
ADVANCES IN THE INTEGRATION OF LARGE DATA SETS FOR SEISMIC MONITORING OF
NUCLEAR EXPLOSIONS

Dorthe Carr1, Jennifer Lewis1, Sandy Ballard1, Elaine Martinez1, John Merchant1, Richard Stead2, Michelle Crown3,
Jorge Roman-Nieves3 and John Dwyer3

Sandia National Laboratories1, Los Alamos National Laboratory2, and Air Force Technical Applications Center3

Sponsored by National Nuclear Security Administration
Office of Nonproliferation Research and Development

Office of Defense Nuclear Nonproliferation

Contract No. DE-AC04-94AL85001 and DE-AC52-06NA-253962

ABSTRACT

The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and
Engineering (GNEMRE) program has been integrating large sets of seismic events and their associated
measurements for almost a decade to support nuclear explosion monitoring. During that time the integration process
has changed significantly, generally becoming more complex and more automated as the number of events and the
range of associated measurements has steadily grown. In this paper, we explain the methodology for integrating
database tables from different products that are part of a Knowledge Base (KB) release.

The major effort of KB integration is merging events and their associated information in Oracle database tables. We
have developed a substantial foundation of structure and software to assure data integrity in the integration of
diverse data sets. The structural part of this foundation utilizes Oracle data dictionary tables along with
complementary custom database tables. These custom tables contain information specifically related to how KB
database objects are built. Information such as descriptions and database types are stored in these custom tables so
that the KB structure is easily modifiable making it more flexible than it would be following a traditional database
design. This “metadata” of the supporting structures is called the “schema schema” and all the integration tools are
based on this structure.

Los Alamos National Laboratory (LANL) has developed a tool to make sure the information in the product database
tables is accurate and valid. Called the QCTool, (Quality Control Tool) this tool checks that the database tables
conform to the database structures found in the “schema schema” and that the values in the database tables are
reasonable. Database tables are not merged together until the errors generated by QCTool are either corrected or
explained.

Sandia National Laboratories (SNL) has developed a suite of merging tools that are part of a set of generalized
database interface tools called DBTools. These tools are based on the concept of a “RowGraph”, which builds a set
of information for an event based on the specified relationships. Using RowGraphs the applications in DBTools can
then easily read and write a complete set of information. There are four major DBTools that are used to integrate the
database tables for the KB. EvLoader (Event Loader) merges events and their associated information from different
KB products into one complete set of database tables without duplicating information and updating IDs so that there
are no conflicts. WFMerge (Waveform Merge) merges flat file waveforms and their associated database information
using correlation parameters to determine if waveforms are the same. DTX (DaTa eXchange) is used to merge the
station parameter information. Remap is used to create tables that remap IDs from one set of tables to another set of
tables. For example, Remap is used to remap IDs from one version of the KB to another version and from the KB to
other database accounts. Two other tools in DBTools that can be used in manipulating database tables in the KB are
DBCompare and Unloader. DBCompare is used to compare tables for equality as defined by the tool user. Unloader
deletes one or more specified rows from the database and also deletes all rows that are connected to the specified
row(s) according to specified relationships. Rows are only deleted if doing so will not violate any foreign key
relationships in the database, i.e. no rows are left orphaned. Using the QCTool and DBTools to check and merge
information we are assured of a complete quality set of referenced database tables in the KB.

SAND2007-4484C

OBJECTIVES

The major process in integrating a Knowledge Base (KB) is to take Oracle database tables with seismic event
information and their associated measurements from different Product Integrators and merge the information into
one set of complete tables. With each release of the KB, the process has become more complex as the number of
tables and the size of the tables have both increased. We have developed a process to merge all the different
database information into a complete set of quality referential database tables in the KB, using a number of tools
designed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL).

