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ABSTRACT

Dynamic material fracture and overall structural failure is
a highly nonlinear process involving complex material
constitutive behavior, material softening, localization, surface
generation, and ubiquitous contact. In weapons effects
analysis most often the extent of failure is pervasive in the
sense that a multitude of cracks are nucleating, propagating in
arbitrary directions, coalescing, and branching. A pure
Lagrangian computational methodology has been developed to
simulate the pervasive failure of materials and structures. A
key aspect of this methodology is that fracture surfaces are
allowed to nucleate only at the inter-cell boundaries of a
randomly seeded Voronoi tessellation of the domain. Each
Voronoi cell is formulated as a finite element, and the Voronoi
tessellation becomes the finite-element mesh. The randomly
seeded Voronoi tessellation provides an unbiased
computational basis for representing fracture surfaces. In an
attempt to properly handle material softening and localization,
cohesive tractions are dynamically inserted at the new
surfaces. Solution behavior with mesh refinement is studied
for the example of a concrete structure striking a rigid wall.

1 INTRODUCTION

Possible structural responses from a weapon assault can
range from intact vibrational response to complete
fragmentation with secondary impacts. The structure
transitions from a continuum to a discontinuum through crack
propagation. The extent of fracturing is typically pervasive in
the sense that a multitude of cracks are nucleating,
propagating in arbitrary directions, coalescing, and branching.
Currently, there is a very limited set of computational tools
available that can attempt to simulate the pervasive failure of
structures. Common and often unsatisfactory industrial
techniques include ‘element death’ in Lagrangian finite-
element codes and ‘void insertion’ in hydrocodes. The
enriched finite-element methods (generalized finite-element
method and extended finite-element method) have had success
in modeling fracture problems in which the crack topology
does not change significantly and loading regimes in which
linear elastic fracture mechanics is applicable [1,2]. Once
crack-branching and crack coalescence phenomena appear, the
prospect of modeling a multitude of arbitrary three-
dimensional intersecting cracks becomes untenable. A variety

of meshless or particle methods have been developed in the
past fifteen years with the goal of modeling extreme
deformation including pervasive failure [3]. Examples include
spherical-particle hydrodynamics [4], element-free Galerkin
[5], reproducing kernel method [6], cracked-particles [7],
peridynamics [8], particle in element [9], and element to
particle conversion [10]. Each of these methods has had
varying degrees of success in modeling dynamic crack
propagation and even pervasive failure. However, many of
these methods are plagued by a number of issues including
computational cost and integration with existing finite-element
technology. Ortiz and coworkers [11-16] have pursued the
concept of using traditional finite element methods but only
allowing fracture surfaces to nucleate and propagate along the
inter-element faces of tetrahedra. At the inception of material
softening and localization, the mesh connectivity is modified
to reflect the new surface and a cohesive traction with a
softening behavior is dynamically inserted. The use of a
tetrahedral mesh, albeit unstructured, is potentially biased with
respect to edge and face orientation which could lead to
nonobjective numerical predictions. Ideally, the face structure
would be completely random to remove any bias. Herein, the
approach of Ortiz is adopted but instead of using tetrahedral
elements, the finite elements are derived from the cells of a
randomly seeded Voronoi tessellation of the domain. The
randomly seeded Voronoi tessellation provides an unbiased
computational basis for representing fracture surfaces. Also,
the resulting polyhedral cells have a number of desirable
properties including convexity and relatively large included
angles. The latter property is expected to result in increased
robustness in large deformation analyses. The use of
randomly seeded Voronoi tessellations has been wused
extensively by Bolander and coworkers in their development
of lattice models [17-20].

