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ABSTRACT
Dynamic material fracture and overall structural failure is 

a highly nonlinear process involving complex material 
constitutive behavior, material softening, localization, surface
generation, and ubiquitous contact.  In weapons effects 
analysis most often the extent of failure is pervasive in the 
sense that a multitude of cracks are nucleating, propagating in 
arbitrary directions, coalescing, and branching.  A pure 
Lagrangian computational methodology has been developed to 
simulate the pervasive failure of materials and structures.  A 
key aspect of this methodology is that fracture surfaces are 
allowed to nucleate only at the inter-cell boundaries of a 
randomly seeded Voronoi tessellation of the domain.  Each 
Voronoi cell is formulated as a finite element, and the Voronoi 
tessellation becomes the finite-element mesh.  The randomly 
seeded Voronoi tessellation provides an unbiased 
computational basis for representing fracture surfaces.  In an 
attempt to properly handle material softening and localization, 
cohesive tractions are dynamically inserted at the new 
surfaces.  Solution behavior with mesh refinement is studied 
for the example of a concrete structure striking a rigid wall.

1 INTRODUCTION
Possible structural responses from a weapon assault can 

range from intact vibrational response to complete 
fragmentation with secondary impacts.  The structure 
transitions from a continuum to a discontinuum through crack 
propagation.  The extent of fracturing is typically pervasive in 
the sense that a multitude of cracks are nucleating, 
propagating in arbitrary directions, coalescing, and branching.  
Currently, there is a very limited set of computational tools 
available that can attempt to simulate the pervasive failure of 
structures.  Common and often unsatisfactory industrial 
techniques include ‘element death’ in Lagrangian finite-
element codes and ‘void insertion’ in hydrocodes.  The 
enriched finite-element methods (generalized finite-element 
method and extended finite-element method) have had success 
in modeling fracture problems in which the crack topology 
does not change significantly and loading regimes in which 
linear elastic fracture mechanics is applicable [1,2].  Once 
crack-branching and crack coalescence phenomena appear, the 
prospect of modeling a multitude of arbitrary three-
dimensional intersecting cracks becomes untenable.  A variety

of meshless or particle methods have been developed in the 
past fifteen years with the goal of modeling extreme 
deformation including pervasive failure [3].  Examples include 
spherical-particle hydrodynamics [4], element-free Galerkin
[5], reproducing kernel method [6], cracked-particles [7], 
peridynamics [8], particle in element [9], and element to 
particle conversion [10].  Each of these methods has had 
varying degrees of success in modeling dynamic crack 
propagation and even pervasive failure.  However, many of 
these methods are plagued by a number of issues including 
computational cost and integration with existing finite-element 
technology. Ortiz and coworkers [11-16] have pursued the 
concept of using traditional finite element methods but only 
allowing fracture surfaces to nucleate and propagate along the 
inter-element faces of tetrahedra.  At the inception of material 
softening and localization, the mesh connectivity is modified 
to reflect the new surface and a cohesive traction with a 
softening behavior is dynamically inserted.  The use of a 
tetrahedral mesh, albeit unstructured, is potentially biased with 
respect to edge and face orientation which could lead to 
nonobjective numerical predictions.  Ideally, the face structure 
would be completely random to remove any bias. Herein, the 
approach of Ortiz is adopted but instead of using tetrahedral 
elements, the finite elements are derived from the cells of a 
randomly seeded Voronoi tessellation of the domain.  The 
randomly seeded Voronoi tessellation provides an unbiased 
computational basis for representing fracture surfaces.  Also, 
the resulting polyhedral cells have a number of desirable 
properties including convexity and relatively large included 
angles.  The latter property is expected to result in increased 
robustness in large deformation analyses.  The use of 
randomly seeded Voronoi tessellations has been used 
extensively by Bolander and coworkers in their development 
of lattice models [17-20].  