RESEARCH ACCOMPLISHED

The National Nuclear Security Administration (NNSA) Knowledge Base (KB) consists of Oracle database tables,
flat-file information and tools. The bulk of the KB is in the database tables. The core database tables hold seismic
event information – origins, arrivals, associations, and magnitudes that come from various global, regional and local
bulletins. Other database tables include custom parameter information for location, event identification and coda
magnitudes that is generated from research. There are database tables that contain waveform metadata that point to
flat-file waveforms on the system. Finally, there are database tables that contain information about the seismic
stations – locations, channel names, instrument responses, etc. The major integration task for the KB is to combine
database tables from different sources (Product Integrators) into one set of complete tables.

SNL needed to find a good way to merge the Oracle tables from the different sources without creating duplicate
records. There needed to be proper links maintained between the related information, and SNL needed to make sure
the information in the tables was accurate and correct. What evolved was a set of database integration tools. The
QCTool, used for quality assurance and quality control was developed by Richard Stead at LANL (Stead et al.,
2006; Stead, 2007)). DBTools, used to manipulate the information in the database, was developed by Sandy Ballard
and Jennifer Lewis at SNL (Ballard and Lewis, 2004; Ballard and Lewis, 2007). There are six DBTools applications
that compare and merge information in different database tables: EvLoader, WFMerge, DTX, Remap, DBCompare
and Unloader.

Schema Schema

Both the QCTool and DBTools depend on knowing the particulars of the database tables that are being QC’d and
manipulated. This is accomplished with a database schema that holds table definition information for the KB
schemas, or what has been termed: “schema schema”. The schema schema concept was deliberately designed by
Richard Stead to have a close relationship to the Oracle data dictionary, to make the use and understanding of the
schema schema simple and straightforward. However, it does go well beyond the Oracle data dictionary in various
ways. In particular, because it exists apart from the tables it describes and it exists at all times regardless of which
objects are currently defined or how they are defined. Any schemas can be described in the schema schema tables.

There are four tables in the “schema schema”. The table tabdescript provides descriptions of the tables defined in
each schema. Table descriptions are meant only to provide a text description of the table and its affiliation to a
schema. The coldescript table provides descriptions of the columns defined in each schema. Column descriptions
are meant to provide all data necessary to fully document the column and provide for quality control of the column.
Only one column definition per column name per schema is permitted. The table colassoc links the columns
described in the coldescript table to the tables described in the tabdescript table in such a way as to provide column
ordering, roles and information on keys within the context of a particular table. The colassoc table also says if the
table described is an “idowner” table, meaning that the primary key is an ID and the unique key defines the ID. The
glossary table defines all abbreviations, acronyms and other odd names used throughout the descriptions, and also
define the legal entries for columns with range types of defined and finite set. For the KB, there are two major
defined schemas, NNSA KB Core, and NNSA KB Custom. However, the CSS3.0, USNDC P2B2 and USNDC P3
schemas are also captured in the schema schema tables. The descriptions and definitions of the schema schema
tables and columns can be found in the NNSA KB Database Guide (Carr, 2006).

QCTool

QCTool (Quality Control Tool) is an automated quality assurance, quality control tool for database tables. The tool
executes three kinds of QC checks: single-table, multi-table and complex joins. The single-table check verifies that
the table matches the documented table structure described in the schema schema tables, and provides the tool
access to a complete description of that table. The defined primary key for the table is validated, along with any
unique keys that exist for that table. Then each column in the table is checked. The maximum and minimum values
are found. If NA values are allowed, the number of rows that have the NA value is determined. If the values in the
column are numeric, they are checked to make sure they fall within the defined range. If the values in the columns
are strings, they are checked to make sure they match defined terms. None of the checks may yield errors, but they
can indicate errors when subsequently reviewed.