The intersection of general surfaces can result in
arbitrarily small subdomains whose surface topology is
inappropriate for further computation. The restriction of only
allowing new surfaces to form at interelement faces provides a
necessary regularization of the resulting domain and surface
topologies. For example, variational methods for solving the
governing equations of motion, e.g. the finite-element method,
require that the domain have a Lipschitz continuous boundary.
Thus, as the original domain fractures and disassociates into
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subdomains, each subdomain needs to have a Lipschitz
continuous boundary as well. Also, the restriction of only
allowing new surfaces to form at interelement faces provides a
priori the constraint on minimum edge size and subsequent
critical-time step necessary in an explicit-dynamic numerical
solution. It remains to be shown that this finite basis set for
representing fracture surfaces is large enough to enable
predictive simulations of pervasive failure problems. Note
that the use of this methodology for modeling dynamic crack
propagation results in a time varying domain whose measure
or volume is continuous in time. This is not the case in a
number of particle methods whose continuum representation
evolves into a collection of spheres. (Recall that the theoretical
maximum packing for equi-sized sphere is only 74%.) This
continuity of volume in time is very important in confined
fragmentation problems (e.g. rock blasting, wrapped concrete
columns under seismic or blast loading). Note that the
smallest fragment of the proposed method is the individual
element itself, not a node or particle. Thus, each element or
fragment is fully deformable and capable of consistently
representing a continuum, even under reconsolidation. Also,
the smallest fragment can carry angular momentum in addition
to linear momentum. Again, this is not the case with most
particle methods.

Any computational methodology that strives to model
pervasive failure must not only include the ability to
numerically represent the progression of a body from a
continuum description to a discontinuum description but also
regularize the governing equations so that the onset of material
softening and its progression to a new crack surface results in
finite and nonzero energy dissipation. This latter condition
derives from the requirement that the computational
methodology be objective such that the simulation results do
not depend on subjective properties of the model such as mesh
design. A necessary condition for objectivity is that the
numerical approximation converges with refinement. Without
convergence to the necessary ‘engineering accuracy’,
numerical results and predictions are non-objective and thus
suspect, rendering validation, uncertainty quantification
efforts, and general use in engineering design suspect as well.
It is well known that the failure to regularize the governing
equations can result in pathological ‘mesh dependence’ and
non-objective results [21,40]. Two common methods for
regularizing the governing equations are the dynamic insertion
of cohesive tractions at the inception of material softening [11-
16], and the use of integral-form nonlocal material models
[24-27,40,44] with the insertion of new crack surfaces only
upon the completion of material softening and thus final
localization of damage. As a first step only the dynamic
insertion of cohesive tractions is used herein. The use of an
integral-form nonlocal model is under study.

Quasi-brittle materials such as concrete, geomaterials, and
toughened ceramics, are characterized by large fracture
process zones relative to the structure size with a majority of
the fracture process zone undergoing softening due to
microcracking, void formation, interface debonding, and
frictional slipping [21]. The cohesive model of the crack
mouth provides a good description of this behavior. Thus, the
familiar K field used in fracture mechanics does not apply at
moderate structure sizes, and no field enrichment or
calculation of stress intensity factors is necessary. For this

reason only quasi-brittle material behavior is studied for this
initial phase of the research.

This paper is organized as follows. Section 2 gives an
overview of the computational methodology and its five key
components. Section 3 presents a two dimensional example
with a discussion on convergence for engineering quantities-
of-interest. Section 4 discusses a number of possible ‘next
steps’ and challenges.

2 COMPUTATIONAL METHODOLOGY

The proposed computational methodology for simulating
pervasive failure may be described as a Lagrangian explicit-
dynamic displacement-based finite-element method with
dynamic connectivity. The methodology consists of the
following components: (1) randomly seeded Voronoi
tessellation (mesh) of the domain, (2) each Voronoi cell
formulated as a finite element using the Reproducing Kernel
Method (RKM), (3) fracture allowed only at element faces
(edges) and subsequent dynamic change in mesh connectivity,
(4) use of either a nonlocal material model (integral form) or
the dynamic insertion of cohesive tractions to regularize the
governing equations, and (5) robust and efficient contact
algorithm. Each component will be described in the following
sections.