The intersection of general surfaces can result in 
arbitrarily small subdomains whose surface topology is 
inappropriate for further computation.  The restriction of only 
allowing new surfaces to form at interelement faces provides a 
necessary regularization of the resulting domain and surface 
topologies.  For example, variational methods for solving the 
governing equations of motion, e.g. the finite-element method, 
require that the domain have a Lipschitz continuous boundary.  
Thus, as the original domain fractures and disassociates into 
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subdomains, each subdomain needs to have a Lipschitz 
continuous boundary as well.  Also, the restriction of only 
allowing new surfaces to form at interelement faces provides a 
priori the constraint on minimum edge size and subsequent 
critical-time step necessary in an explicit-dynamic numerical 
solution.  It remains to be shown that this finite basis set for 
representing fracture surfaces is large enough to enable 
predictive simulations of pervasive failure problems.  Note 
that the use of this methodology for modeling dynamic crack 
propagation results in a time varying domain whose measure 
or volume is continuous in time.  This is not the case in a 
number of particle methods whose continuum representation 
evolves into a collection of spheres. (Recall that the theoretical 
maximum packing for equi-sized sphere is only 74%.)  This 
continuity of volume in time is very important in confined 
fragmentation problems (e.g. rock blasting, wrapped concrete 
columns under seismic or blast loading).  Note that the 
smallest fragment of the proposed method is the individual 
element itself, not a node or particle.  Thus, each element or 
fragment is fully deformable and capable of consistently 
representing a continuum, even under reconsolidation.  Also, 
the smallest fragment can carry angular momentum in addition 
to linear momentum.  Again, this is not the case with most 
particle methods.  

Any computational methodology that strives to model 
pervasive failure must not only include the ability to 
numerically represent the progression of a body from a 
continuum description to a discontinuum description but also 
regularize the governing equations so that the onset of material 
softening and its progression to a new crack surface results in 
finite and nonzero energy dissipation.  This latter condition 
derives from the requirement that the computational 
methodology be objective such that the simulation results do 
not depend on subjective properties of the model such as mesh 
design.  A necessary condition for objectivity is that the 
numerical approximation converges with refinement.  Without 
convergence to the necessary ‘engineering accuracy’, 
numerical results and predictions are non-objective and thus 
suspect, rendering validation, uncertainty quantification 
efforts, and general use in engineering design suspect as well.  
It is well known that the failure to regularize the governing 
equations can result in pathological ‘mesh dependence’ and 
non-objective results [21,40].  Two common methods for 
regularizing the governing equations are the dynamic insertion 
of cohesive tractions at the inception of material softening [11-
16], and the use of integral-form nonlocal material models
[24-27,40,44] with the insertion of new crack surfaces only 
upon the completion of material softening and thus final 
localization of damage.  As a first step only the dynamic 
insertion of cohesive tractions is used herein.  The use of an 
integral-form nonlocal model is under study.

Quasi-brittle materials such as concrete, geomaterials, and 
toughened ceramics, are characterized by large fracture 
process zones relative to the structure size with a majority of 
the fracture process zone undergoing softening due to 
microcracking, void formation, interface debonding, and 
frictional slipping [21].  The cohesive model of the crack 
mouth provides a good description of this behavior.  Thus, the 
familiar K field used in fracture mechanics does not apply at 
moderate structure sizes, and no field enrichment or 
calculation of stress intensity factors is necessary.  For this 

reason only quasi-brittle material behavior is studied for this 
initial phase of the research.

This paper is organized as follows.  Section 2 gives an 
overview of the computational methodology and its five key 
components.  Section 3 presents a two dimensional example
with a discussion on convergence for engineering quantities-
of-interest.  Section 4 discusses a number of possible ‘next 
steps’ and challenges.

2 COMPUTATIONAL METHODOLOGY
The proposed computational methodology for simulating 

pervasive failure may be described as a Lagrangian explicit-
dynamic displacement-based finite-element method with 
dynamic connectivity.  The methodology  consists of the 
following components:  (1) randomly seeded Voronoi 
tessellation (mesh) of the domain, (2) each Voronoi cell 
formulated as a finite element using the Reproducing Kernel 
Method (RKM), (3) fracture allowed only at element faces 
(edges) and subsequent dynamic change in mesh connectivity, 
(4) use of either a nonlocal material model (integral form) or 
the dynamic insertion of cohesive tractions to regularize the 
governing equations, and (5) robust and efficient contact 
algorithm.  Each component will be described in the following 
sections.

