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Outline
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Design Analysis Kit for Optimization and Terascale Applications
(DAKOTA)
is an SNL toolkit for optimization, uncertainty quantification, and
sensitivity analysis with large-scale computational models.
http://www.cs.sandia.gov/DAKOTA

« Survey DAKOTA framework and its key capabilities

« Current and developing capabilities for local and
global derivative-free optimization

 Demonstrate powerful combination of algorithms

Thanks to Barron Bichon, Mike Eldred, and Jean-Paul Watson for slide content.
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Goal: perform iterative analysis on (potentially
massively parallel) simulations to answer
fundamental engineering questions:

* What is the best performing design?
* How safe/reliable/robust is it? sy
* How much confidence do | have in my answer? N

DAKOTA Motivation

Nominal Optimized

4 DAKOTA A

optimization, sensitivity analysis,
parameter estimation,
\_uncertainty quantification )

parameters
(design, UC,
state)
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DAKOTA C++/00 Framework Goals

* Unified software infrastructure: reuse tools and common interfaces; integrate
commercial, open-source, and research algorithms

« Enable algorithm R&D, e.g., for non-smooth/discontinuous/multimodal
responses, probabilistic analysis and design, mixed variables, unreliable
gradients, costly simulation failures

 Facilitate scalable parallelism: ASCI-scale applications and architectures

» Impact: tool for DOE labs and external partners; broad application deployment;
free via GNU GPL (>3000 download registrations)
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Flexib

ility with Models & Strategies

DAKOTA models map inputs to response metrics of interest:

ﬁariableslparameteQ

» design: continuous,
discrete

* uncertain: (log)normal, p
(log)uniform, interval,
triangular, histogram,
beta/gamma, EV |, II, I

» state: continuous,

i EEEEEEEEEEEEEEEEEETSN
*® T,

discrete / + hierarchical, multi-fidelity s

DAKOTA strategies enable Strategy|

>
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optional approximation (surrogate):

- global (polynomial 1/2/3, neural net, :
kriging, MARS, RBF)

* local (Taylor); multipoint (TANA/3)

..IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII“

flexible combination of multiple /\

models and algorithms.
can be:

* nested

 layered

» cascaded

e concurrent

- - - d-
» adaptive / interactive |Branch&Bound/PICO| @ ﬁaagoﬁal

These

|Optimization IUncertainty

OptUnderUnc

| Surrogate Based UncOfOptimal’ | 2" Order Probability |

| Pareto/Multi-Start
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}‘ Current Derivative-free Methods

* COLINY (interfaced through ACRO; W.E. Hart, et al.)
— Asynchronous Parallel Pattern Search (APPSPACK; T.G. Kolda, et al.)
— Pattern Search (enhanced with basis and move selection options)
— Solis-Wets (greedy local search heuristic w/ MV Gaussian distribution)
— COBYLAZ2 (Nelder-Mead w/ linear & non-linear constraint support)
— Evolutionary Algorithms (several variants)
— Division of Rectangles (DIRECT)

 OPT++ Parallel Direct Search (PDS; J.C. Meza, et al.)

« John Eddy’s Genetic Algorithms (JEGA)
— Single-objective (SOGA)
— Multi-objective Pareto (MOGA)

* DIRECT (as implemented by J.M. Gablonsky, et al.)

Excepting OPT++, these all support general nonlinear constraints, either
natively or through framework-supplied penalty functions. @ Sandia

National _
Laboratories



e ’
* Developing Derivative-free Methods

* Templatized Metaheuristics Framework (TMF; J-P. Watson):
Includes text-based parameter initialization, solution-attribute caching,
analysis observers / functors, eventually algorithm engineering.
Algorithms include:

— Metropolis sampling

— Simulated annealing

— Iterated local search

— Basin hopping

— Variable-neighborhood search

— Elite pool maintenance schemes

— (eventually) Evolutionary computing, constructive heuristics

 Efficient Global Optimization (EGO; B.J. Bichon): Uses a Gaussian
Process model with expected improvement function to manage exploit vs.
explore samples in search of optimum (due to Jones, et al., 1998).

 Direct interface to APPSPACK / NAPPSPACK (Kolda & Griffin):
APPS now supports nonlinear constraints through /,,/,,/ penalty fns and
solving a sequence of linearly constrained subproblems.
@ Sandia
National
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} Sample Algorithm Combinations

* Global/local optimization: perform (1) sampling, parameter
study, or global opt; then (2) local (gradient or non-gradient)
opt at each promising point.

» Surrogate globalization of derivative-free local methods such
as pattern search (however not close-coupled as Taddy, et
al.).

detailed examples coming up

* Optimization under uncertainty for MEMS

- EGRA: Efficient Global Reliability Analysis
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Shape Optimization of Compliant MEMS -

* Micro-electromechanical system (MEMS) made from silicon, polymers, and
metals; used as micro-scale sensors, actuators, switches, and machines

« MEMS designs are subject to substantial variabilities and lack historical
knowledge base. Micromachining, photo lithography, etching processes
yield uncertainty:

— Material properties, manufactured geometries, residual and yield stresses
— Material elasticity and geometry key for bistability
— Data can be obtained to inform probabilistic approaches