There are three kinds of multi-table checks: single-column cross reference between tables, two-column cross
reference between tables and indirect cross references. A single-column cross reference requires that every value in
the specified column of the table being checked is also found in the specified column of the table that the first table
is to be compared against. The two-column check is the same as the single-column check, except that each unique
pair of values from the two specified columns in the table being checked must be found in the two columns specified
for the comparison table. The indirect cross-reference check handles cases where the reference for a column in the
table being checked is specified by a second column in the same table. The archetypical example of this is the wftag
table, where the reference for the tagid column is specified by the tagname column; that is, if tagname equals
“evid”, then tagid contains an evid and should be compared to columns in other tables that are evids (like
event.evid), but if tagname equals “arid”, then the contents of tagid must be compared to arids (like arrival.arid).

The third and final checks are the complex joins. These are specified in an auxiliary table called complexjoin. The
complexjoin table supports QC operations by providing a mechanism to specify any consistency requirements or
expectations across as many as three generalized tables. There is always a target column for validation, and
additional tables can be defined. The operation applied to the target column that is required to be true is specified in
the joinop column and it is a standard SQL operator. The clause column provides the portion of the where clause
that follows joinop, and will often include subqueries, and the special strings ‘&t1’, ‘&t2’ and ‘&t3’ for the three
tables. Some simple examples for the KB include verifying that a date in a table corresponds to the time specified in
the same table, verifying that the contents of a field in one table correspond to those in another when there is no
direct link between the tables (such as wfdisc.instype versus instrument.instype), and verifying that a count in a
field of one table equals the count of those objects in another table (such as origin.ndef versus the count of time-
defining arrivals in assoc).

DBTools

DBTools is a suite of applications for manipulating information in a relational database in an intelligent way. This
means that DBTools (1) does not duplicate information already in the database, (2) links new information to related
information already in the database, and (3) remaps identification numbers on the input data to prevent conflict with
identification numbers already in the database. All the applications depend on a library of utilities called DBUtilLib.

DBUtilLib is based on the concept of a RowGraph. A RowGraph manages a set of connected rows from a database.
Mathematically, this set of rows forms a directed graph consisting of a set of vertexes (the rows) and edges (one-
way connections between pairs of vertexes). Starting from any row, it is possible to access every other row that is
connected to the starting row. The relationships that define how the rows are related are specified by the user. Once
a set of database tables has been identified and the relationships between those tables defined, one may specify some
initial row in the database and extract all other rows in all the other tables in the database which are related to the
initial row by one or more defined relationships. DBUtilLib is written in a completely generic manner. There is no
hard-coded information about any particular set of tables. Instead DBUtilLib uses the schema schema as the way to
determine the objects and their structure at run time. This approach makes the tools that use DBUtilLib immune to
most schema changes such as addition/deletion of columns from a table or changes in the size of a particular data
element, such as going from i8 to i9.

There are six major applications in DBTools: EvLoader, WFMerge, DTX, Remap, DBCompare and Unloader.

EvLoader (Event Loader) merges one or more rows from a source event table into a target event table. All
information in the database that is linked to the source event row(s) (such as origins, arrivals, etc.) is also merged
based on how the user specifies what information is related to the source event in the parameter file. The code

operates in two modes. In the first, origins in the source event are merged with origins in the target event based on
evid number. In the second mode of operations, source events are merged with target events based on
spatial/temporal correlation. Origins that are members of the same event in the source tables will remain members of
the same event in the target tables.

WFMerge (WaveForm Merge) is a waveform merging application. This application handles the merging of binary
waveform files and their associated wfdisc database table information. The wfdisc table contains metadata about the
waveforms, while the waveforms themselves are stored on disc. WFMerge can also handle wftag table information
associated with the wfdisc table by keeping wftag rows in synch with their corresponding wfdisc rows and by using
a remap table to remap the tagids in the wftag table.

DTX (DaTa eXchange) merges data from one data source into another data source. DTX recognizes three
information storage formats: a set of database tables, a set of ASCII flat files, and XML file which has many tables
and their associated data within one file. These three formats correspond directly to the three different data access
types recognized by DBUtilLib. DTX can convert information from any one of these formats into any of the others.
Both formats can be the same, as might be the case if DTX is moving data from one set of database tables to another
set of database tables.

