Applying Structured Requirements to
Infrastructure Process Development Using
TeamCenter SE

Sharon Trauth
Engineering Requirements, Department 2993
Sandia National Laboratories
sltraut@sandia.gov
505-844-1957

Abstract

Delivering process-based infrastructure systems
that meet user needs is seen to translate into a
structured mapping of the user needs to
collections of individual capabilities that, when
structured together, form an overall process flow.
This presentation will highlight the application of
the Teamcenter Systems Engineering (TcSE)
tool to a process development effort. The use of
TcSE in this effort is shown to aid in synthesizing
fundamental process capabilities necessary to
create the infrastructure and in generating a
capability deployment schedule and
corresponding work breakdown structure.

Background

During a Value Stream effort conducted on the
approaches applied to the management and
control of Pro/Engineer solid model files across
the 2990 Design group, the absence of a
consistently applied Configuration Management
(CM) process was identified. A team of
representatives from across the Design Group
was formed to develop the CM process and to
plan the implementation of the associated
infrastructure.

Initial work focused on identifying what the
management and design staff wanted from such
a process and to identify the characteristics of
the incoming design jobs that the staff routinely
faced as they did their work. The incoming job
types, with their associated problems and
complexities had to be addressed by the

SAND2007-5068C

process. The process was engineered to guide staff
through process steps and decisions that would lead to
reduction in redundant and incorrect data and to
generation of information and metadata that could be
more easily referenced and maintained over time.

In addition to the initial set of needs, the pilot process
concepts were reviewed and modifications were
requested by pilot users. Associated infrastructure and
training needs were also identified. The detailed
development of the CM process and its infrastructure
quickly led to a collection of user and process needs
that were difficult at best to use and were virtually
impossible to assure were being addressed. The
process infrastructure itself began to grow in
complexity, and it became unclear to the development
team whether the proper infrastructure elements were
being considered and what their relative priorities were
for implementation.

Structured Requirements

Needs were identified from various sources, such as:

Management

Product definition staff

Pilot users

Trainers

The CM process itself

Individual work scenarios

Technical Business Practice requirements
Information systems

These needs were entered into the commercial tool,
Teamcenter System Engineering. At the start of this
work, team members were not fully experienced in
using the tool to engineer solutions. Several attempts
were made at capturing information such as use case
scenarios, needs, diagrams, and supplemental
requirements. Figure 1 shows an image of the
structure of the TcSE attempts to manage the
information associated with this effort.

One systems engineering capability offered by the
TcSE tool provided means to determine the
infrastructure elements that would need to be

mailto:sltraut@sandia.gov

addressed. Once the major process functions
were identified, prioritization became easier, and
determining feasible solutions to problems
became more manageable.

£ Teamcenter systems engine

File Edit “iew Tools Help

| (@ Bock)] @Fwa [+ | o S B [] |

Address:| i

.

+ 1§ 1SERSH
* B 'Sharon's Mad Laki
% B $TcR Global Schemat
+ B Bas
+ B BRANMS
+ B CARLA
+ @ CCPRT
= B DCMp
+ ﬁ] Actors
Attributes
Buziness Requirements
CCE
Change Reguests
Data Ohjects
Data Reguirements
Detived Requirement=s
Functional Architecture
Glozsary
Groups
Hierarchies
Supplementary Reguirement=
Usze Cases
Uszer needs
Wisio

¥ FHE O EFE R R FEFE

TOCTTTCTTOTETTTTTT

b E

Figure 1: Use of Teamcenter for Analysis of
the DCMP Project

Synthesizing Functional Process Capabilities

After several attempts to analyze the data in
TcSE, developing a functional architecture
became the focus. In developing a functional

architecture, the Systems Engineer develops the
collection of functions that have to be implemented in a
solution to meet the needs of a particular set of
requirements, i.e., to develop a solution to the
particular problem that will meet the requirements.

Figure 2 illustrates the fundamental process
capabilities identified in TcSE as functional architecture
elements. The diagram also shows the first and second
level decomposition, or breakdown, of the fundamental
functions into sub-functions. The lower portions of
Figure 2 illustrate the use of the traceability capabilities
of the TcSE tool. The window in the lower left
indicates that the Associate Multiple Model [files]
functional capability is a sub-function (or sub-process)
of the Create Product Baseline functional capability. It
also illustrates that the Associate Multiple Model [files]
function is driven by 3 requirements. Turning to the
lower right hand window of Figure 2, it is seen that the
Associate Multiple Model [files] function has 5 sub-
processes or sub-functions that comply with {or exist
because of, or trace to}. Functional decomposition of
the system can occur to whatever level of detail or
granularity is necessary to develop a viable functional
solution to the problem.