2.1 Random Voronoi Tessellation
Bolander and coworkers [17-20] have used random 

Voronoi tessellations in spring-lattice models to simulate 
quasistatic crack growth in quasibrittle materials and 
structures.  Their methodology for randomizing and 
regularizing the Voronoi tessellation is adopted here.  Voronoi 
tessellations have a rich history in mathematics and science 
and have a number of advantageous properties [28].  Given a 
finite set of points {Xi} or nuclei, the Voronoi diagram is 
defined as the collection of regions or cells Vi where
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Each point belonging to the Voronoi cell i is closer to nucleus 
i than all other nuclei.  Note that each Voronoi cell is defined 
as the intersection of half-spaces and is thus convex.  An 
example of a Voronoi cell is shown in Figure 1c.  To generate 
a random Voronoi tessellation with some control on the 
regularity of the resulting cells (e.g. aspect ratios near one), 
the approach of Bolander [17] is followed.  For a given 
characteristic length h, the nuclei are randomly and 
sequentially placed in the domain with a constraint on 
minimum distance between nuclei until the maximum packing 
threshold is reached.  The constraint on minimum distance 
between particles is enforced by merely discarding those 
nuclei that violate the constraint.  An example nuclei 
distribution is shown in Figure 1a.  The cell nuclei are used to 
triangulate the domain using the Bowyer-Watson insertion 
algorithm resulting in a Delaunay triangulation (Figure 1b) 
[29,30].  The Voronoi diagram is simply the dual of the 
Delaunay (Figure 1c) so that the Voronoi cell nuclei are the 
vertices of the Delaunay triangulation, and the vertices of the 
Voronoi cells are the circumcenters of the Delaunay triangles.  
Note that most junctions are triples and the interior angles are 
approximately 120, whereas the dual Delaunay triangulation 
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typically has relatively small interior angles.  Thus, it is 
expected that the Voronoi elements will be more robust in 
large deformation applications.  Also, each junction is 
randomly orientated and thus unbiased.  The generation of the 
Voronoi diagram is straight forward in unbounded domains 
but is nontrivial near geometrically ‘complex’ boundaries due 
to the need for intersection operations.  

(a) (b) (c)

Figure 1.  Methodology used to create the Vornoi tessellation 
of a domain:  (a) random seeding until the theoretical 
maximum packing is approached with a constraint on 
minimum seed distance, (b) Delaunay triangulation, and (c) 
dual Voronoi tessellation.

The Voronoi tessellations typically contain a number of 
relatively small edges and faces.  To regularize the Voronoi 
tessellation for use in explicit dynamics these small features
are simply deleted and the node pairs equivalenced.  Figure 2
shows the effect of this mesh regularization step.  Histogram 
plots are also given showing the number of elements with a 
given number of edges both before and after the deletion of 
small edges.  A majority of elements are hexagons and all 
elements have four or more edges.

(a) (b)

Figure 2. Regularization of the Voronoi tessellation by 
removing ‘small’ edges and equivalencing nodes:  (a)  raw 
Voronoi tessellation and (b) Voronoi mesh with constraint on 
minimum edge size.  The histogram of the number of elements 
with a given number of edges is also given.

2.2 Polyhedral Element Formulation
A general displacement based finite-element formulation 

for plane faceted polyhedra applicable to large deformations 
has been achieved by Rashid and coworkers [31].  Their 
approach consists of developing incompatible polynomial 
based shape functions that satisfy the minimum properties for 
convergence.  These elements satisfy the Kronecker delta 
property and are compatible with existing FEA.  Idelsohn, et 
al [32] used natural neighbor co-ordinates of a Delaunay 
tessellation of points to develop a ‘meshless’ finite element 
method.  Wachspress [33] has used algebraic geometry 
concepts to develop shape functions on polyhedra.  Ghosh and 
coworkers [46-48] have extensively developed two-
dimensional polyhedral elements based on the assumed-stress 
hybrid finite-element method for modeling composite 
materials.  An alternative formulation is introduced here that 
uses the reproducing kernel method (RKM) [6] to generate the 
shape functions.  A functional comparison between these 
various approaches is currently being investigated.  

In the reproducing kernel method the nodal shape
functions I(x) are generated by first defining a nodal weight
function wI(x) that has compact support, has a maximum value 
at the node, and is smoothly and monotonically decreasing 
away from the node.  In typical applications the nodal weight 
functions are given circular supports in two dimensions and 
spherical supports in three dimensions.  A number of 
examples are given in Belytschko, et al [3].  The nodal shape 
function is then defined as a spatial modulation of the nodal 
weight function,

)()()( xxx III wC (2)

where the nodal modulation function CI(x) is chosen so that 
I(x) satisfies the desired reproducing and consistency 
requirements [3].  Let })()()({)( 321

T xxxxg ggg
be the vector of desired basis functions gi(x).  For linear 
consistency )(xg is taken to be }1{)(T zyxxg .   Let 
N be the set of all nodes whose weight function support 
contains the location x.  The shape function reproducing 
property takes the form

)()()( xgxxgx 
NI

II (3)

In order to satisfy Eq. (3) CI(x) is taken to be of the form

)()()( T
IIC xxgxx  a (4)

where })()()({)( 321
T xxxx aaaa is a vector of 

unknown scalar valued functions ai(x).  For linear consistency, 
substituting Eqs. (2) and (4) into Eq. (3) yields

TT }0001{)()( xxA a (5)

where A(x) is given by
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Calculating the inverse of A(x) allows for the solution of the 
ai(x) in Eq. (5) and CI(x) in Eq. (4).  The spatial derivatives of 
the shape functions can be calculated by direct differentiation 
of Eqs. (4), (5), and (6) [5].