2.1 Random Voronoi Tessellation

Bolander and coworkers [17-20] have used random
Voronoi tessellations in spring-lattice models to simulate
quasistatic crack growth in quasibrittle materials and
structures. Their methodology for randomizing and
regularizing the Voronoi tessellation is adopted here. Voronoi
tessellations have a rich history in mathematics and science
and have a number of advantageous properties [28]. Given a
finite set of points {X;} or nuclei, the Voronoi diagram is
defined as the collection of regions or cells V; where

V= DX 10X, X) <d (X . X0 M

1#]

Each point belonging to the Voronoi cell i is closer to nucleus
i than all other nuclei. Note that each Voronoi cell is defined
as the intersection of half-spaces and is thus convex. An
example of a Voronoi cell is shown in Figure 1c. To generate
a random Voronoi tessellation with some control on the
regularity of the resulting cells (e.g. aspect ratios near one),
the approach of Bolander [17] is followed. For a given
characteristic length 4, the nuclei are randomly and
sequentially placed in the domain with a constraint on
minimum distance between nuclei until the maximum packing
threshold is reached. The constraint on minimum distance
between particles is enforced by merely discarding those
nuclei that violate the constraint. An example nuclei
distribution is shown in Figure 1a. The cell nuclei are used to
triangulate the domain using the Bowyer-Watson insertion
algorithm resulting in a Delaunay triangulation (Figure 1b)
[29,30]. The Voronoi diagram is simply the dual of the
Delaunay (Figure 1c) so that the Voronoi cell nuclei are the
vertices of the Delaunay triangulation, and the vertices of the
Voronoi cells are the circumcenters of the Delaunay triangles.
Note that most junctions are triples and the interior angles are
approximately 120°, whereas the dual Delaunay triangulation



typically has relatively small interior angles. Thus, it is
expected that the Voronoi elements will be more robust in
large deformation applications.  Also, each junction is
randomly orientated and thus unbiased. The generation of the
Voronoi diagram is straight forward in unbounded domains
but is nontrivial near geometrically ‘complex’ boundaries due
to the need for intersection operations.

(a)
Figure 1. Methodology used to create the Vornoi tessellation
of a domain: (a) random seeding until the theoretical
maximum packing is approached with a constraint on
minimum seed distance, (b) Delaunay triangulation, and (c)
dual Voronoi tessellation.

The Voronoi tessellations typically contain a number of
relatively small edges and faces. To regularize the Voronoi
tessellation for use in explicit dynamics these small features
are simply deleted and the node pairs equivalenced. Figure 2
shows the effect of this mesh regularization step. Histogram
plots are also given showing the number of elements with a
given number of edges both before and after the deletion of
small edges. A majority of elements are hexagons and all
elements have four or more edges.
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Figure 2. Regularization of the Voronoi tessellation by
removing ‘small’ edges and equivalencing nodes: (a) raw
Voronoi tessellation and (b) Voronoi mesh with constraint on
minimum edge size. The histogram of the number of elements
with a given number of edges is also given.

2.2 Polyhedral Element Formulation

A general displacement based finite-element formulation
for plane faceted polyhedra applicable to large deformations
has been achieved by Rashid and coworkers [31]. Their
approach consists of developing incompatible polynomial
based shape functions that satisfy the minimum properties for
convergence. These elements satisfy the Kronecker delta
property and are compatible with existing FEA. Idelsohn, et
al [32] used natural neighbor co-ordinates of a Delaunay
tessellation of points to develop a ‘meshless’ finite element
method.  Wachspress [33] has used algebraic geometry
concepts to develop shape functions on polyhedra. Ghosh and
coworkers [46-48] have extensively developed two-
dimensional polyhedral elements based on the assumed-stress
hybrid finite-element method for modeling composite
materials. An alternative formulation is introduced here that
uses the reproducing kernel method (RKM) [6] to generate the
shape functions. A functional comparison between these
various approaches is currently being investigated.

In the reproducing kernel method the nodal shape
functions y/(x) are generated by first defining a nodal weight
function wy(x) that has compact support, has a maximum value
at the node, and is smoothly and monotonically decreasing
away from the node. In typical applications the nodal weight
functions are given circular supports in two dimensions and
spherical supports in three dimensions. @A number of
examples are given in Belytschko, et al [3]. The nodal shape
function is then defined as a spatial modulation of the nodal
weight function,

v (%) = Cr(x)w(x) 2)

where the nodal modulation function C/(x) is chosen so that
yi(x) satisfies the desired reproducing and consistency
requirements [3].  Let g'(x)={g,(x) £,(x) g(x) -}
be the vector of desired basis functions g(x). For linear
consistency g(x) is takento be g' (x)={l x y z}. Let
N be the set of all nodes whose weight function support
contains the location x. The shape function reproducing
property takes the form