Depicting Functional Architecture

Figure 3 illustrates the Visio Diagram exported TcSE
and color coded to show the prioritization assigned
(1,2,and 3) for a 3-phased implementation of the
capabilities. Development of a specialized script
function in TcSE permitted the export of the complete
functional architecture into an Excel spreadsheet that
readily was imported into Microsoft Project. Figure 4
illustrates the resultant project Work Breakdown
structure that is fully consistent with the functional
architecture engineered within the TcSE tool.

Summary

The application of the Teamcenter Systems
Engineering (TcSE) software tool provided a
mechanism to capture a number of different types of
information associated with the development of a
process for configuration management of design
definition, in addition to requirements, or needs.

£ Teamcenter systems engineering

File Edit “iew Tools Export Help

|k dorwd]| oh | | ETSPEMY < X| |V CCEs T,

;ﬂ.ddress:| NDCMPFunctionsl Architecture
% Projects : [Matne 4 l’ Munber ” ROIN ” Type Mame][Cre
B 1sERS! _ : —
e — =-EE DOMP Functional Architecture oy, & 1 Building Block shrau
& $TcR Gl E—D—@ Creste Product Bassling & 11 Building Block shrau
0 Ba3 Jj—_g Bazeline models and ass Q 1.11 Building Block darmat
g Ei;t“j + Associate multiple mocel @ 112 Building Block damar
0 COPRT —@ Pernit gaps in baselines : & 113 Building Block darnar
= &R DCMP i:g Cannot overwrite bazelin & 114 Building Block chamar
Ej At + Allawe Ad-Hoc Baselines & 115 Building Block damat
ﬁ Adtril —@ Aoy users to get auth ¢ & 116 Building Block damar
g E;E —@ Ditferent releasze states ¢ & 147 Building Block damat
Ej Chat m—@ Provide Model Metadata & 118 Building Block shraud
@ Data —j—@ Product Data & 1.2 Building Block sitrau
@ Data.a + "fl Capture Product Structur & 1.24 Building Block shtrau
E? EE:; T‘I Provide multiple viewinog r & 122 Building Block shraud
Glos {8 Link Madels to Existing EE & 123 Building Block sfiraul
£ crou i Provide automated conne WG 1.2.4 Building Block sitrad
g :Tpr: :ﬁ capture and link to supple & 125 Bu?ld?ng Elock shraud
E‘J Use il Record Gaps in haseling @& 126 Building Block sftraul
@ Uset TI Query Product Data & 127 Building Block slitraud
Ej “Wisic "f:l Show Pending Changes & 1.28 Building Block shtrau
8 DoMs =) Release Design Definition & 13 Building Block shraul
g EE:HSEE Share and Release Mode NG 1.3.1 Building Block shtraud
0 FOR Junl —j—@ Product [deritifier & 1.4 Building Block shtrau
&) Global D 8l Map to individual svstems Wi 141 Building Block ciamar
8 RS Sch) Training Material availabi WO 1.4.2 Building Block clamar
g P@Téfdnan'lf "fl Automnated & 143 Building Block darnat
B Test J =1 Provide Warkflow Capabilty &5 Building Block shrau
B Testers L__ LB sinek Beest W 1.5.1 Biilci
g ¥$E:::: F Maotebook - Azsociate multiple model files with a production part
g Iiz::::: Properties | S ;ﬂ.ﬁachments| & Linkz | L Connectivity | = Preview | %o vhere Used
ﬁ Recycle [Defining Trace ¢]@ : [Complying Trace ¢ I@
*ﬁl Creste Product Baseline “_‘ Alternate analytical models
= ﬁ Manage all the different models o Dby blocks
ﬁ. Populste Product Data Multiple analytical files
ﬁ. Manage Files in Thin P Shrink Wraps
ﬁ Generate 5 Model Sirnplified reps
2- & Privirde the nﬁlnﬁhilﬂv tn assnciat = Y

Figure 2: DCMP Project Functional Architecture and Traceability in TcSE

Phase1 Phase 2 Phase 3
Create Product
Baseline
. Associate . . llow Ad-Hoe Vlow users fo
aseline models . ermit gaps in . . get auth prod ifferent release .
. multiple model . Cannot overwrite Baselines . Provide Model
and associated - . baselines after . L model not others states across life
! files with a baselines identified by . Metadata
files . DTER . in progress w/o of model
production part designer "NTK"