Now consider the application of this general shape 
function construction to a Voronoi mesh.  First, the nodal 
weight function is defined as follows.  The compact support of 
node I is chosen to be the union of element domains attached 
to node I.  This support is identical to that used in the standard 
finite element method.  Let this domain be denoted by I with 
boundary I.  To define the nodal weight function we solve 
the following auxiliary problem,




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0
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012
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This auxiliary problem may be efficiently solved using 
standard boundary element techniques to obtain both wj and 
it’s derivatives at the integration points, xj, j = 1, , M.  
Eqs. (2) through (6) can then be used to calculate the shape 
function I(x).  By construction, I(xJ) = IJ , and thus I(x) 
satisfies the Kronecker delta property.  This result is 
particularly advantageous and results in a large improvement 
in computational efficiency and implementation complexity 
compared to a purely meshless implementation.  Also note 
that along any edge in two dimensions there are only two 
supporting nodes.  Therefore, any shape function varies 
linearly along an edge.  Thus, these polyhedral finite-elements 
are compatible with the standard first-order isoparametric
finite elements.  As an example, the weight function and 
resulting shape function corresponding to an interior node of a 
regular hexagonal mesh is shown in Figure 3.  

(a) (b)

Figure 3. (a) Nodal weight function for an interior node of a 
regular hexagonal mesh.  The weight functions is obtained by 
solving the local boundary value problem described by Eq. 7. 
(b) The shape function resulting from the application of the 
RKM methodology.

It is important to note that the presented element 
formulation is not isoparametric, and therefore there is no 
mapping to a parent element.  The shape functions are defined 
on the reference configuration.  Thus, a total Lagrangian 
formulation of the governing equations is appropriate [34].  
The conservation of linear momentum takes the form [5]

uP ooDIV  f (8)

where f is the body force vector per unit mass, u is the 
displacement vector, o is the reference density, 

  IXPIPP ::  oDIV ,  P is the first Piola-Kirchhoff 
stress tensor, I is the identity tensor, and X represents the 
position vector in the reference configuration.  The weak form 
of Eq. (8) is 
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where to is the traction vector per unit initial area, and the 
displacement vector u and the virtual displacement vector u
are members of the usual function spaces.

Rashid [31] has proposed a general methodology for 
developing Gauss points and their weights for integrating the 
weak form of the equilibrium equation.  For the two-
dimensional applications presented here, a simple approach is 
adopted since all of the element domains are star shaped and 
can be triangulated by connecting the element nodes to the 
element centroid.  Standard Gauss rules for triangles can then 
be applied.  Chen [35] has noted that the use of non-
isoparametric element formulations can result in a violation of 
the discrete form of Gauss’s theorem (resulting from Gauss 
integration) with a subsequent reduction in accuracy and 
convergence rate.  For a given shape function  the 
continuous version of Gauss’s theorem over an element 
subdomain e with boundary e and outward unit normal ni is 
given by 






ee

ii n, (10)

The discrete form is given by

  

j
i

j
j

j
i

j
j n, (11)

where j  (xj), xj are the integration points with weights j

in the domain and 
j on the element boundary.  While 

Eq. (10) is a mathematical identify for any sufficiently smooth 
function, Eq. (11) does not in general hold.  To maintain this 
identity, the shape function derivatives at the integration 
points are modified by solving a linear programming problem 
based on the L2 minimization of the difference of the shape 
function derivatives and their original values with Eq. (11) as 
a constraint.  Typical corrections are on the order of a few
percent.  These corrections are spatially local and do not 
require a global equation solve.  Also, since a total Lagrangian 
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formulation is used, the shape function derivatives are only 
corrected once, at the start of the analysis.  Figure 4 shows the 
effect of this correction on the accuracy and convergence rate 
for a standard beam-bending verification problem [36] using a
rectangular domain with an aspect ratio of 4.0 and a truncated 
regular hexagonal mesh (see Figure 5a).  Without the 
correction, the L2 convergence rate in the displacement field is 
only 1.26.  With the correction, the convergence rate is 1.86 
which is close to the theoretical value of 2.0 for low order 
isoparametric elements.  