D v, (gx-x,) = g(x) 3)

IeN

In order to satisfy Eq. (3) C/(x) is taken to be of the form

C/(x)=a' (x) g(x-x,) “4)
where aT(x)={a1(x) a,(x) as(x) ---} 1is a vector of

unknown scalar valued functions @;(x). For linear consistency,
substituting Eqgs. (2) and (4) into Eq. (3) yields

AX a'(x)={1 0 0 0 5)

where A(X) is given by



AX)= D wy(x—x,)e

JeN
1 X—X; Y=y, z—2z;
(x=x,)° (x=x)y-y,) (x-x,)z-z,)
-y -yz-z,)
sym (z—z,)°

(6)

Calculating the inverse of A(x) allows for the solution of the
a;(x) in Eq. (5) and C(x) in Eq. (4). The spatial derivatives of
the shape functions can be calculated by direct differentiation
of Egs. (4), (5), and (6) [5].

Now consider the application of this general shape
function construction to a Voronoi mesh. First, the nodal
weight function is defined as follows. The compact support of
node / is chosen to be the union of element domains attached
to node /. This support is identical to that used in the standard
finite element method. Let this domain be denoted by Q; with
boundary I';. To define the nodal weight function we solve
the following auxiliary problem,

Viw+1=0 in Q
w=0 on I'Nnl'=Y (7
Vw=0 on I;NT =Y

This auxiliary problem may be efficiently solved using
standard boundary element techniques to obtain both w; and
it’s derivatives at the integration points, x;, j=1,..., M.
Eqgs. (2) through (6) can then be used to calculate the shape
function y,(x). By construction, y,(x;) =9, , and thus y«(x)
satisfies the Kronecker delta property.  This result is
particularly advantageous and results in a large improvement
in computational efficiency and implementation complexity
compared to a purely meshless implementation. Also note
that along any edge in two dimensions there are only two
supporting nodes.  Therefore, any shape function varies
linearly along an edge. Thus, these polyhedral finite-elements
are compatible with the standard first-order isoparametric
finite elements. As an example, the weight function and
resulting shape function corresponding to an interior node of a
regular hexagonal mesh is shown in Figure 3.

(a) (b)

Figure 3. (a) Nodal weight function for an interior node of a
regular hexagonal mesh. The weight functions is obtained by
solving the local boundary value problem described by Eq. 7.
(b) The shape function resulting from the application of the
RKM methodology.

It is important to note that the presented element
formulation is not isoparametric, and therefore there is no
mapping to a parent element. The shape functions are defined
on the reference configuration. Thus, a total Lagrangian
formulation of the governing equations is appropriate [34].
The conservation of linear momentum takes the form [5]

DIVP + p, f=p, U ®)

where f is the body force vector per unit mass, u is the
displacement vector, p, is the reference density,
DIVP=V P:I1=(0P/0X):1, P is the first Piola-Kirchhoff
stress tensor, I is the identity tensor, and X represents the
position vector in the reference configuration. The weak form
of Eq. (8) is

jpoﬁOBudV=

> ©)
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where t, is the traction vector per unit initial area, and the
displacement vector u and the virtual displacement vector du
are members of the usual function spaces.

Rashid [31] has proposed a general methodology for
developing Gauss points and their weights for integrating the
weak form of the equilibrium equation. For the two-
dimensional applications presented here, a simple approach is
adopted since all of the element domains are star shaped and
can be triangulated by connecting the element nodes to the
element centroid. Standard Gauss rules for triangles can then
be applied. Chen [35] has noted that the use of non-
isoparametric element formulations can result in a violation of
the discrete form of Gauss’s theorem (resulting from Gauss
integration) with a subsequent reduction in accuracy and
convergence rate. For a given shape function  the
continuous version of Gauss’s theorem over an element
subdomain Q, with boundary I', and outward unit normal #; is
given by

