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What’s Next? A subjective Computational Science View

=Achieving Predictive Simulations of Complex Multi-physics Systems (PDEs)

What are multi-physics systems? (A multiple-time-scale perspective)

These systems are characterized by a myriad of complex, interacting, nonlinear
multiple time and length scale physical mechanisms.

These mechanisms can balance to produce:
* steady-state behavior,

 nearly balance to evolve a solution on a dynamical time scale that is long
relative to the component time scales,

 or can be dominated by one, or a few processes, that drive a short
dynamical time scale consistent with these dominating modes.

e.g. Fusion Reactors (Tokomak -ITER; Pulsed - NIF & Z-pinch); Fission

Reactors (GNEP); Astrophysics; Combustion; Chemical Processing; Fuel
Cells; etc.

An Example - Fire simulations (Algorithm R&D Code)
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Multiple-time-scale systems: E.g. Methanol Pool Fire
LES-ksgs and Flamelet Combustion Model (w/ T. Smith — MPSalsa)

2D axisymmetric Simulation

Methanol Plume Fire
Radius of 0.155m

Termp
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Physical time scales (sec.):
« Chemical kinetics: 10-12 to 10-5
« Momentum diffusion: 10-6

Full 3D Simulation (note: non-axisymmetric mode)

I
'?'fa it

» Heat conduction: 10-6

» Convection: 103 to 101

* Buoyancy (puffing freq. = 2.8Hz): 10-1 to 10°
* Meandering mode: 10°



Numerical Solution of Multiple-time-scale Multiphysics Systems

A Perspective:

Historically, linearization, semi-implicit, operator split methods and decoupled
solution strategies were devised out of necessity in a time when limitations in
computer memory and CPU power were acute.

The resulting numerical stability, accuracy and appropriate time step controls
are only heuristically understood, in most cases. Solution of these complex
systems can be fragile and exhibit non-intuitive instabilities or they can be
stable but very inaccurate.

We believe that with the recent significant increase in computing
resources and advances in numerical methods our earlier choices should
be critically evaluated.

We need to pursue new approaches that include robust, accurate,
scalable, efficient and predictive simulation technologies for complex
multi-physics systems.
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Transport/Reaction System: A very broad range of scientific and
engineering applications require the detailed computational analysis of
strongly coupled continuum transport and non-equilibrium reaction
physics with multiple time and length scales.
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Summary of PDE Residual Equations for Transport / Reaction

Systems; Strong Form Seek x>R(x)=0

Governing PDE Residual
Equation
Momentum dl ou
R - (;)+V°(pu®u—T)—pg; T=—(P+%V°u)I+M[Vu+VuT]
Total Mass
0
R, =—p+V'(pu)
ot
Thermal loloT . & n N
Energy RT =CP %+V'([)UT+(1) _®_Q+Ejk.cp,kVT_Ethde)k
k=1 k=1
Voo R —a(pY")+V°( Y o+j )= Wi  k=12..N-1; 'Y =1
Fraction T ot AR e o ,; o

General Case a Strongly Coupled, Multiple Time Scale, Nonlinear,
Nonsymmetric Indefinite System
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Summary of the Computational Formulation
and Numerical Methods

- Time Integration: 1st and 2nd order fully-implicit; adaptive error control e.g. BDF2

- FE Spatial Discretization: Stabilized FE (Hughes et. al.,) 2D/3D linear and
quadratic unstructured FE.

- Parallel Formulation: Nodal based (Chaco/Zoltan), distributed fully summed
matrices with unstructured communication (Trilinos/AztecOO)

- Nonlinear Solver: Inexact Newton method; adaptive convergence criteria and
backtracking (Trilinos/NOX)

- Bifurcation, Stability Analysis and Optimization: Continuation/bifurcation library
(Trilinos/LOCA), eigensystem analysis (ARPACK, Trilinos/Anasazi), multi-
parameter optimization (Dakota, Moocho)

- Linear Solvers: Preconditioned DD and multi-level Krylov methods
(Trilinos/AztecOO/ML)

Solver Software: software.sandia.gov/trilinos
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Why Newton-Krylov Methods?