Figure 4. Effect of integration consistency on the L2 norm of 
the displacement error for the beam-bending verification 
problem using a truncated regular hexagonal mesh shown 
above.

Even though there is no mapping to a parent element in 
the above element formulation, it is still expected that the 
robustness of these elements in large deformation analyses
will be optimized when interior angles are maximized.  For the 
beam-bending verification problem, there is only a slight 
sensitivity in the solution behavior to the shape of the 
elements.  Figure 5b shows the L2 convergence rate in the 
displacement field for two random perturbations of the regular 
hexagonal mesh as shown in Figure 5a.  To handle 
incompressibility, a standard mean dilation formulation is 
used [31,36].  Figure 6 shows the effect of Poisson’s ratio on 
the accuracy and convergence rate of the beam-bending
verification problem.  The mean dilation formulation obviates 
any locking behavior.  

r = 10%

r = 20%

(a)

(b)

Figure 5. (a) Random perturbations in the regular hexagonal 
mesh in the range of r = 10% and 20% of the cell size, (b) 
Sensitivity of the L2 norm of the displacement error for the 
beam-bending verification problem (plane stress).
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Figure 6. Effect of Poisson’s ratio on the L2 norm of the 
displacement error of the beam-bending verification problem 
(plane strain) using a mean dilation formulation with a 
distorted hexagonal mesh (r = 20%).

In the results presented so far, each element has been 
integrated by first triangulating the polygon by connecting 
each vertex and the centroid assuming that each polygon is 
star shaped.  Standard Gauss integration is then used for each 
sub-triangle.  The effect of number of integration points on the 
accuracy and convergence rate of the beam-bending
verification problem (plane stress) is shown in Figure 7.  The 
use of a minimum number of integration points (while 
avoiding zero-energy modes) results in increased accuracy for 
the plane stress case.  The plane strain case exhibited an 
opposite effect.  The subject of integration on three-
dimensional polyhedral domains has been studied by 
Rashid [31].

Figure 7. Effect of number of element integration points on 
the L2 norm of the displacement error of the beam-bending
verification problem (plane stress) with a distorted hexagonal 
mesh (r = 20%).

An explicit dynamics central difference time integration 
scheme [34] is used to integrate the semi-discrete equations 
resulting from Eq. (9).  The special mass lumping procedure 
of Hinton [37] is used as it always produces positive lumped 
masses.  This mass lumping procedure is recommended by 
Hughes for non-standard element formulations [36].

2.3 Dynamic Mesh Connectivity
Since the generation of one or more new fracture surfaces 

(faces in 3D, edges in 2d) can occur every time step, an 
efficient algorithm and data structure is needed to update the 
mesh connectivity as these surfaces materialize.  The possible 
algorithms may be partitioned into two paradigms:  (1) top-
down modification and (2) bottom-up modification.  A top-
down algorithm attempts to locally modify the mesh 
connectivity while minimizing the overall change to the 
underlying data structure (see, for example, [11]).  
Alternatively, a bottom-up algorithm assumes that there are a 
large number of necessary connectivity changes per time step.  
The initial connectivity is completely discarded and recreated 
using the new fracture state.  Top-down modifying algorithms 
are very efficient when there are a small percentage of 
connectivity updates but their implementation is somewhat 
involved.  Herein, for the simulation of pervasive failure, a 
bottom-up modification algorithm is used.  The algorithm may 
be described as follows.  Initially, all elements are taken to be
disconnected.  Let the ordered pair (a, i) represent the ith node 
of the ath element.  An equivalence relation is defined on the 
set of element nodes such that (a, i) and (b, j) are related if 
they are directly connected across an intact face (3D) or edge 
(2D).  This equivalence relation can then be used to partition 
the set of element nodes into equivalence classes [38] by 
looping over all edges.  The equivalence classes are then 
mapped to existing node definitions.  New nodes are created 
as needed.  This methodology has proven to be simple and 
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robust.  The generation of the element node partition structure 
requires only a single pass through all edge pairs (face pairs in 
3D).  For each edge pair, only ordinary binary lookups are
required in the data structure. Thus, the overall complexity of 
this method is NlogN, where N is the number of edge pairs.  

