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adiation symmetry control techniques are crucial
for indirect drive inertial fusion target designs
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problem of specifically controlling P, asymmetry
arose in a recent high yield target design study

Double z-pinch
driven hohlraum
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The problem of specifically minimizing P, without significantly enhancing
P, and P; was solved using mode-selective symmetry shields
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% Geometric averaging at the capsule reduces
| the effects of source flux asymmetry

A. Caruso and C. Strangio, Japanese J. Appl. Phys. 30, 1095 (1991)

idealized M. Murakami and K. Nishihara, Japanese J. Appl. Phys. 25, 242 (1986)
hohlraum
source Geometric averaging factor for mode n :
sphere Q
R a j (u— x)(1— xu)
capsule _ n.caps _ X X
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lConsmer adding absorbing shields placed

between the hohlraum “source” and the capsule

a Z

Ring shields shown for even mode tuning,
symmetric above/below capsule equator

hohlraum
source

yA

x = cos(0) T(x) is x-ray transmission

capsule
. 2n+1 ]
A, shield =

T(x)P, (x)dx

-1

*

1 an shield
_ a .. ., B6=—""
A shied = 5 T'(x)dx n,shield

" Ao shield

For a uniform source:

(a) Effect of shield on capsule flux asymmetry a
the actual source sphere radius.
(b) Mode coefficient a,,,, is exactly given by: @, caps = @y shictaS (M Regps ! Ryia)

is independent of

n,caps

With a non-uniform source, analytic arguments are useful but not sufficient
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e use analytic arguments, viewfactor calculations,
and rad-hydro simulations to optimize shields

. Use the Legendre mode content of the shield transmission as design parameters

Ay, shield

. Solve for shield solutions 04, 0,, etc. that provide the desired mode content

. Include shields 1n static 2D viewfactor calculations to evaluate effectiveness

(a) Scan shield solutions to map out sensitivity

(b) Powell optimization:
Design parameters: shield mode content a,, ;.14
Function call: viewfactor calculation

Minimize: capsule flux asymmetry mode content Ay caps

. Use 2D LASNEX rad-hydro simulations to evaluate shield performance

including time-dependent ablation and radiation burnthrough effects
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%i 2D viewfactor and rad-hydro simulations provide

successively more realistic hohlraum models

hohlraum 2D axisymmetric viewfactor code:

source - - -
Discretize system into surface elements

Calculate flux transfer among all elements using
differential form factor approximation
__cos0, cos0,

dF’aIA1 —dA, 7TS2 I/1—>2dAZ

Lambertian (diffuse) emission assumed
Include 3D occlusion by ring shields V] .,
Resulting matrix equation links 2D ring elements

capsule

1.0
LASNEX 2D axisymmetric radiation-

hydrodynamics simulations: 05

Includes multi-group radiation transport

Includes capsule and shield rad-hydro effects § o0
such as ablation, plasma expansion, and N
radiation burnthrough 05
Examples in this poster use a 500 MJ capsule '
from a recent ICF target design study! o
10.0020.40.60.81.0
— X (cm) Sandia
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V
&i Single shield allows solutions with zero Py

content, but with desired P, content

Ring shield considered as a mask For purely absorbing shields, satistying
on the hohlraum sky zero P, content of the shield transmission:
13
1.0 T TEE 2J-T(JC)P6()c)a’x
cos(61) _" : A shield = _11 =0
1 c0s(02) ——»: = J- T(x)dx
0.5 27

reduces to solving (given 0;) for 0,
| that satisfies:
0.0
-\ cos(f, )
P (x)dx=0

cos(0,)

0.5 i
-1.0 -0.5

Solve for family of shield solutions,
then test them in 2D viewfactor and
radiation-hydrodynamics simulations
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V
}i Shield solutions should allow a wide range of P,

tuning while providing zero P4 content

Family of zero P shield solutions Mode content of shield transmission
(A0 vs. 0,) for family of zero P4 solutions
50°F S5 3f
& : @
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© 5 %
& 30°F E = 1t
> 5
= : c
= 10°F 3 qE
n : o f
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0°¢ . . : . A . . . 3 s 2t 1
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Shield maximum angle frqm pole Shield maximum angle from pole

Solutions in this region should be useful in
counteracting negative P, content of flux
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}j Viewfactor calculations confirm the shields

behave as expected with a uniform source

Viewfactor calculations with uniform source flux (only P, term)
Ryon = 10 mm, R, = 2.5 mm, R, /R,y = 0.404