Given two sets of database tables, the Remap application will generate a remap table which will relate the
identification numbers in the source tables to the identification numbers in the target tables of the same type. When
researchers at the NNSA laboratories send database information to other labs, the identification numbers are
generally renumbered when the information is merged into the other lab’s database. This utility will allow the
researchers to discover the identification numbers in the other lab’s database that equate to their original
identification numbers.

Unloader deletes one or more specific rows from the database and also deletes all rows that are connected to the
specified rows(s) according to relationships either specified in the parameter file or deduced from the table
definition table information (schema schema). Rows are only deleted if doing so will not violate any foreign key
relationships in the database, i.e. nothing else is still pointing to them.

DBCompare is an application for comparing tables for equality. The user defines the equality. There are four types
of table comparisons that DBCompare can handle: (1) idowner tables, (2) non-idowner tables, (3) remap tables, (4)
all tables. DBCompare compares the data in all of the tables in the source schema with tables of the same type in the
target schema. It then does the reverse of that and compares the data in all of the tables in the target schema with
tables of the same type in the source schema. It is also possible to compare only the source to the target, but not the
target to the source. If all of these comparisons succeed, then all of the tables in both schemas are the same.

KB Integration Process

The major part of KB Integration is to merge database tables from individual Product Integrator into one set of
tables. The Product Integrators send their database tables to the KB Integrator. The tables are checked to make sure
they comply with established standards by using QCTool. Then the tables are merged into the target tables using
EvLoader, WFMerge, DTX and Remap (Figure 1). The following text goes into details about the process.

Figure 1. KB Integration Process

Check Data with the QCTool

The first step in the process is to check the data in the database tables with the QCTool. There is a master KB
QCTool parameter file that has all the multi-table checks that are necessary to determine that the tables in the KB
have clean consistent data. That parameter file is copied and edited to work with the specific tables in the dataset.
Because a standard parameter file is used, the editing is minor. Some of the potential changes are to define the
prefixes and suffixes for the table names, to add the correct username and password to access the database, and to
define the output file names. The complexjoin table is also standardized, so unless the Product Integrator sends new
rows for the table, it is considered to be correct. The QCTool does check against the glossary table when it does the
single-table checks. Most errors found when checking against the glossary table are missing definitions. The column
auth is usually the problem. The Product Integrator sends their glossary table as part of their delivery, and any new
information must be inserted into the glossary table used by the KB Integrator before running the QCTool. The final
step is to set all the primary and unique keys on the tables that will be checked.

The QCTool is run using a simple command – “qctool parfilename.par”. The first check that is done is to make sure
that the tables follow the NNSA KB Core or NNSA KB Custom schemas as defined in the schema schema tables. If
they do not, QCTool immediately exits without doing any other checks. If the tables match the schemas, the QCTool
continues by first doing the single-table checks. It writes the information from these checks into a file “single-
table.out”. The structure of the output table is very easy to navigate. The tables are checked in alphabetical order.
First the primary and unique keys for the table are confirmed. If they cannot be set, this is the first error message for
that table in the “single-table.out” file. Then each column in the table is listed. The NA value for the column is
printed and there is a statement about whether the column is allowed to have the NA value. Then the max and min
values are listed to give the user a range, and the toptwo most common repeated values are listed. If the QCTool
finds a problem, such as a value that does not match the range defined in the schema schema tables, that error is
listed out, along with the SQL query that was used to discover the error.

The second checks that are done are the multi-table checks that are documented in the parameter file. The output
from these checks are in the file “reference.out”. Only errors are written to the output file. Again, the query that was
used when the errors were found is provided. Any of the checks that are skipped, usually because one of the tables
being checked does not exist, are noted. The complexjoin checks are last, and they are recorded in the output file
“complexjoin.out”. This file lists all the joins that are run from the complexjoin table. If there is an error, the error is
noted along with the query used to generate the error.