2.4 Material Failure Mechanics
For simulating pervasive failure, two methods for 

regularizing the governing equations and providing for a finite 
energy dissipation during material softening are of particular 
interest:  (1) the dynamic insertion of cohesive tractions at the 
inception of material softening (defined by a limit or failure 
surface) [11-16], (2) the use of integral-form nonlocal material 
models [24-27,40,44] with the insertion of new crack surfaces 
only upon the completion of material softening and thus final 
localization of damage.  The use of a nonlocal model is 
preferred for reasons described in reference [40].  However, its 
use in dynamic problems is an area of active research.  In this 
research as a first step, the dynamic insertion of cohesive 
tractions is used.  The dynamic insertion of cohesive tractions 
requires (1) a failure criterion or limit surface to indicate 
incipient failure and localization, (2) a traction separation law 
that is a function of Mode I, II, and III separation.  In order to 
detect if the failure criterion has been obtained at the 
interelement faces, field quantities carried at the element 
integration points such as stress or internal-state variables,
must be interpolated from attached elements.  Once the limit 
state is reached at an interelement face, the connectivity of the 
finite-element mesh is updated as described in Section 2.3, and 
the cohesive traction relation is invoked.  The normal tractions 
are taken to be zero under over-closure. The contact algorithm 
is used to prevent interelement penetration.  

2.5 Contact Formulation
By its nature, pervasive failure involves a large amount of 

self-contact between crack faces.  It is thus essential to have a 
robust contact algorithm.  To avoid any constraints on surface 
topology that is typical of master/slave contact algorithms, a 
simple penalty approach is adopted.  Each polyhedral element 
on the surface is treated independently and checked for mutual 
penetration as in the discrete element method [41].  Let C
represent the set of elements on the instantaneous domain 
boundary.  At the start of the simulation C is initialized with 
all elements on the boundary of the reference domain.  As the 
simulation progresses and new crack surfaces nucleate, 
previously interior elements that are now on the boundary are 
added to C.  Thus, the size or cardinality of C is monotonically 
increasing during the simulation.  In the contact search phase, 
the elements in C are spatially sorted onto an overlayed 
rectangular grid based upon minimal bounding boxes.  All 
element pairs that are ‘close’ are then checked for mutual 
penetration.  If penetration is detected, a penalty force based 
on both the penetrating velocity and penetration is applied 
following Heinstein [42].  The velocity based penalty 
parameter was chosen to obtain ‘plastic’ impact conditions.  
The displacement based penalty parameter was chosen to be as 
small as possible yet still prevent gross penetration under 
quiescent conditions, recognizing the fact that the critical time 
step can be adversely affected by too large a value.  

The use of spatial sorting is very efficient.  Since there are 
no comparisons required between elements, the sorting 

process is order N complexity where N is the number of 
elements in the contact set C.  If the cell size of the overlay 
grid is taken to be the characteristic element size, each grid 
cell is guaranteed to have only a few elements in each cell due 
to the interpenetration constraint.  If the cell overlay grid is 
implemented as a binary tree, the overall complexity of the 
contact procedure is of order NlogN.  

3 EXAMPLE
To demonstrate the proposed computational methodology 

for simulating pervasive failure, a 2D explicit dynamics serial 
code was written using the C++ programming language.  The 
object-oriented functionality available in C++ facilitated the
implementation of the computational methodology.  In 
particular, the C++ STL library, providing the set, vector, 
list, and map data structures, was especially useful [39].  
Implementation of the proposed computational methodology 
in a parallel application seems challenging due to extensive 
updates necessary in the mesh connectivity.  It is envisioned 
that the research project ‘phdMesh’ (parallel, heterogeneous, 
and dynamic unstructured meshes) [43] will provide a 
convenient platform for developing a 3D parallel 
implementation.  

For a simple example consider a low-strength concrete 
column (0.3 m by 1.83 m) impacting a rigid plane at a striking 
velocity of 7.6 m/s and 45 angle as shown in Figure 8.  The 
column is idealized as a two-dimensional plane strain structure 
composed of an elastic material with a Mohr-Coulomb failure
surface and a tensile cutoff o as shown in Figure 9.  The 
Mohr-Coulomb surface is given by 

 c (12)

where  is the limiting shear stress on a plane,  is the normal 
stress on the same plane, c is the cohesion, and  is the 
coefficient of internal friction.  For this example, 
c = o = 3.7 MPa and  = 0.75.  For the cohesive material 
behavior, the bilinear model and parameters presented in 
reference [22] for mortar is used with an overall strain energy 
release rate of 57 J/m2.  The damage law is taken to be linear.  
Only a Mode I behavior is considered.