/ Newton-Krylov \

Fully-implicit transient

Stability and Accuracy Properties

Fx,x,A,A,,A.,..)=0
(X,X,A,4,,45,..) - Stable (stiff systems)
eq * High order methods

g_j " LV ([pcu]””) Ve [Dn+lvcn+l:| +§ =0  ° Variable order techniques

* Local and global error control possible

« Can be stable and accurate run at the
dynamical time-scale of interest in
multiple-time-scale systems
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Operator Splitting Methods can Sometimes Destroy a Critical
Balance Present in the Coupled Physics. (Brusselator)
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Multiple time scales:
Ropp, Shadid, JCP 2004, 2005
Ober, Shadid JCP 2004
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Why Newton-Krylov Methods?

/ Newton-Krylov \

Direct-to-steady-state

Convergence properties

- Strongly coupled multi-physics often
requires a strongly coupled nonlinear
solver

« Quadratic convergence near
solutions (backtracking, adaptive
convergence criteria)

- Often only require a few iterations to
converge, if close to solution,
independent of problem size

F(x,A A, A,.) =0

Inexact Newton-Krylov

e, + o)
o]

Solve Jp, =-F(x,); until =n,

X +1=xk+®pk

k

Jacobian Free N-K Variant

Mp, =v
_Fx+6p)-F(x)

Jp, 3 ; or by AD

See e.g. Knoll & Keyes, JCP 2004
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Why Newton-Krylov Methods?

sy e
/

Convergence
Properties

ERe,

Fully-implicit transient

/LN

Stability

Accuracy

Efficiency
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Exit

=0.0)

Temperature (r=0.25, z

Bifurcation Analysis of a Steady Reacting
H,, O,, Ar, Opposed Flow Jet Reactor

————————— I \———————
02’ Ar Stagnation Zone
Inlet Jet .
Exit Wall Exit Wall = - - %" — —
*}L‘ Streamlines
/ ‘\ Exit R T — e
Exit Wall $f*ff Exit \;\Iall S
Inlet Jet Temperature (Min. 300°K, Max 2727°K)
H,, Ar

-

70 steady state reacting flow solves

3000

2000 t

1000 r

(10 species, 19 reactions)

OH (Min. 0.0, Max 0.177)

T

-

./

L Extinction ’-Sﬁ_lie///
Point
~— (

Stable

Approx. Time scales (sec.):

» Chemical kinetics: 10-12 to 10-4

« Momentum diffusion: 106

* Heat conduction: 106

» Mass diffusion: 10-°to 104

» Convection: 10-5to 104

 Diffusion flame dynamics: 00 (steady)

0 0.05 0.1 0.15

Oxygen mele fraction in upper Inlet

0.2

(w/ Pawlowski, Salinger — MPSalsa) @ Sandia
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Why Newton-Krylov Methods?

F Fully-implicit transient

Convergence
Propert|es

/-h}-
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PDE Constrained Optimization of Poly-Silicon CVD Reactor
Unstructured FE Reacting Flow MPSalsa code

Poly-Silicon Epitaxy
from Trichlorosilane
in Hydrogen Carrier;

3D (u,v,w,P,T)
3 chemical species
1.2M unknowns

= 35
E
N
E
3' 3.0
O}
T
[0
2 25
S
2
& 20 '
A 0 5 10
0D | Objective Function: Radius [cm]
_ 1 2
f=3 (di/dgye™ 1)
radii
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PDE Constrained Optimization of Poly-Silicon CVD Reactor

Vi="Pl; Xpee=Pdr

T=300K

V.=30cms

PDE Constrained
Optimization:

Minimize: f(x,p)
such that: F(x,p)=0

Radius [cm]

W/Pawlowski, Salinger, van Bloemen Waanders, Bartlett, Lin - SNL

&)

Vi=Pl; Xjcg=T Use Newton’s Method
i solve KKT system
V=P3
1 0_3 . B ’g 3.5 T T T T T
Black box — [nitial 1 .
g ] Unks | Procs Time (hrs.
2 — PDE Cons. E —— 4-Param Bound {3%% (hrs.)
3) 3 —— 4-Param Free
g: s 1.2 48 6.2
= o 1 59, (3GHz Cluster)
> & : 4.8M | 128 ~6
6 L o : (Red Storm: XT3)
-4 | ] ] Py
% 10 ] ’_8 _O'SA 38M 1024 ~7
© —~] @ (Red Storm: XT3)
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Why Newton-Krylov Methods?