Jwi=[wn (10)
Q, r,
The discrete form is given by
Zw_/\llj’i = Z(’)E‘V'/”i (11)
J J

where / = (X)), X; are the integration points with weights o,
in the domain and ®'; on the element boundary. While
Eq. (10) is a mathematical identify for any sufficiently smooth
function, Eq. (11) does not in general hold. To maintain this
identity, the shape function derivatives at the integration
points are modified by solving a linear programming problem
based on the L, minimization of the difference of the shape
function derivatives and their original values with Eq. (11) as
a constraint. Typical corrections are on the order of a few
percent. These corrections are spatially local and do not
require a global equation solve. Also, since a total Lagrangian



formulation is used, the shape function derivatives are only
corrected once, at the start of the analysis. Figure 4 shows the
effect of this correction on the accuracy and convergence rate
for a standard beam-bending verification problem [36] using a
rectangular domain with an aspect ratio of 4.0 and a truncated
regular hexagonal mesh (see Figure 5a). Without the
correction, the L, convergence rate in the displacement field is
only 1.26. With the correction, the convergence rate is 1.86
which is close to the theoretical value of 2.0 for low order
isoparametric elements.
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Figure 4. Effect of integration consistency on the L, norm of
the displacement error for the beam-bending verification
problem using a truncated regular hexagonal mesh shown
above.

Even though there is no mapping to a parent element in
the above element formulation, it is still expected that the
robustness of these elements in large deformation analyses
will be optimized when interior angles are maximized. For the
beam-bending verification problem, there is only a slight
sensitivity in the solution behavior to the shape of the
elements. Figure 5b shows the L2 convergence rate in the
displacement field for two random perturbations of the regular
hexagonal mesh as shown in Figure5a. To handle
incompressibility, a standard mean dilation formulation is
used [31,36]. Figure 6 shows the effect of Poisson’s ratio on
the accuracy and convergence rate of the beam-bending
verification problem. The mean dilation formulation obviates
any locking behavior.
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Figure 5. (a) Random perturbations in the regular hexagonal
mesh in the range of »=10% and 20% of the cell size, (b)
Sensitivity of the L, norm of the displacement error for the
beam-bending verification problem (plane stress).
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Figure 6. Effect of Poisson’s ratio on the L, norm of the
displacement error of the beam-bending verification problem
(plane strain) using a mean dilation formulation with a
distorted hexagonal mesh (r = 20%)).

In the results presented so far, each element has been
integrated by first triangulating the polygon by connecting
each vertex and the centroid assuming that each polygon is
star shaped. Standard Gauss integration is then used for each
sub-triangle. The effect of number of integration points on the
accuracy and convergence rate of the beam-bending
verification problem (plane stress) is shown in Figure 7. The
use of a minimum number of integration points (while
avoiding zero-energy modes) results in increased accuracy for
the plane stress case. The plane strain case exhibited an
opposite effect.  The subject of integration on three-
dimensional polyhedral domains has been studied by
Rashid [31].
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Figure 7. Effect of number of element integration points on
the L, norm of the displacement error of the beam-bending
verification problem (plane stress) with a distorted hexagonal
mesh (r = 20%).

An explicit dynamics central difference time integration
scheme [34] is used to integrate the semi-discrete equations
resulting from Eq. (9). The special mass lumping procedure
of Hinton [37] is used as it always produces positive lumped
masses. This mass lumping procedure is recommended by
Hughes for non-standard element formulations [36].

2.3 Dynamic Mesh Connectivity

Since the generation of one or more new fracture surfaces
(faces in 3D, edges in 2d) can occur every time step, an
efficient algorithm and data structure is needed to update the
mesh connectivity as these surfaces materialize. The possible
algorithms may be partitioned into two paradigms: (1) top-
down modification and (2) bottom-up modification. A top-
down algorithm attempts to locally modify the mesh
connectivity while minimizing the overall change to the
underlying data structure (see, for example, [11]).
Alternatively, a bottom-up algorithm assumes that there are a
large number of necessary connectivity changes per time step.
The initial connectivity is completely discarded and recreated
using the new fracture state. Top-down modifying algorithms
are very efficient when there are a small percentage of
connectivity updates but their implementation is somewhat
involved. Herein, for the simulation of pervasive failure, a
bottom-up modification algorithm is used. The algorithm may
be described as follows. Initially, all elements are taken to be
disconnected. Let the ordered pair (a, i) represent the ith node
of the ath element. An equivalence relation is defined on the
set of element nodes such that (a, i) and (b, j) are related if
they are directly connected across an intact face (3D) or edge
(2D). This equivalence relation can then be used to partition
the set of element nodes into equivalence classes [38] by
looping over all edges. The equivalence classes are then
mapped to existing node definitions. New nodes are created
as needed. This methodology has proven to be simple and



robust. The generation of the element node partition structure
requires only a single pass through all edge pairs (face pairs in
3D). For each edge pair, only ordinary binary lookups are
required in the data structure. Thus, the overall complexity of
this method is Nogh, where N is the number of edge pairs.

