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• Polymers for Radiation Detection

– Advantages over current methods

– Electrical/material property considerations

• Processing Effects

– Order

– Preliminary Electrical 

Overview



Polymer Radiation Detection  - Why?

• Direct detection of fast neutrons (2 MeV), with no 
moderator

• Semiconducting radiation detectors allow direct 
detection with no photomultiplier, as required with 
scintillators

• Room temperature operation improves cost, size and 
convenience

• Low Z polymer provides natural gamma discrimination

• High H/C ratio for neutron sensitivity



Conjugated Polymer Properties

• Conductivity from insulator to metallic (after doping)

• PPVs have mobilities typically from ~10-5 to 1x10-2 cm2/Vs 

• Workable air stability

• Properties depend on side chain symmetry – higher symmetry 
leads to more extended conformation* 

• Very dependant on processing!
– Solvent, concentration

– Additives – nanoparticles and plasticizers

– Deposition method and conditions

– Post-Deposition processing – vapor, anneal, stretch

*Geens, Synthetic Metals 2001; Tanase, Journal of Applied 
Physics 2005; van Breemen, Advanced Functional Materials 2005



Focus Polymer - OC10PPV

• Commercially available

• Symmetric PPV with Hydrogenous side chains

• poly[2,5-bis(3′,7′-dimethyloctyloxy)-1,4-
phenylenevinylene]

• H/C = 1.7



Polymer Radiation Sensors – How?

• We Need

– High mobility

– High resistivity

– Thickness (high H 
density per unit area)

– Low trapping

• Controlled by

– Chemistry

– Environment

– Processing!!

– Additives

• Proton recoil reaction

• Proton excites mobile 
charged particles 
detection



Processing/ Orientation

• Drop cast onto glass/electrodes

• Drop cast onto unoriented PTFE surface, remove 
and test

• Drop cast onto skived PTFE substrate, dry, 
remove and test

• Drop cast onto skived PTFE substrate, dry and 
stretch, then remove and test

• Additional variables

– Vapor environment

– Anneal after stretching



Infrared Spectroscopy

Wavenumber (1/cm) Absorbance Likely Origin

2955 2.06 Aromatic C-H Stretch

2926 2.05 Vinylene C-H Stretch

1469 0.78 C-C ring stretch

1256 0.75 C-H in-plane bend

1206 1.74 C-H bend

966 0.58 C-H out of plane wagging vinylene

856 0.35 C-H out of plane wagging phenylene
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Infrared Dichroism

• Experimental method to determine order in amorphous or 
crystalline samples

• Yields Hermans orientation function, f

• Equivalent, for appropriate samples, to X-Ray Diffraction 
and birefringence

• Use two orthogonal angles of polarization 

• Vibrational excitations respond differently based on angle 
relative to polarization angle

• Dichroic ratio is ratio of absorbance in one orientation 
relative to that in orthogonal orientation

• Dichroic ratio of 1 is perfectly amorphous and tends toward 
0 or ∞ with increasing order



FTIR Results

Sample stretched 3x shows significant dichroism, 
ratios of 1.8 and .44 for peaks at 1254 and 1205 cm-1
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As cast film

Unstretched sample shows negligible dichroism, .97 
and .96 for peaks at 1254 and 1205 wavenumber
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IR Dichroism
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Polarized FTIR

• Dichroic Ratio, R, is a measured figure of merit used 
to determine an order parameter, s, used to calculate 
Hermans orientation function, f

• Function of , the angle between the transition 
dipole and the chain axis
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Hermans Orientation Function, f
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Alpha Calculations

• Use s from 966 wavenumber to determine alpha for other 
absorbance peaks

• Alpha values are agreeing well

• Additional data points will improve reliability of value, and 
enable use of additional peaks for f calculation

Calculated 
orientation 
parameter, s

Observed 
Dichroic Ratio 
at 1205 cm-1

Calculated 
 at 1205 
cm-1

Observed 
Dichroic Ratio 
at 1254 cm-1

Calculated 
 at 1254 
cm-1

l/lo=2.4 0.893 0.526 78.3° 1.714 37.2°

l/lo=3 0.656 0.441 80.0° 1.972 38.6°

l/lo=3.7 0.349 0.334 77.9 2.135 38.5



Electrical Testing

• Interdigitated electrodes 
(IDEs)

• Pitch of 32 m

• Bias between electrodes

• Can orient film for bias to 
be parallel or perpendicular 
to the orientation direction

• Can also directly apply 
solution with no orientation

Parallel Orientation



Pulsed Photoconductivity setup

Laser sciences Inc. 
VSL337i UV Laser

LeCroy 6050A 
Digitizing Oscilloscope

Ortec 142A  

Preamplifier

Ortec 671
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Pulse Length

• Shaping time up to 10s on amplifier

• Signal length of closer to 1 ms



Charge Collection Efficiency

• 32 m IDTs

• 590nm pulsed laser

• 6 s shaping time

• Based on 10% Quantum 
Efficiency*

• Stretched sample shows 
increased charge 
collection

*Moses, D.; Dogariu, A.; Heeger, A. J., Synthetic Metals 2001.
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Polarization Response

• Effect of stretching on polarization response

• 590 nm stimulus with polarizing filter

• Values shown are for comparison only, not absolute

• Response fits well to a sin wave

Polarization Effects
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Conclusions

• Stretch alignment of polymers can improve order 
in a film

• Order changes affect electrical response

• Much more improvement should be possible, 
particularly combined with other variables of 
additives, plasticizers, and secondary dopants

• Improved knowledge of structure/property 
relations will greatly improve device performance

• Preliminary data looks promising for a 
semiconducting polymer neutron detector



Future Work

• Improve processing for higher mobility

• Testing over larger parameter space for 

– orientation parameter (dichroic ratio) 

– electrical properties 

– photoresponse

• Repeatability testing

• Test other variables  

– plasticizers 

– stretch rate 

– secondary solvent

– anneal

• Test with nanoparticle additives

• Optimization of variables for neutron detection
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