Figure 3: Visio Functional Diagram (Pink, Blue, & orange represent Phases 1, 2, 3 respectively)

B Microsoft Project - Plan for DCMP. Functional architect

@ Eile Edit ¥iew Insert Format Tools Project Window Help Adobe PC

FARIEA= RENE= RN A NN AN NN N =Nl Ay
e | - | Resources - | Track - | Report - !
i
o Task Name 3, '0B Jul 2,06
ST
1 =l DCMP Functional Architecture I —
2 D =l Create Product Baseline —
3 Baseline models and associated file:
4 # Associate multiple model files with <
10 Permit gaps in baselines after DTER
" # Cannot overwrite haselines
13 * Allow Ad-Hoc Baselines identified by m———
i Allow users to get auth prod model
18 Different release states across life of
19 # Provide Model Metadata
42 = Product Data —
43 * Capture Product Structure
42 =l Provide multiple viewing methods
49 Graphical Tree
S0 = BOM format listing
=1 = Provide Consistent Templates
a2 P¥
“‘-7; a3 AMLRML
'5 4 # Link Models to Existing EBOM Objec ———
t% 6 * Provide automated connections to ¢
G # capture and link to supplemental Inf
89 Record Gaps in baseline records pos
s * Query Product Data
a Show Pending Changes
a5 = Release Design Definition
93 =I Share and Release Models
100 # Different promotion states across
118 # L earn the Process
122 # Issue Authorization
133 Model Fidelity
134 = Product ldentifier
135 # Map to individual systems as provide
140 Training Material Availability
14 # Automated
144 ¥ Provide Workflow Capability

Figure 4: Resultant Microsoft Project Work
Breakdown Structure Exported from TcSE

Engineering a soluton to a collection of
requirements, or needs (ie., developing the
solution) is not accomplished solely through the
management and flow-down of the project
requirements. As solution concepts are explored,
both functional and physical aspects of the solution
evolve. TcSE provided a mechanism to capture
the evolving architectural concepts and to tie those
concepts to the requirements and needs for the
problem solution.

By associating the needs to the architecture, the
system engineer can analyze whether the solution
concepts are viable. In other words, an architecture
that does not address (or trace) to all the
requirements, has to be an incomplete solution, by
definition. Similarly, a solution that has structure
elements that do not map to any requirements is a
solution that either has an incomplete set of
requirements or solves a somewhat different
problem.

This project demonstrated that not only can a tool
such as Teamcenter Systems Engineering be
applied to the development of physical hardware
systems, but also such tool capabilities can assist
in the development of functional capabilities
associated with process implementations.

The results of this initial process development effort
have led to concept explorations for a number of
infrastructure process projects in areas of ES&H,
test equipment design processes, and in
development of standard engineering processes.

To follow-on to the positive results experienced
with the work described here, the author
recommends that process developers go beyond
the typical mapping of external contractual or
customer requirements to process steps in a
particular topic (domain) area. By synthesizing
needs and requirements from a number of various
sources, systems engineers will enable verification
and validation of process functions, development of
streamlined and efficient processes, and
modification of structured processes in response to
changing needs and requirements. Rather than
starting from scratch whenever a new collection of
needs is encountered, the engineer can focus only
on those portions of the process flow and
architecture that really have to change.

References

1. Qperational Concepts and Implementation
Strategies for the Design Configuration
Management ~ Process, =~ SAND2007-3192,
Sandia National Laboratories, Albuquerque,
NM, May 2007. [Unclassified]

2. Design Configuration Management Process
development website:
http://www-
irn.sandia.gov/organization/div2000/ctr2900/dpt
2993/2990%20BOM%20Design%20Process/B
DPIndex.htm

http://www-irn.sandia.gov/organization/div2000/ctr2900/dpt2993/2990%20BOM%20Design%20Process/BDPIndex.htm
http://www-irn.sandia.gov/organization/div2000/ctr2900/dpt2993/2990%20BOM%20Design%20Process/BDPIndex.htm
http://www-irn.sandia.gov/organization/div2000/ctr2900/dpt2993/2990%20BOM%20Design%20Process/BDPIndex.htm
http://www-irn.sandia.gov/organization/div2000/ctr2900/dpt2993/2990%20BOM%20Design%20Process/BDPIndex.htm