The KB Integrator looks at the output files from the QCTool run and notes any errors. If the QCTool was run at the
Product Integrator’s site (and the KB Integrator encourages this), then the KB Integrator compares the errors found
running QC Tool to errors noted by the Product Integrator. Many errors, especially those concerning the range of
values in a column, can be noted and listed as caveats. If the tables have errors not described or explained by the
Product Integrator, the tables go back to the Product Integrator to fix. It is only when the QCTool has been run
successfully, i.e. all errors noted by the QCTool are either fixed or explained and documented, that the information
in the tables can be merged into the KB target tables.

Merge catalog and parameter data

The bulk of the database information is seismic event information (origin, arrivals, magnitudes) that comes from
various earthquake catalogs, and parameter data developed by the Product Integrator to help detect, locate and
identify events. This information is merged using EvLoader.

As with QCTool, there is a master KB parameter file for EvLoader. The most important part of the parameter file for
EvLoader, and any of the other DBTools, are the defined relationships between the tables in the schema. A
relationship is how tables relate to one another within the schema. A relationship can exist between two, and only
two, tables. If a table is related to more than one other table, it must have one relationship defined for each table it is
related to. To define a relationship, a relationship id, source table, target table, relationship where clause and
constraint identifier are required. The relationship id is a String that identifies the relationship, and the applications
are not concerned with its actual value; it is mostly used to display useful information about the relationship. The
source table is where the relationship between two tables originates. The target table is where the relationship
between two tables ends. The relationship where clause is a SQL where clause that defines what columns in the two
tables involved in the relationship must be equal for two rows from the tables to be related. The constraint identifier

identifies the number of rows required and/or allowed as the result of executing a SQL SELECT statement that uses
the relationship where clause on the target table for the relationship to be valid. All the relationships that can be
defined between tables in the NNSA KB Core and NNSA KB Custom schemas that hold seismic event information
and their associated parameters are in the master KB parameter file for EvLoader.

The master KB parameter file is copied and edited to work with the tables in the dataset. Again, because a standard
parameter file is used, the editing is minor. The first edits are to define the source tables, target tables and origin
ranking table. The origin ranking table is used by EvLoader to determine the preferred origin in the event table. The
other edits are specific to EvLoader. The way EvLoader works is that target events are selected as potential
recipients of source origins if their preferred origin falls within defined spatial and temporal ranges. The spatial and
temporal ranges are defined by setting a maximum correlation distance and a maximum correlation time. The
maximum correlation distance and maximum correlation time can be different for different catalogs. EvLoader is set
up so that there can be one set of spatial and temporal defined ranges for global catalogs and another for regional
catalogs. These values are defined in the parameter file, along with a list of the catalog authors considered to be
regional catalogs.

Once the parameter file is finalized, constraints and indexes are set on all the source and target tables. EvLoader will
run faster if the correct indexes are on the table. Then sequences are created for all the IDs in the tables that will be
remapped. As IDs need to be remapped in the merge process, EvLoader will use the next number in the sequence for
that particular ID. The number at which the sequence starts is determined by looking at the maximum values of the
IDs in the target tables.

EvLoader can be run in two ways. The first runs the program sequentially through the events in the source table. The
command to use is – “evloader parfilename.par”. Each event is merged sequentially, and it takes anywhere from
100ths of a second to a few seconds to merge an event, depending on how many arrivals and amplitudes are attached
to the event. If you have small tables, this is a reasonable way to use EvLoader. However, if you have large tables, it
can take many hours for EvLoader to finish. To speed up the time it take for EvLoader to merge large database
tables is to run it in parallel. The command to use is – parallelyzeevloader parfilename.par #, where # is the number
of processes to initiate. When using the parallelyze option, a temporary table is created that counts the number of
arrivals and amplitudes for each event. The total number of events are then divided into groups that have a similar
number of arrivals/amplitudes. The number of groups is the number of processes that are to be initiated. The
program copies the parfilename.par file so that there is one parameter file for each process. Each parameter file will
merge one specific group of events. EvLoader is then started using each parameter file simultaneously.

