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Outline

• Survey DAKOTA framework and its key capabilities

• Current and developing capabilities for local and 
global derivative-free optimization

• Demonstrate powerful combination of algorithms

Design Analysis Kit for Optimization and Terascale Applications 
(DAKOTA)

is an SNL toolkit for optimization, uncertainty quantification, and 
sensitivity analysis with large-scale computational models. 

http://www.cs.sandia.gov/DAKOTA

Thanks to Barron Bichon, Mike Eldred, and Jean-Paul Watson for slide content.



DAKOTA Motivation

Goal: perform iterative analysis on (potentially 
massively parallel) simulations to answer 
fundamental engineering questions:

• What is the best performing design?  

• How safe/reliable/robust is it?

• How much confidence do I have in my answer?
Nominal Optimized

DAKOTA
optimization, sensitivity analysis,

parameter estimation,
uncertainty quantification

Computational Model
• Black box: nearly any Sandia or 
commercial simulation code

• Semi-intrusive: Matlab, ModelCenter, Python 
SIERRA multi-physics, SALINAS, Xyce

response 
metrics

parameters
(design, UC, 

state)
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DAKOTA C++/OO Framework Goals

• Unified software infrastructure: reuse tools and common interfaces; integrate 
commercial, open-source, and research algorithms

• Enable algorithm R&D, e.g., for non-smooth/discontinuous/multimodal 
responses, probabilistic analysis and design, mixed variables, unreliable 
gradients, costly simulation failures

• Facilitate scalable parallelism: ASCI-scale applications and architectures

• Impact: tool for DOE labs and external partners; broad application deployment; 
free via GNU GPL (>3000 download registrations)

EGO DIRECT

algorithms
hierarchy

TMF

PSUADE

EGRA



responsesvariables/parameters

Flexibility with Models & Strategies

• functions: objectives, 
constraints, LSQ 
residuals, generic

• gradients: numerical, 
analytic

• Hessians: numerical, 
analytic, quasi

user application 
(simulation)

system, fork, direct, grid

optional approximation (surrogate)
• global (polynomial 1/2/3, neural net,  
kriging, MARS, RBF)

• local (Taylor); multipoint (TANA/3)
• hierarchical, multi-fidelity

• design: continuous, 
discrete

• uncertain: (log)normal, 
(log)uniform, interval, 
triangular, histogram, 
beta/gamma, EV I, II, III

• state: continuous, 
discrete

DAKOTA strategies enable 
flexible combination of multiple 
models and algorithms.  These 
can be:

• nested

• layered

• cascaded

• concurrent

• adaptive / interactive

Hybrid

Surrogate Based

OptUnderUnc

Branch&Bound/PICO

Strategy

Optimization Uncertainty

2nd Order ProbabilityUncOfOptima

Pareto/Multi-Start

DAKOTA models map inputs to response metrics of interest:



Current Derivative-free Methods

• COLINY (interfaced through ACRO; W.E. Hart, et al.)
– Asynchronous Parallel Pattern Search (APPSPACK; T.G. Kolda, et al.)

– Pattern Search (enhanced with basis and move selection options)

– Solis-Wets (greedy local search heuristic w/ MV Gaussian distribution)

– COBYLA2 (Nelder-Mead w/ linear & non-linear constraint support)

– Evolutionary Algorithms (several variants)

– Division of Rectangles (DIRECT)

• OPT++ Parallel Direct Search (PDS; J.C. Meza, et al.) 

• John Eddy’s Genetic Algorithms (JEGA)
– Single-objective (SOGA)

– Multi-objective Pareto (MOGA)

• DIRECT (as implemented by J.M. Gablonsky, et al.)

Excepting OPT++, these all support general nonlinear constraints, either 
natively or through framework-supplied penalty functions.



Developing Derivative-free Methods

• Templatized Metaheuristics Framework (TMF; J-P. Watson):
Includes text-based parameter initialization, solution-attribute caching, 
analysis observers / functors, eventually algorithm engineering. 
Algorithms include:
– Metropolis sampling
– Simulated annealing
– Iterated local search
– Basin hopping
– Variable-neighborhood search
– Elite pool maintenance schemes
– (eventually) Evolutionary computing, constructive heuristics

• Efficient Global Optimization (EGO; B.J. Bichon): Uses a Gaussian 
Process model with expected improvement function to manage exploit vs. 
explore samples in search of optimum (due to Jones, et al., 1998).