2.4 Material Failure Mechanics

For simulating pervasive failure, two methods for
regularizing the governing equations and providing for a finite
energy dissipation during material softening are of particular
interest: (1) the dynamic insertion of cohesive tractions at the
inception of material softening (defined by a limit or failure
surface) [11-16], (2) the use of integral-form nonlocal material
models [24-27,40,44] with the insertion of new crack surfaces
only upon the completion of material softening and thus final
localization of damage. The use of a nonlocal model is
preferred for reasons described in reference [40]. However, its
use in dynamic problems is an area of active research. In this
research as a first step, the dynamic insertion of cohesive
tractions is used. The dynamic insertion of cohesive tractions
requires (1) a failure criterion or limit surface to indicate
incipient failure and localization, (2) a traction separation law
that is a function of Mode I, II, and III separation. In order to
detect if the failure criterion has been obtained at the
interelement faces, field quantities carried at the element
integration points such as stress or internal-state variables,
must be interpolated from attached elements. Once the limit
state is reached at an interelement face, the connectivity of the
finite-element mesh is updated as described in Section 2.3, and
the cohesive traction relation is invoked. The normal tractions
are taken to be zero under over-closure. The contact algorithm
is used to prevent interelement penetration.

2.5 Contact Formulation

By its nature, pervasive failure involves a large amount of
self-contact between crack faces. It is thus essential to have a
robust contact algorithm. To avoid any constraints on surface
topology that is typical of master/slave contact algorithms, a
simple penalty approach is adopted. Each polyhedral element
on the surface is treated independently and checked for mutual
penetration as in the discrete element method [41]. Let C
represent the set of elements on the instantanecous domain
boundary. At the start of the simulation C is initialized with
all elements on the boundary of the reference domain. As the
simulation progresses and new crack surfaces nucleate,
previously interior elements that are now on the boundary are
added to C. Thus, the size or cardinality of C is monotonically
increasing during the simulation. In the contact search phase,
the elements in C are spatially sorted onto an overlayed
rectangular grid based upon minimal bounding boxes. All
element pairs that are ‘close’ are then checked for mutual
penetration. If penetration is detected, a penalty force based
on both the penetrating velocity and penetration is applied
following Heinstein [42]. The wvelocity based penalty
parameter was chosen to obtain ‘plastic’ impact conditions.
The displacement based penalty parameter was chosen to be as
small as possible yet still prevent gross penetration under
quiescent conditions, recognizing the fact that the critical time
step can be adversely affected by too large a value.

The use of spatial sorting is very efficient. Since there are
no comparisons required between elements, the sorting

process is order N complexity where N is the number of
elements in the contact set C. If the cell size of the overlay
grid is taken to be the characteristic element size, each grid
cell is guaranteed to have only a few elements in each cell due
to the interpenetration constraint. If the cell overlay grid is
implemented as a binary tree, the overall complexity of the
contact procedure is of order NlogN.

3 EXAMPLE

To demonstrate the proposed computational methodology
for simulating pervasive failure, a 2D explicit dynamics serial
code was written using the C++ programming language. The
object-oriented functionality available in C++ facilitated the
implementation of the computational methodology. In
particular, the C++ STL library, providing the set, vector,
list, and map data structures, was especially useful [39].
Implementation of the proposed computational methodology
in a parallel application seems challenging due to extensive
updates necessary in the mesh connectivity. It is envisioned
that the research project ‘phdMesh’ (parallel, heterogeneous,
and dynamic unstructured meshes) [43] will provide a
convenient platform for developing a 3D parallel
implementation.