For example: The source dataset has 10,000 events with a total of 350,000 arrivals and 100,000 amplitudes. The
parfile evloaderA.par is created to merge the dataset with EvLoader. If the events are merged sequentially, it can
take many hours, if not days, to merge the entire dataset. To merge the events in parallel, use the command
“parallelyzeevloader evloaderA.par 10”. A temporary table is created that count up the arrivals/amplitudes for each
event, and then breaks the events into 10 groups that each have approximately 45,000 arrivals and amplitudes
[(350,000 + 100,00)/10]. Ten parameter files are created from evloaderA.par, one for each group, and then are
started simultaneously. Because there are 10 roughly equal groups, the merge should take place in a much shorter
time period, and all the groups should finish around the same time.

EvLoader merges one event at a time. Using the distance and time correlation parameters defined in the parameter
file, EvLoader either inserts the event and its associated information as a new event in the target table, or adds it to
an existing event in the target table. Once the merge using EvLoader is completed, there are a number of tests to
determine how well the merge went. The first is to compare the number of rows in the source tables to the number of
new rows in the target tables. It is expected that, in most cases, all the rows from most of the source tables will be
added to the target tables. The number of rows in the event table is dependent on how EvLoader decided to merge
the source events into the target events, so it may not be a one-to-one match. Also, if events/origins in the source
tables being merged into the target tables are already in the target tables, they will not be merged again. If there are
discrepancies seen when looking at the number of rows in the tables, then DBCompare and Remap are used to
compare the information in the target tables to the information in the source tables. If it is determined that events
were merged incorrectly, then Unloader can be used to remove information from the target tables. If the EvLoader
merge is successful, then the next step is to merge the waveforms and their associated metadata.

Merge waveforms

Once the catalog and event parameter tables are merged, the next step is to merge the waveforms and their metadata
found in the wfdisc and wftag tables. There is a master KB parameter file for WFMerge that defines the
relationships between the wfdisc and wftag tables. This file is copied and edited to work with the wfdisc and wftag
tables and waveforms in the dataset. As with EvLoader, edits include defining the source and target tables. Three
additional tables, source_remap table, idgaps table and backup_wfdisc table are also defined. The source_remap
table is used to remap tagids in the wftag table. The idgaps table is used by WFMerge to get new IDs when the
source tables are merged into the target tables. When a row in the target wfdisc table is modified or deleted, it will
be saved to the backup_wfdisc table. If no backup_wfdisc table is specified, no backups will be made. WFMerge
merges database information, but also merges waveform files. The copy of the parameter file is edited to define the
source and target waveform directories and the waveform name format. Correlation, timeshift, samprate tolerance
and calper tolerance parameters used for merging the actual waveforms on disk are specified. Finally, the
source_remap table is created by using information from the EvLoader merge.

WFMerge is run using the command “wfmerge parfilename.par”. Each waveform is merged one at a time. If there is
no overlap between the source wfdisc row/waveform and the target wfdisc row/waveform, then the wfid in the
source wfdisc row is updated and the row is inserted into the target wfdisc table. The source waveform is copied to
the target waveform directory. If the source wfdisc row/waveform overlaps with some target wfdisc row/waveform,
then information in the source wfdisc row and target wfdisc row are merged into a single wfdisc row and written to
the target wfdisc table. The old wfdisc rows from both the source and target are written to the backup_wfdisc table.
Several checks are performed on the source and target waveforms to make sure they are consistent with one another
before the waveforms are merged. If any of the checks are violated the waveforms will not be merged.