Shield solutions chosen from the region with a, g4 > 0

Mode content of capsule flux
asymmetry a, .., vs. shield A6 Solid lines are viewfactor results

0.2F
: Symbols are given by:

0.1F _
an,caps - an,shieldf(n9Rcaps /Rshld)

0.0
: Numerical a5 ,,s and a,g c,,s < 5x10°
a6,caps = 0 because a6,shield =0
49, caps = 0 because (10,0.404)=0

Mode coefficient

-0.1F

02t , , . ]
0° 5° 10° 15° 20°
Shield angular range

This is a useful starting point to optimize shields for non-uniform source...
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e simple solutions with a uniform source are still
effective even with a significant P, source asymmetry

Include the family of shield solutions in a set of viewfactor calculations,
with source asymmetry chosen to give uncorrected a, ,,, = -0.10

Capsule flux asymmetry modes vs.
P, curve crosses zero for AG = 4.3°:

shield angular range
02/ Agcaps = -1.95x1073
] g caps = -0.011

= 0.1 A49,caps = 9.7x107
Q0
2 0.0 . . .
§ ' Solving for new shield with ag ;49 > 0
& can improve this result.
o -0.1 -~ . o
g €.2. 8 ghielg — 0.0195 solution gives:
= 90p g caps = 1.30x107 (100x reduction)

4.5 : Agcaps = -0.012

“U. PP [V U R S SRS U S S RS S —" a — '9.0)(10-5

° 2 4 e & 10 10-caps

Shield angular range

Suggests iteratively optimizing shields parametrized by their mode content
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LASNEX rad-hydro simulations in hohlraums

i' confirm the performance of practical shield materials

Cases include 500 MJ capsule with 3-step drive pulse, shield ablation and burnthrough

Capsule ablation pressure Legendre modes are plotted, time-averaged over foot pulse
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}j With 2 shields above/below equator, it is

possible to simultaneously tune P,, P4, P4, and Pg

hohlraum
source

0, 4 unknowns — 4 equations for a, g4 » 172, 4, 6, 8

0, —(2n+ 1{

an,shield -

Find family of solutions with a, g4 > 0
and a, y;44=0 for n=2, 6, 8

Capsule asymmetry from viewfactor tests
with uniform source, R, /R ,;=0.404

caps
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uniform source solution provides a starting point
for optimization in the case of a non-uniform source

Source asymmetry chosen to give a, ,,; = -0.05, but use uniform source shield solutions

0.02F

(1) Scan A6, find where the calculated a ., = 0 oot | - |;,6 o
az,caps =-0.027 0_002- '_—//D-/-_
a4,caps - 0-0 E

001k Pg
0.0056 00TE TN

a6 caps : ]

’ -0.02¢ E
aa,caps '0-001 7 P4
a10,caps - '6.9)(1 0-4 -0'035_ PZ _

'0.04 E L 1 1 I 1 N E
2° 4° 6% 8 10° 12° 14° 16°
2-shield total angular range

(2) Use as initial point for Powell optimization, calling viewfactor code as a function,
with the goal of finding shields that give [a, ,,s| < 103 forn=2,4,6, 8, and 10

Successful result has shields spanning [41.46°, 46.25°] and [62.57°, 67.33°] from

Mode coefficient

polar axis: 3y caps = -1.1x10
: - Aycaps = -1.9x10*  Test these optimized
( ) g caps = 3.6x10*  ghijelds in LASNEX...

i ) g caps = -4.0x10°5

a10,caps - '6.4)(10-4

— > Sandia
“=—44 R A Vesey IFSA2007 |I'| National
Laboratories




ASNEX simulations confirm the performance of

V
-
#optimized double-ring shields in minimizing P, 44 5

Viewfactor-optimized shields are included as 200 um thick, 1.85 g/cc Be rings

1.0 Rcaps/RshId=0'404 4 - Ablatl,on pre,ssure n:IOdes g Interval time-averaged
3L bumthfgi.::ﬂ o 200 ablation pressure modes
0.5 ot j
< 1 P l /14150 Foot Main
— 2 iy 8 — () 0
: = L P < | (P 018% 0.45%
TR 2 0 M 2] 2Py 0.02% -0.84%
S 4| Ps . \\/ / 1100= | (py) 0.15% -0.06 %
05 ol | P,/ : (Pg) 0.09% 0.38%
190 (P10) 0.16% 0.04%
on=0.9 cm 3l 1
qol vy .
0.00.20.40.60.8 1.0 AL 10
50 60 70 80 90
time (ns)