Figure 8. A rectangular column striking a rigid wall at a 45 
degree angle.

7.6 m/s

rigid wall
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Figure 9. Mohr-Coulomb failure surface in shear () normal-
stress () space, with cohesion c, tensile cutoff o, and internal 
friction .

The ith realization of a randomly seeded Voronoi 

tessellation with a characteristic cell size h will be 

denoted
h
iR .  Multiple realizations are shown in Figure 10a, 

10b, and 10c for characteristic cell sizes 2.0 (5 cm), 1.0, and 

0.5, respectively.  Figure 11 shows the fracture surface for the
5.0

1R mesh.  Only fracture surfaces whose cohesive traction 

behavior has fully softened are shown.  There is extensive 

fragmentation at the impact corner.  Note the bending induced 

fracture at the midsection involving crack coalescence and 

branching.  Figure 12 shows all fracture surfaces including 

those whose cohesive tractions are still active.  The edge color 

represents the maximum achieved crack mouth opening 

displacement.  The corresponding results for the 25.0
1R mesh

are shown in Figures 13 and 14, respectively.  Note that the 

crack patterns are qualitatively similar but distinctly different.  

0.2
1R 0.2

2R 0.2
3R

0.1
1R 0.1

2R 0.1
3R 5.0

1R 5.0
2R 5.0

3R

(a) h = 2.0 b) h = 1.0 (c) h = 0.5

Figure 10. Voronoi mesh realizations for three different 
characteristic cell sizes, h = 2.0, h = 1.0, and h = 0.5.  Three 
realizations, R1, R2, and R3 are shown for each characteristic 
cell size.

t = 1.2 ms t = 1.8 ms

t = 2.4 ms t = 10 ms

Figure 11.  Deformed state of the concrete column at a 

number of instances in time using the 5.0
1R mesh.  Only the 

crack boundaries that have fully softened (no cohesive 

tractions) are shown.

o




c


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t = 1.2 ms t = 1.8 ms

t = 2.4 ms t = 10 ms

Figure 12.  Deformed state of the concrete column at a 

number instances in time using the 5.0
1R mesh.  All new crack 

surfaces are shown.  The crack surfaces that have cohesive 

tractions active are colored according to the amount of crack-

mouth opening displacement (red = 25 m).

t = 1.2 ms t = 1.6 ms

t = 2.4 ms t = 4.3 ms

Figure 13.  Deformed state of the concrete column at a 

number of instances in time using the 25.0
1R mesh.  Only the 

crack boundaries that have fully softened (no cohesive 

tractions) are shown.

t = 1.2 ms t = 1.6 ms

t = 2.4 ms t = 4.3 ms

Figure 14.  Deformed state of the concrete column at a 

number instances in time using the 25.0
1R mesh.  All new crack 

surfaces are shown.  The crack surfaces that have cohesive 

tractions active are colored according to the amount of crack-

mouth opening displacement (red = 25 m).

The maximum principal stress field at a simulation time 

of 50 ms is shown in Figure 15 for the 0.2
1R , 0.2

2R , and 0.2
3R

meshes.  The crack patterns are qualitatively similar but 

distinctly different.  The corresponding results for the 0.1
1R , 

0.1
2R , and 0.1

3R meshes are shown in Figure 16.  The 

corresponding results for the 5.0
1R , 5.0

2R , and 5.0
3R meshes are 

shown in Figure 17.  Finally, the corresponding results for the
25.0

1R , 25.0
2R , and 25.0

3R meshes are shown in Figure 18.  Note 

that at all refinement levels, the fracture patterns are 

qualitatively similar, but distinctly different.  Since the 

material properties are completely homogeneous, this 

difference in crack patterns represents a type of mesh 

dependence, albeit unbiased. In a sense, the random Voronoi

edge orientations provide an implicit variation in the 

underlying fracture properties of the material.  

For this class of problems, in which a multitude of 

bifurcations exist in the physical response, a weaker notion of 

convergence is more appropriate.  It is proposed that 

engineering ‘quantities of interest’ should be described in 

terms of distributions, commonly referred to as ‘weak 

convergence’ or ‘convergence in variation’ in the statistical 

community [45].  Possible engineering quantities of interest

include the extent and nature of cracking, fragment-size 

distributions, and post-failure structural response.  The 
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cumulative distribution of fragment size at the simulation time 

of 300 ms is shown in Figure 19 for twelve mesh 

realizations 5.0
iR , }12,,3,2,1{ i .  Note that each distribution 

is distinctly different.  Again, since the material properties are 

completely homogeneous, the difference in fragment 

distributions represents a type of mesh dependence, albeit

unbiased.  The corresponding results for the 25.0
iR mesh 

family are shown in Figure 20.  While twelve realizations is a 

small sample size for what is expected to be a complex 

statistical distribution for fragment size, it is clear that the 

distribution of cumulative distributions has not ‘converged’.