After WFMerge is completed, checks are run to make sure the merge was successful. Again, the first test is to
compare the number of new rows in the target table to the number of rows in the source table. There will not be a
one-to-one match if any of the source waveforms overlapped with target waveforms, but the comparison does
provide useful information. If there appears to be a problem when comparing the number of rows in the tables, then
DBCompare and/or Remap are used to figure out what happened during the merge. If WFMerge successfully
merged the waveforms and their metadata, the next step is to merge the station parameter information.

Merge station information

DTX is used to merge the station parameter information. The major problem in merging these tables is that only two
of the six station parameter tables defined in the NNSA KB Core schema are “idowner” tables. What is meant by
this is that there are no ID primary keys for the affiliation, network, sensor and site tables. Therefore, the first step
in the station parameter merge is to create SNL Custom source and target station parameter tables that contain IDs
that are primary keys and foreign keys. The script create_idowner_station_tables.sql is used to do this. The SNL
Custom station parameter tables are the tables used to merge the station parameter information.

The master KB parameter file for DTX contains the defined relationships between the SNL Custom station
parameter tables. This parameter file is copied and edited to work with the tables in the dataset. The only edits that
are really needed are to define the source and target tables. The command “dtx parfilename.par” is used to start
DTX. The information is merged by creating RowGraphs containing the source data and adding new information to
the target tables that does not duplicate information in the target tables. Once the merge is completed the first test is
to compare the number of rows added to the target tables to the number of rows in the source tables. It is expected
that the numbers should be very close, if not the same. If the numbers are not the same, then DBCompare and
Remap can be used to compare the information in the target tables to the information in the source tables. Once the
DTX merge is considered to be successful, the station parameter target tables are changed back to the structures
defined in the NNSA KB Core schema. At this point, all the database tables have been successfully merged.

Remap IDs

The final step in the integration process is to remap the IDs in the new KB target tables to the IDs in the prior release
of the KB. This is done so that the user of the KB doesn’t have to deal with changing IDs every time a KB release is
made. The program Remap compares a source table to a target table and generates a remap table of IDs based on a
user defined equality. For example, the orids in a source and target origin table are remapped based on lat, lon,

depth, time and auth. As stated earlier, idowner tables are tables where an ID is the primary key. There are master
KB Remap parameter files for remapping all the idowner tables in the KB database. Using the command “remap
parfilename.par”, each idowner source table (prior KB release) is remapped to the idowner target table (new KB
release). Scripts are then used to change the IDs in the new KB release tables to the IDs for that information in the
prior release.

Once the IDs have been remapped, the Oracle database tables are ready to be tested with the other information in the
KB to make sure that the integration process was successful, and the products in the KB work as expected.

CONCLUSIONS AND RECOMMENDATIONS

We have developed a process to integrate large Oracle database tables that contain seismic data and produce clean,
consistent and useful information. To do this process effectively, we have developed a suite of tools that make it
easy to QC and manipulate the data in the database tables. We also have tools that can be used to check that the
merge process was successful. The tools are written in a generic manner, and use the schema schema tables to define
the schema of the database tables that are being accessed by the tools. So while we are using the tools to QC and
merge seismic data, they can be used for any kind of data that has a schema defined in the schema schema tables.

ACKNOWLEDGEMENTS

The authors wish to acknowledge Chris Young and Mark Harris for their encouragement on documenting this
process.

REFERENCES

Ballard, S., and J. Lewis (2004). DBTools: A Suite of Tools for Manipulating Information in a Relational Database,
Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, p 700-709.

Ballard, S. and J. Lewis (2007). DBTools Help Document, Sandia National Laboratories, in preparation

Carr, D. (2006). National Nuclear Security Administration Knowledge Base Database Guide (2006). Sandia
National Laboratories, SAND2004-0961P.

Stead, R., M. Begnaud, and J. Aquilar-Chang (2006). Advances in Data Integration and Quality Control in Support
of the NNSA Knowledge Base, Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear
Explosion Monitoring Technologies, p. 1028-1037.

Stead, R. (2007). QCTool User’s Manual, Los Alamos National Laboratory, in preparation.

