle durability
- Goal: shape optimize finite element model of bistable switch to...
 - Achieve prescribed reliability in actuation force
 - Minimize sensitivity to uncertainties (robustness)



*uncertainties to be considered
(edge bias and residual stress)*

variable	mean	std. dev.	distribution
Δw	-0.2 μm	0.08	normal
S_r	-11 Mpa	4.13	normal

Tapered Beam Bistable Switch: Performance Metrics



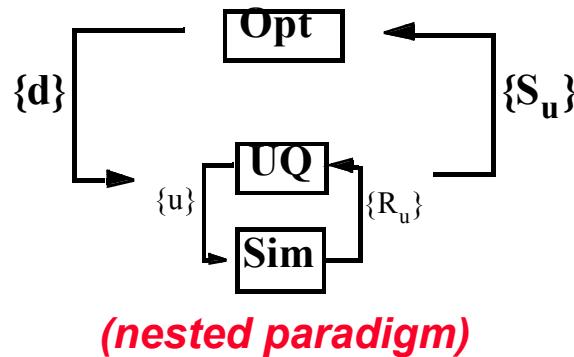
*key relationship: force
vs. displacement*

Typical design specifications:

- actuation force F_{\min} reliably $5 \mu\text{N}$
- bistable ($F_{\max} > 0, F_{\min} < 0$)
- maximum force: $50 < F_{\max} < 150$
- equilibrium $E_2 < 8 \mu\text{m}$
- maximum stress $< 1200 \text{ MPa}$

Optimization Under Uncertainty

Rather than design and then post-process to evaluate uncertainty...
actively design optimize while accounting for uncertainty/reliability metrics $s_u(d)$, e.g., mean, variance, reliability, probability:

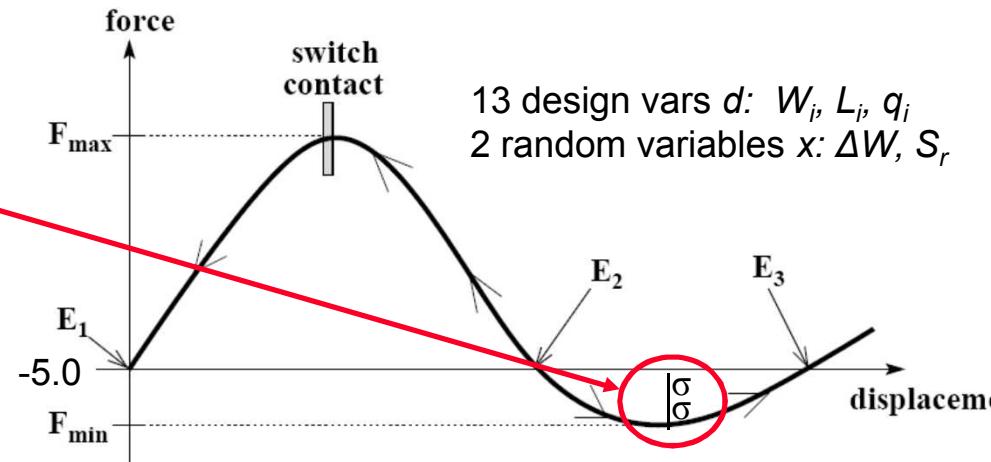


$$\begin{aligned}
 \min \quad & f(d) + W s_u(d) \\
 \text{s.t.} \quad & g_l \leq g(d) \leq g_u \\
 & h(d) = h_t \\
 & d_l \leq d \leq d_u \\
 & a_l \leq A_i s_u(d) \leq a_u \\
 & A_e s_u(d) = a_t
 \end{aligned}$$