For a simple example consider a low-strength concrete
column (0.3 m by 1.83 m) impacting a rigid plane at a striking
velocity of 7.6 m/s and 45° angle as shown in Figure 8. The
column is idealized as a two-dimensional plane strain structure
composed of an elastic material with a Mohr-Coulomb failure
surface and a tensile cutoff o, as shown in Figure 9. The
Mohr-Coulomb surface is given by

|r|=c—uc (12)

where 7 is the limiting shear stress on a plane, G is the normal
stress on the same plane, ¢ is the cohesion, and n is the
coefficient of internal friction. For this example,
c=0,=3.7MPa and n=0.75. For the cohesive material
behavior, the bilinear model and parameters presented in
reference [22] for mortar is used with an overall strain energy
release rate of 57 J/m*>. The damage law is taken to be linear.
Only a Mode I behavior is considered.

7.6 m/s
rigid wall

[ ]

Figure 8. A rectangular column striking a rigid wall at a 45
degree angle.
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Figure 9. Mohr-Coulomb failure surface in shear (t) normal-
stress (o) space, with cohesion c, tensile cutoff ¢, and internal
friction p.

The ith realization of a randomly seeded Voronoi
tessellation with a characteristic cell size & will be
denoted Rih. Multiple realizations are shown in Figure 10a,
10b, and 10c for characteristic cell sizes 2.0 (5 cm), 1.0, and
0.5, respectively. Figure 11 shows the fracture surface for the
R)® mesh. Only fracture surfaces whose cohesive traction
behavior has fully softened are shown. There is extensive
fragmentation at the impact corner. Note the bending induced
fracture at the midsection involving crack coalescence and
branching. Figure 12 shows all fracture surfaces including
those whose cohesive tractions are still active. The edge color
represents the maximum achieved crack mouth opening
displacement. The corresponding results for the RIO‘25 mesh
are shown in Figures 13 and 14, respectively. Note that the
crack patterns are qualitatively similar but distinctly different.
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Figure 10. Voronoi mesh realizations for three different
characteristic cell sizes, # = 2.0, = 1.0, and 2 = 0.5. Three
realizations, R, R,, and R; are shown for each characteristic
cell size.

t=1.8ms

t=2.4ms

t=10 ms

Figure 11. Deformed state of the concrete column at a
number of instances in time using the Rlo ° mesh. Only the
crack boundaries that have fully softened (no cohesive
tractions) are shown.



t=2.4ms

Figure 12. Deformed state of the concrete column at a
number instances in time using the R)> mesh. All new crack
surfaces are shown. The crack surfaces that have cohesive
tractions active are colored according to the amount of crack-
mouth opening displacement (red =25 pm).

t=2.4ms

t=4.3ms

Figure 13. Deformed state of the concrete column at a
number of instances in time using the Rlo % mesh. Only the
crack boundaries that have fully softened (no cohesive

tractions) are shown.

t=2.4ms t=4.3ms

Figure 14. Deformed state of the concrete column at a
number instances in time using the R{** mesh. All new crack
surfaces are shown. The crack surfaces that have cohesive
tractions active are colored according to the amount of crack-

mouth opening displacement (red =25 pm).

The maximum principal stress field at a simulation time
of 50 ms is shown in Figure 15 for the R, R;", and Ry°
meshes. The crack patterns are qualitatively similar but
distinctly different. The corresponding results for the Rl1 0,
Ry®, and R;° meshes are shown in Figure 16. The
corresponding results for the R, RS, and R}~ meshes are
shown in Figure 17. Finally, the corresponding results for the
Rlo u Rg % and R? * meshes are shown in Figure 18. Note
that at all refinement levels, the fracture patterns are
qualitatively similar, but distinctly different. Since the
material properties are completely homogeneous, this
difference in crack patterns represents a type of mesh
dependence, albeit unbiased. In a sense, the random Voronoi
edge orientations provide an implicit variation in the
underlying fracture properties of the material.