* Resulting part yields can be low or have poor cycle durability

» Goal: shape optimize finite element model of bistable switch to...
— Achieve prescribed reliability in actuation force
— Minimize sensitivity to uncertainties (robustness)

actuation force

uncertainties to be considered
(edge bias and residual stress)

anchors ‘ variable mean std. dev, | distribution
ey A -0.2 pm 0.08 normal
. Sy -11 Mpa 4.13 normal
bistable
MEMS

switch
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- Tapered Beam Bistable Switch:
" Performance Metrics

tapered beam [ ] n
anchor G
s— shuttle s pe—=—
AN ol
actuation force T 15
\ " 13 design vars d:
3 | W, L;, 6;
T, T, L, o,
Ia——T 50 50 20 20 0
X (1 m)
e, ey relationship: force | 7ypjcal design specifications:
contact vs. displacement . :
P + actuation force F_;, reliably 5 uN
- bistable (F,..> 0, F;, < 0)
. B E, * maximum force: 50 < F__, <150
" x
1 \/= « equilibrium E2 < 8 ym
displacement .
A N « maximum stress < 1200 MPa
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Optimization Under Uncertainty

Rather than design and then post-process to evaluate uncertainty...
actively design optimize while accounting for uncertainty/reliability metrics
s,(d), e.g., mean, variance, reliability, probability:

Opt | <« min f(d) + Wsy(d)
{d}r Byl st g1 < g(d) < gu
. UQ _ h(d) = hy
{“}[ . ]{Ru} dy<d<dy
Sim a; < A;su(d) < ay
(nested paradigm) Ae su(d) = ay

Bistable switch problem formulation (Reliability-Based Design Optimization):

simultaneously reliable and robust designs Kkce

switch
max E [Frin(d,x)] e 13 design vars d: W, L, g
S.t. 2 < Beear (d) S \ 2 random variables x: AW, S,
50 < E[Fme(d,x)] < ;
E[Ex(d,x)] < \ E, Es
E [Smaz(d,x)] < 3000 E1
_5;«0, T X3 displacem
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RBDO Finds Optimal & Robust Design

displacement (um)

Close-coupled results: optimal and reliable/robust design:

MVFOSM
AMVZ+

target force

7

7.5

displacement (um)

metric

MVFOSM

FORM

name

initial d°

optimal d*

E [Frnas] (4N)

E[E2] (um) 8 4.010 5.804 5.990 6.008

E [Smaz] (MPQ) 1200 470 1563 1333 1329
AMV?+ verified 8 3.771 1.804 - -
FORM verified S8 3.771 1.707 1.784 -

(&)
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UQ Challenge: Nonlinear/Multimodal

}‘ Limit States

MEMS parameter study over 30 uncertain variable range for fixed
design variables d,,*. Dashed black line denotes

g(x) = F,,;.(x) =-5.0 (failure boundary). \

« AMV2+ and FORM converge to
different MPPs
(+ and O respectively)

* Challenge: limit states with
multiple legitimate candidates
for most probable point of
failure

* Challenge: local first order
probability integrations may
not be accurate enough for
nonlinear limit state

r

-1

residual stress S (MPa)

I:min( AW, Sr )

-0.28 -0.2 -0.12
width bias AW (um)

(&)
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Efficient Global Reliability Analysis

« EGRA (B.J. Bichon) performs reliability analysis with EGO (Gaussian
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal
adaptive importance sampling for probability calculation.

* Created to address nonlinear and/or multi-model limit states in MPP
searches.

Gaussian process model of reliability limit state with

10 samples 28 samples

Ve exploit

=1 explore
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i DAKOTA/EGRA: Superior Performer

First-Order pg
(% Error)

Second-Order py
(% Error)

Sampling py
(% Error, Avg. Error)

Reliability Function
Method Evaluations
No Approximation 66
x-space AMV?2+ 26
u-space AMV?+ 26
x-space TANA 506
u-space TANA 131
x-space EGO 50.4
u-space EGO 49.4
True LHS solution 1M

0.11798 (276.3%)
0.11798 (276.3%)
0.11798 (276. 3‘/)
0.08642 (175.7%)
0.11798 (z 6. 3‘/)

0.02516 (-19.7%)
0.02516 (-19.7%)
0.02516 (-19.7%)
0.08716 (178.0%)
0.02516 (-19.7%)

0.03127 (0.233%, 0.929%)
0.03136 (0.033%, 0.787%)
0.03135 (0.000%, 0.328%)

* Most accurate local method under-predicts p; by ~20%

« EGO-based method accurately quantifies probability of failure within
1% with similar number of function evaluations.

* Pro: LHS accuracy + MPP efficiency without gradients, good tail

probability resolution

- Con: Exploratory samples wasteful, GP can break down for large
number of samples or independent variables
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Conclusions

i

 The DAKOTA toolkit includes algorithms for massively parallel
uncertainty quantification and optimization with large-scale
computational models.

* The framework is publicly distributed with a growing number of
derivative-free optimization algorithms.

- DAKOTA strategies enable efficient combination of algorithms, use
of surrogates, and warm-starting.

* Uncertainty-aware design optimization is helpful in MEMS design
where robust and/or reliable designs are essential.

« DAKOTA is a research framework for novel capability such as
EGRA, an algorithm which closely couples several other algorithms
to perform effective reliability analysis.

Thank you for your attention!

briadam@sandia.gov o
http://www.cs.sandia.gov/DAKOTA @ Natonal
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