The maximum fragment size for each mesh realization at a 

simulation time of 300 ms is shown in Figure 21.  Results are 

given for the mesh resolutions 0.2
iR , 0.1

iR , 5.0
iR , and 25.0

iR .  

Convergence of this engineering quantity-of-interest is again 

not apparent.  Clearly, more research remains, and the 

challenge of defining what is meant by ‘convergence’ for 

problems exhibiting a multitude of bifurcations is apparent.

Figure 15.  Maximum principal stress field at a simulation 

time of 50 ms for the 0.2
1R , 0.2

2R , and 0.2
3R mesh realizations.

Figure 16.  Maximum principal stress field at a simulation

time of 50 ms for the 0.1
1R , 0.1

2R , and 0.1
3R mesh realizations.

Figure 17.  Maximum principal stress field at a simulation 

time of 50 ms for the 5.0
1R , 5.0

2R , and 5.0
3R mesh realizations.

random mesh 
realizations

R1 R2 R3

R1

R2

R3

R1 R2 R3

random mesh 
realizations

R1

R2

R3

R1 R2 R3

random mesh 
realizations

R2

R1

R3
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Figure 18.  Maximum principal stress field at a simulation 

time of 50 ms for the 25.0
1R , 25.0

2R , and 25.0
3R mesh 

realizations.

Figure 19.  Cumulative distribution of the fragment mass-

fraction at a simulation time of 300 ms for the 5.0
iR , 

}12,,3,2,1{ i mesh family.  The mean of the maximum-

fragment mass-fraction is denoted by the arrow.  The standard 

deviation of the maximum fragment mass-fraction is given as 

well.

Figure 20.  Cumulative distribution of the fragment mass-

fraction at a simulation time of 300 ms for the 25.0
iR , 

}12,,3,2,1{ i mesh family.  The mean of the maximum-

fragment mass-fraction is denoted by the arrow.  The standard 

deviation of the maximum fragment mass-fraction is given as 

well.

Figure 21.  The maximum fragment size for twelve mesh 

realizations at four characteristic mesh sizes 0.2
iR , 0.1

iR , 5.0
iR , 

and 25.0
iR .  The mean of the maximum fragment mass-fraction 

is given as well.

To highlight the effect of explicit material property 

variation on the fracture process, the simulations for the 5.0
1R

mesh where performed with a 5% uniform variation in elastic 

modulus and the internal friction .  Twelve realizations of 

random mesh 
realizations

R1 R2

R3

R1

R2

R3

R3
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material properties were produced.  The resulting cumulative 

fragment distributions are shown in Figure 22.  The result for 

the nominal material properties (homogenous case) is also 

given.  Note that the variability in the fragment distributions is 

similar to that for the multiple mesh realizations but with 

homogenous material properties, as hypothesized earlier.  

Future work will focus on including spatially correlated

variations in the element edge fracture properties directly into 

the simulation as a possible approach for removing the 

observed mesh dependence.

Figure 22.  Cumulative distribution of the fragment mass-

fraction at a simulation time of 300 ms for the 5.0
1R mesh

using a 5% element variation on elastic modulus and Mohr-

Coulomb failure surface.  The homogenous (nominal) case is 

given for comparison.

4 CHALLENGES AND NEXT STEPS
The proposed computational methodology for simulating 

the pervasive failure of structures is promising.  However, 
much work remains in demonstrating convergence and 
ultimately that the methodology is objective with respect to 
mesh refinement.  Due to the physical nature of the class of 
problems, with a multitude of bifurcations, it is unclear how to
even define convergence, which is necessary condition for 
objectivity.  The statistical concept of ‘weak convergence’ was
proposed.  The use of a non-local model (integral form) 
instead of the dynamic insertion of cohesive tractions is 
probably more appropriate for this class of problems (as 
opposed to single crack propagation).  However, their 
application to dynamic problems is in the preliminary stages 
of research.  There are a number of validation problems that 
are currently being analyzed with this methodology including 
cylindrical and prismatic Brazilian experiments, and three and 
four point bend experiments.  
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