For this class of problems, in which a multitude of
bifurcations exist in the physical response, a weaker notion of
convergence is more appropriate. It is proposed that
engineering ‘quantities of interest’ should be described in
terms of distributions, commonly referred to as ‘weak
convergence’ or ‘convergence in variation’ in the statistical
community [45]. Possible engineering quantities of interest
include the extent and nature of cracking, fragment-size
distributions, and post-failure structural response.  The



cumulative distribution of fragment size at the simulation time
of 300ms 1is shown in Figure 19 for twelve mesh
realizations RIQ‘S , 1 €{1,2,3,...,12} . Note that each distribution
is distinctly different. Again, since the material properties are
completely homogeneous, the difference in fragment
distributions represents a type of mesh dependence, albeit
unbiased. The corresponding results for the R’* mesh
family are shown in Figure 20. While twelve realizations is a
small sample size for what is expected to be a complex
statistical distribution for fragment size, it is clear that the
distribution of cumulative distributions has not ‘converged’.
The maximum fragment size for each mesh realization at a
simulation time of 300 ms is shown in Figure 21. Results are
given for the mesh resolutions Riz.o , Ril‘o, RIQ‘S , and Rio.zs'
Convergence of this engineering quantity-of-interest is again random mesh
not apparent. Clearly, more research remains, and the realizations
challenge of defining what is meant by ‘convergence’ for
problems exhibiting a multitude of bifurcations is apparent.

R2 R3

g BN

Figure 16. Maximum principal stress field at a simulation
time of 50 ms for the R"’, Ry®, and R;° mesh realizations.
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Figure 15. Maximum principal stress field at a simulation realizations
time of 50 ms for the R}, R;", and R mesh realizations.

Figure 17. Maximum principal stress field at a simulation
time of 50 ms for the R}, Ry~,and RY> mesh realizations.
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R1T R2 R3

random mesh
realizations

Figure 18. Maximum principal stress field at a simulation

time of 50ms for the R, R}, and RJy* mesh
realizations.
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Figure 19. Cumulative distribution of the fragment mass-
fraction at a simulation time of 300 ms for the RIQ‘S ,
ie{l,2,3,...,12} mesh family. The mean of the maximum-
fragment mass-fraction is denoted by the arrow. The standard
deviation of the maximum fragment mass-fraction is given as
well.
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fragment mass fraction (individual)

Figure 20. Cumulative distribution of the fragment mass-
fraction at a simulation time of 300 ms for the Rio‘25 ,
ie€{l,2,3,..,12} mesh family. The mean of the maximum-
fragment mass-fraction is denoted by the arrow. The standard
deviation of the maximum fragment mass-fraction is given as
well.
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Figure 21. The maximum fragment size for twelve mesh
realizations at four characteristic mesh sizes Riz.o , Ril‘o , RIQ‘S ,
and Rio‘25 . The mean of the maximum fragment mass-fraction
is given as well.

To highlight the effect of explicit material property
variation on the fracture process, the simulations for the Rlo 2
mesh where performed with a 5% uniform variation in elastic
modulus and the internal friction u. Twelve realizations of



material properties were produced. The resulting cumulative
fragment distributions are shown in Figure 22. The result for
the nominal material properties (homogenous case) is also
given. Note that the variability in the fragment distributions is
similar to that for the multiple mesh realizations but with
homogenous material properties, as hypothesized earlier.
Future work will focus on including spatially correlated
variations in the element edge fracture properties directly into
the simulation as a possible approach for removing the

observed mesh dependence.
1.0 5

0.9

0.8 -

0.7

with material variability (5%)
nominal

0.6

05 ] 45 deg oblique impact
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Figure 22. Cumulative distribution of the fragment mass-
fraction at a simulation time of 300 ms for the Rl0 ® mesh
using a 5% element variation on elastic modulus and Mohr-
Coulomb failure surface. The homogenous (nominal) case is
given for comparison.

4 CHALLENGES AND NEXT STEPS

The proposed computational methodology for simulating
the pervasive failure of structures is promising. However,
much work remains in demonstrating convergence and
ultimately that the methodology is objective with respect to
mesh refinement. Due to the physical nature of the class of
problems, with a multitude of bifurcations, it is unclear how to
even define convergence, which is necessary condition for
objectivity. The statistical concept of ‘weak convergence’ was
proposed. The use of a non-local model (integral form)
instead of the dynamic insertion of cohesive tractions is
probably more appropriate for this class of problems (as
opposed to single crack propagation). However, their
application to dynamic problems is in the preliminary stages
of research. There are a number of validation problems that
are currently being analyzed with this methodology including
cylindrical and prismatic Brazilian experiments, and three and
four point bend experiments.
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