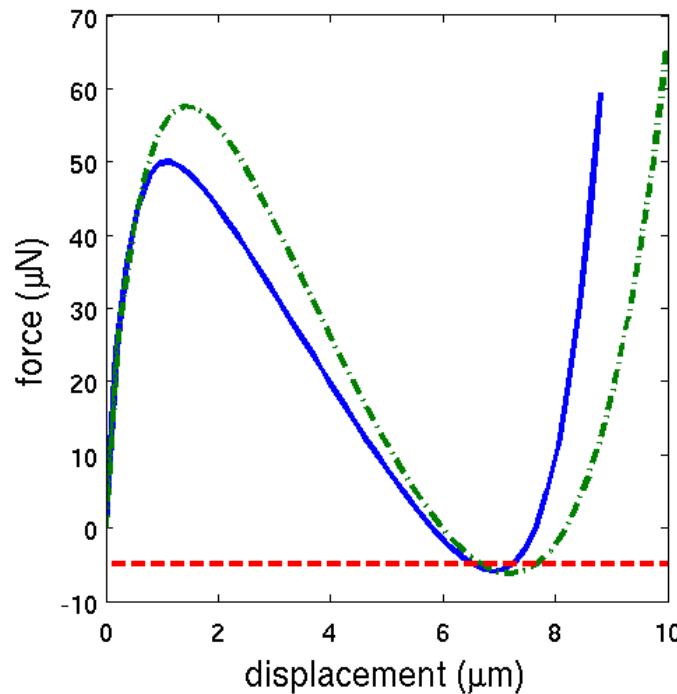
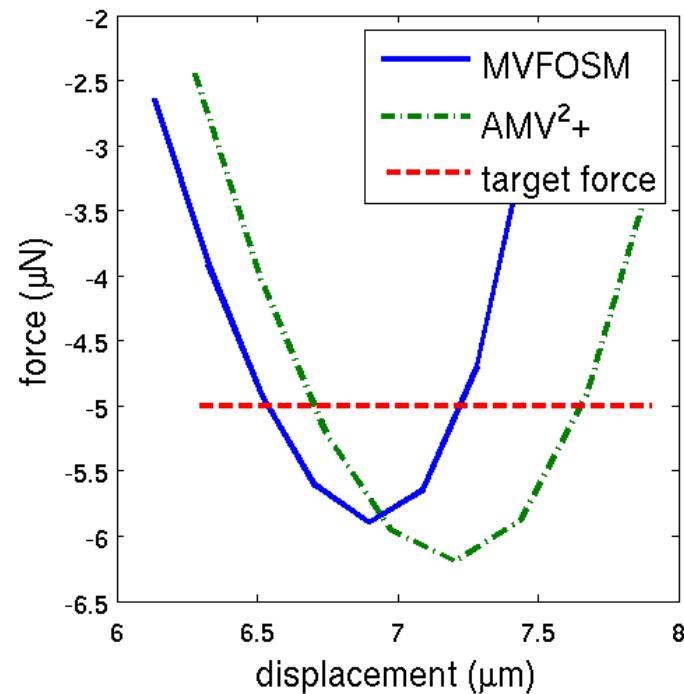
Bistable switch problem formulation (Reliability-Based Design Optimization):

simultaneously reliable and robust designs

$$\begin{aligned}
 \max \quad & \mathbb{E}[F_{min}(d, x)] \\
 \text{s.t.} \quad & 2 \leq \beta_{ccdf}(d) \\
 & 50 \leq \mathbb{E}[F_{max}(d, x)] \leq 150 \\
 & \mathbb{E}[E_2(d, x)] \leq 8 \\
 & \mathbb{E}[S_{max}(d, x)] \leq 3000
 \end{aligned}$$



RBDO Finds Optimal & Robust Design



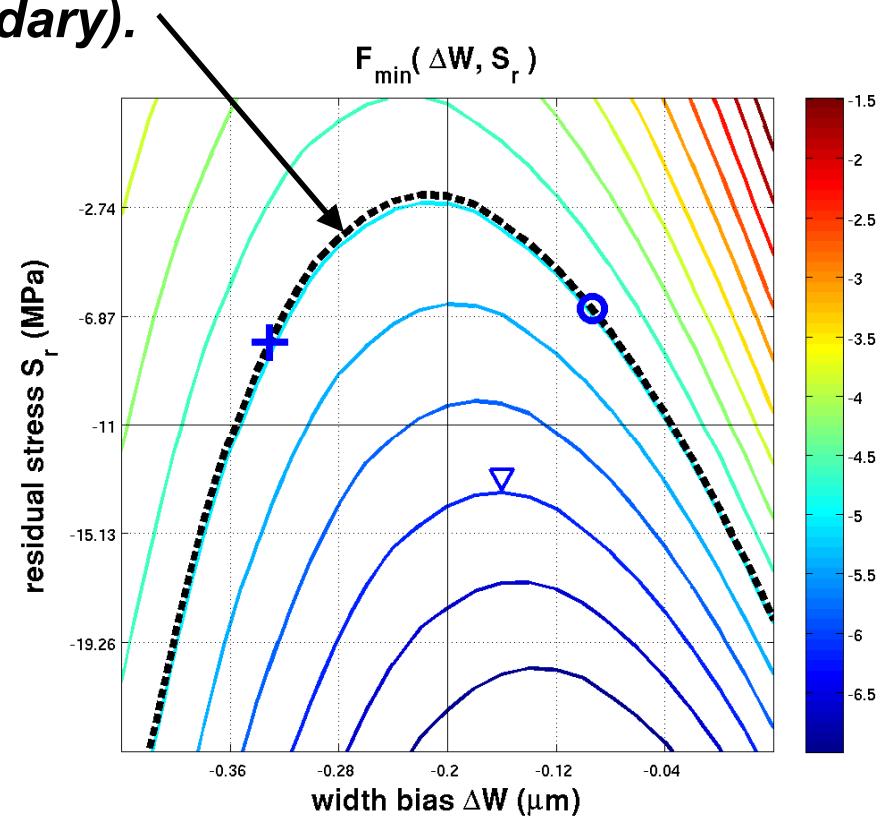
Close-coupled results: optimal and reliable/robust design:

metric				MVFOSM	AMV ² +	FORM
l.b.	name	u.b.	initial d^0	optimal d_M^*	optimal d_A^*	optimal d_E^*
	$E[F_{min}] (\mu N)$		-26.29	-5.896	-6.188	-6.292
2	β		5.376	2.000	1.998	1.999
50	$E[F_{max}] (\mu N)$	150	68.69	50.01	57.67	57.33
	$E[E_2] (\mu m)$	8	4.010	5.804	5.990	6.008
	$E[S_{max}] (MPa)$	1200	470	1563	1333	1329
	AMV ² + verified β		3.771	1.804	-	-
	FORM verified β		3.771	1.707	1.784	-

UQ Challenge: Nonlinear/Multimodal Limit States

MEMS parameter study over 3σ uncertain variable range for fixed design variables d_M^* . Dashed black line denotes $g(x) = F_{min}(x) = -5.0$ (failure boundary).

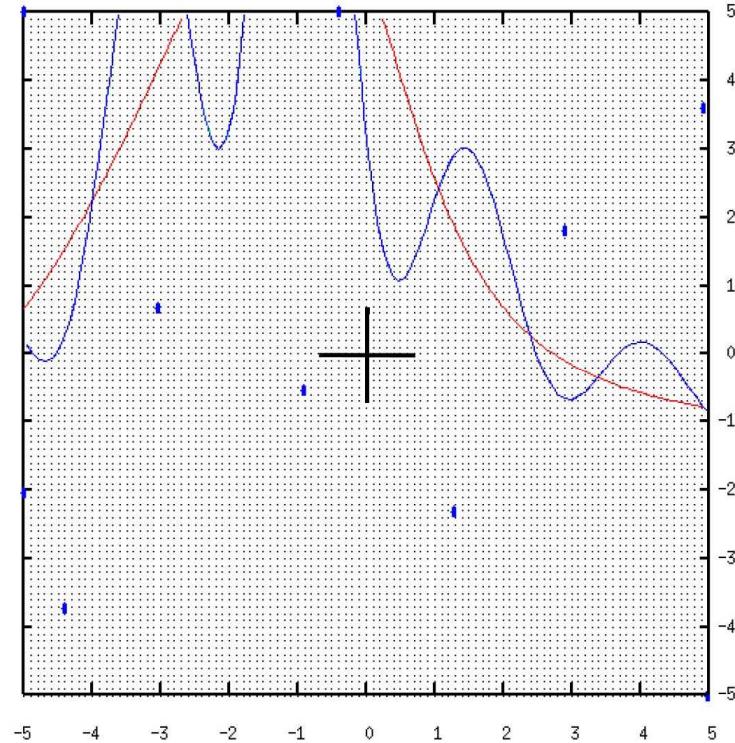
- AMV²⁺ and FORM converge to different MPPs (+ and O respectively)
- Challenge: limit states with multiple legitimate candidates for most probable point of failure
- Challenge: local first order probability integrations may not be accurate enough for nonlinear limit state