Be or Ge-doped CH, foam shields remain optically thick through foot pulse

Once shields become optically thin, capsule sees uncorrected P,, but geometric
averaging causes a, ., to move in positive direction as R, ,; decreases

Adequate resolution of shield ablation allows optimization of shield materials
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#

ith a set of 4 independent shields, it is possible
to simultaneously tune modes P, through Py

hohlraum
source

8 unknowns — 8 equations for a, 4 ,n=1,2,3, ..., 8

y A

capsule / :

For 4 perfectly absorbing shields,

6465 (27’2 + 1) Z[ j-P (_X,')d_XJ

i=1
an,shield 1 4

4 1_2Z[x2i _x2i—1]

i=1

X2i-1

As before, the approach is to use a,, ,;.;; as design parameters and optimize to

minimize a,, ., mode content of the flux incident on the capsule
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=K 4
? Optimized shields show potential to symmetrize a

highly non-uniform hohlraum source

Use viewfactor code to optimize shields with strongly non-uniform source:

2, caps = 0.25 = -0.08 = -0.02

a3,caps_ a4,caps

2D LASNEX simulations

Viewfactor optimized shields give are in progress:

low a,, .,,s for n=1...8
1.0
n an,caps
124 1 3.5x104 o
e /\ 94,30 2 -6.3x104 .
[ [ ] 85 6o 3 4.2x104 5 o0
\__/ 4 -3.4x107 1
64.0° N
so\go 7 5 -8.9x1073
' ~———33.7° 6 -4.5x103
24.8° 7 -1.4x10° "
8 3.7x1073
-1 .0 a1 | 1 1

0.00.20.40.60.81.0
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' Geometric averaging reduces the effects of the
inherent high-mode content of the shields

Example: Mode content

Shield content in high modes is low
of 9° “zero P;” shield

Geometric averaging between shield and _ : l
. . ®
capsule provides greater reduction as mode e ® e
; : 2l & . o * % An,shield
number increases, leading to a,, ., << a, icq 10+ " &
o ° " "‘
Time-varying R, /R4 ' R
As capsule implodes, y decreases £ 404 * .
. . . B 2 . b}
Time-averaged geometric averaging -g o % *
reduces average a, ., for most modes = °
’ 8 ..'.v-, B A, caps
Geometric averaging factor f(n,y) o 10°t e o -
0.004 [ - - ' - '8 - . | cow ‘
' 12 = . WAL
i n= b ‘b". o P .
0.002 s _ o % ; Time-
0.000 = e 10°t « & avg
/ n=24 \ ® e @p caps’
-0.002 ¢ . L o 1
-0.004 ; . . : .: 1010 ° | )
0.1 0.2 0.3 0.4 " "
X= RcapisshId 1 1 0 1 OO
<« capsule implosion Mode number, n
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— p onclusion: properly designed symmetry shields

can allow control of specific modes in the hohlraum

Ideally, shields remove x-ray flux from portions of the hohlraum sky

The polar angular range(s) occupied by the shields are expressed in terms of their
Legendre mode content

For the uniform source case, we can exactly represent the corresponding effect on the
Legendre mode content of the flux received by the capsule

The approach of using the shield Legendre mode content as design parameters within
an optimization procedure has been successful in designing:

“zero P, shields to specifically tune P,
Double-ring shields per side to specifically tune P,, P,, P, and Py
4 independent shields to tune P, through Py

LASNEX radiation-hydrodynamics simulations support the basic design concept and
have demonstrated adequate P, control for a recent ICF target design study...
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ero P;” mode-selective P4 shields result in full capsule
yield in 2D simulations of a z-pinch driven hohlraum

P4 shield : 4.4° range
200 mg/cc CH2 (3% Ge)
Secondary entrance foam :

5 mg/cc CH>

i Secondary
1 entrance foam

P, shield

-10 -05 00 05 1.0
= X (cm)
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Interval-averaged Legendre coefficients of
ablation pressure asymmetry

Foot Main pulse

[l With P, shield’

Fuel density contours near ignition
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