• Direct interface to APPSPACK / NAPPSPACK (Kolda & Griffin):
APPS now supports nonlinear constraints through penalty fns and 
solving a sequence of linearly constrained subproblems.

lll ,, 21



Sample Algorithm Combinations

• Global/local optimization: perform (1) sampling, parameter 
study, or global opt; then (2) local (gradient or non-gradient) 
opt at each promising point.

• Surrogate globalization of derivative-free local methods such 
as pattern search (however not close-coupled as Taddy, et 
al.).

• Optimization under uncertainty for MEMS

• EGRA: Efficient Global Reliability Analysis

detailed examples coming up



Shape Optimization of Compliant MEMS

• Micro-electromechanical system (MEMS) made from silicon, polymers, and 
metals; used as micro-scale sensors, actuators, switches, and machines

• MEMS designs are subject to substantial variabilities and lack historical 
knowledge base.  Micromachining, photo lithography, etching processes 
yield uncertainty:
– Material properties, manufactured geometries, residual and yield stresses

– Material elasticity and geometry key for bistability

– Data can be obtained to inform probabilistic approaches

• Resulting part yields can be low or have poor cycle durability

• Goal: shape optimize finite element model of bistable switch to…
– Achieve prescribed reliability in actuation force

– Minimize sensitivity to uncertainties (robustness)

bistable 
MEMS 
switch

uncertainties to be considered 
(edge bias and residual stress)



Tapered Beam Bistable Switch: 
Performance Metrics

13 design vars d:
Wi, Li, i

σ
σ

key relationship: force 
vs. displacement

new tapered beam design

Typical design specifications:

• actuation force Fmin reliably 5 μN

• bistable (Fmax > 0, Fmin < 0)

• maximum force: 50 < Fmax < 150

• equilibrium E2 < 8 μm

• maximum stress < 1200 MPa 



Optimization Under Uncertainty

Opt 

UQ 

Sim 

{d} {Su}

{u} {R
u
}

min

s.t.

(nested paradigm)

Rather than design and then post-process to evaluate uncertainty…
actively design optimize while accounting for uncertainty/reliability metrics 
su(d), e.g., mean, variance, reliability, probability:

13 design vars d:  Wi, Li, qi

2 random variables x: ΔW, Sr

σ
σ

-5.0

simultaneously reliable and robust designs

Bistable switch problem formulation (Reliability-Based Design Optimization):

min

s.t.



RBDO Finds Optimal & Robust Design

Close-coupled results: optimal and reliable/robust design:



UQ Challenge: Nonlinear/Multimodal
Limit States

• AMV2+ and FORM converge to 
different MPPs 
(+ and O respectively)

• Challenge: limit states with 
multiple legitimate candidates 
for most probable point of 
failure

• Challenge: local first order 
probability integrations may 
not be accurate enough for 
nonlinear limit state

MEMS parameter study over 3σ uncertain variable range for fixed 
design variables dM*.  Dashed black line denotes
g(x) = Fmin(x) = -5.0 (failure boundary).



Efficient Global Reliability Analysis

• EGRA (B.J. Bichon) performs reliability analysis with EGO (Gaussian 
Process surrogate and NCSU DIRECT optimizer) coupled with Multimodal 
adaptive importance sampling for probability calculation.

• Created to address nonlinear and/or multi-model limit states in MPP 
searches.

Gaussian process model of reliability limit state with
10 samples 28 samples

explore

exploit



DAKOTA/EGRA: Superior Performer

• Most accurate local method under-predicts pf by ~20%

• EGO-based method accurately quantifies probability of failure within 
1% with similar number of function evaluations.

• Pro: LHS accuracy + MPP efficiency without gradients, good tail 
probability resolution

• Con: Exploratory samples wasteful, GP can break down for large 
number of samples or independent variables



Conclusions

• The DAKOTA toolkit includes algorithms for massively parallel 
uncertainty quantification and optimization with large-scale 
computational models.

• The framework is publicly distributed with a growing number of 
derivative-free optimization algorithms.

• DAKOTA strategies enable efficient combination of algorithms, use 
of surrogates, and warm-starting.  

• Uncertainty-aware design optimization is helpful in MEMS design 
where robust and/or reliable designs are essential.

• DAKOTA is a research framework for novel capability such as 
EGRA, an algorithm which closely couples several other algorithms 
to perform effective reliability analysis.

Thank you for your attention!

briadam@sandia.gov
http://www.cs.sandia.gov/DAKOTA