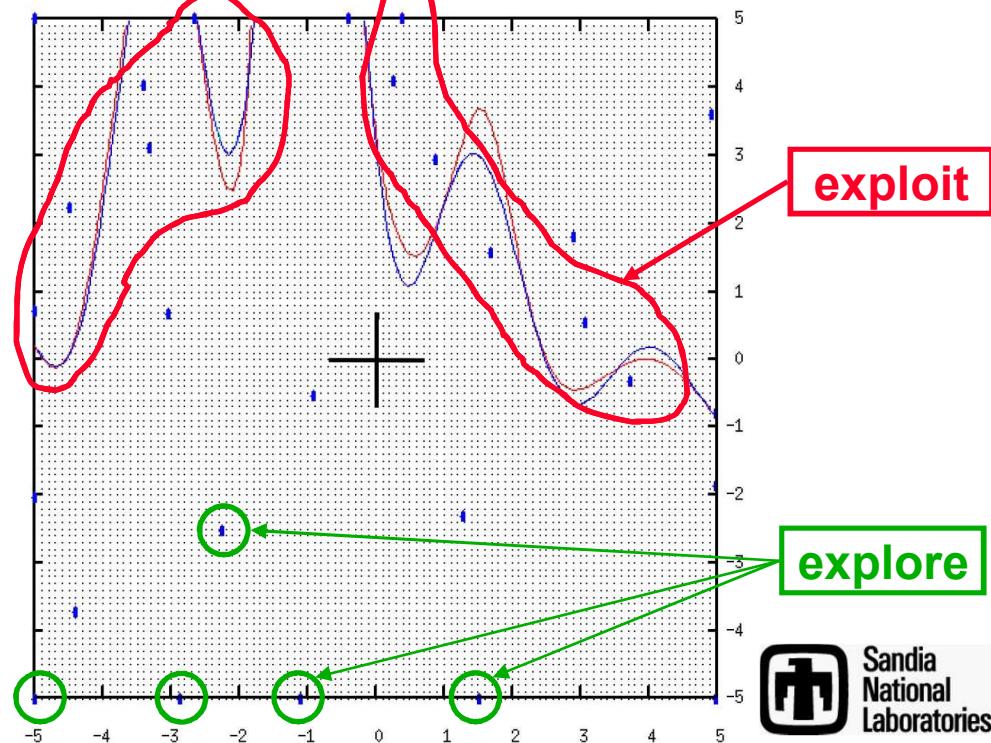
Efficient Global Reliability Analysis

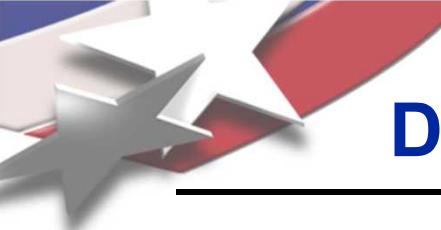
- **EGRA** (B.J. Bichon) performs reliability analysis with EGO (Gaussian Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal adaptive importance sampling for probability calculation.
- Created to address nonlinear and/or multi-model limit states in MPP searches.

Gaussian process model of reliability limit state with 10 samples



28 samples





DAKOTA/EGRA: Superior Performer

Reliability Method	Function Evaluations	First-Order p_f (% Error)	Second-Order p_f (% Error)	Sampling p_f (% Error, Avg. Error)
No Approximation	66	0.11798 (276.3%)	0.02516 (-19.7%)	—
x-space AMV ²⁺	26	0.11798 (276.3%)	0.02516 (-19.7%)	—
u-space AMV ²⁺	26	0.11798 (276.3%)	0.02516 (-19.7%)	—
x-space TANA	506	0.08642 (175.7%)	0.08716 (178.0%)	—
u-space TANA	131	0.11798 (276.3%)	0.02516 (-19.7%)	—
x-space EGO	50.4	—	—	0.03127 (0.233%, 0.929%)
u-space EGO	49.4	—	—	0.03136 (0.033%, 0.787%)
True LHS solution	1M	—	—	0.03135 (0.000%, 0.328%)

- Most accurate local method **under-predicts p_f by ~20%**
- EGO-based method **accurately quantifies probability of failure within 1%** with similar number of function evaluations.
- **Pro:** LHS accuracy + MPP efficiency without gradients, good tail probability resolution
- **Con:** Exploratory samples wasteful, GP can break down for large number of samples or independent variables

Conclusions

- The DAKOTA toolkit includes algorithms for massively parallel **uncertainty quantification and optimization with large-scale computational models**.
- The framework is publicly distributed with a growing number of **derivative-free optimization algorithms**.
- DAKOTA strategies enable efficient combination of algorithms, use of surrogates, and warm-starting.
- Uncertainty-aware design optimization is helpful in MEMS design where **robust and/or reliable designs** are essential.
- DAKOTA is a **research framework for novel capability** such as EGRA, an algorithm which closely couples several other algorithms to perform effective reliability analysis.

Thank you for your attention!

briadam@sandia.gov

<http://www.cs.sandia.gov/DAKOTA>