Direct-to-steady-state Fully-implicit transient

< ‘ > /LN
Convergence Design
Properties Optimization Stability || Accuracy ||Efficiency
Characterization

Complex Soln. Spaces
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Temperature (r=0.25, z

Parallel Scaled Efficiency of 1- level DD Preconditioners:
Steady Reacting H,, O, Opposed Jet Reactor

O,, Ar

Inlet Jet

Exit wall

Stagnation Zone
Exit Wall

3000

R CEER
Exit Wall
Inlet Jet
H,, Ar

e ——
< B ———

Exit Wall

(a) Streamlines

(b) Temp. (Min: 300°K, Max: 2727°K)

c) OH (Min: 0.0, Max: 1.77e-2)

(d) O (Min: 0.0, Max: 5.9e-3)

Oxygen mole fraction in upper Inlet

Num | rf | Num. unknowns avg time | scaled avg time | scaled
[ Extncion | Stable 1 Procs /matrix fill eff. | /linear iter eff.
ink

I 0'21\ ] (sec) (sec)
| Unstable 16| 0 199,374 13.94 — 0.5219 —
v 64 | 1 790,734 13.86 1.01 0.5286 0.99
256 | 2 3,149,454 14.06 0.99 0.5363 0.97

Stable
S o 1024 | 3 12,570,894 13.99 1.00 0.5369 0.97
0 0.05 0.1 0.15 0. Table 8

TFQMR. (10 species, 19 reactions)

Scaled Efficiency of hydrogen/oxygen diffusion flame simulation with DD-ILU
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ML library: Multilevel Preconditioners
(R. Tuminaro, M. Sala)

2-level and N-level Aggressive Coarsening Graph-based Block AMG

« Aggregation is used to produce a coarse operator | * Nonsmoothed aggregation

- Create graph where vertices are block * Domain decomposition smoothers
nonzeros in matrix A, (sub-domain GS and ILU)

- Edge between vertices i and j included if » Coarse grid solver can use fewer
block B,(i,j) contains nonzeros processors than for fine mesh

- Decompose graph into aggregates solve (direct/approximate/iterative)

(subgraphs) [Metis/ParMetis]

« Construction of simple restriction/interpolation
operators (e.g. piecewise constants on agg.)

* Construction of A, ; as A, _; = R,_{ A |4

Level 2 (36 nodes) Level 1 (9 nodes) Level 0 (3) nodes

Aggregation based Multigrid:

* Vanek, Mandel, Brezina, 1996
| * Vanek, Brezina, Mandel, 2001
Aggregation used in DD:
* Paglieri, Scheinine, Formaggia, Quateroni, 1997
» Jenkins, Kelley, Miller, Kees, 2000
Visualization of effect of partition of matrix graph on mesh | * Toselli, Lasser, 2000
- Sala, Formaggia, 2001




Multilevel Preconditioner Scaling Study:
3D Thermal Buoyancy Driven Convection

Preconditioner Comparison: 3D Thermal Convection Problem

1000_ I I IlIlIIl I I IlIlIIl I I Illllll I I IIIIII_
g0 |—®— t-leveDDILU | =
S F|—&— 2-level geom: GS/GMRES(ILU) ]
n soo|{——%— 2-level age, GS/GMRES(ILY) | ________ E
c [ | —— 3-level alge G S/LU/SuperLU ]
[= - " : : ]
T 0P I il HE =
§ - ! : 2048p :
w B00f--------oe- Pommmoomoooo- rommmemmm e =
1 ) - 1 | N
o . : : ]
w 500p----------- b e e -
c N : : ]
=4 N ' ' ]
® 400pF----------- SEREEEEREEEE Rl AEREhbt R bbb -
s : : :
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- 4p | ¥ \ ]
O: L L lllllll 13@1 llllll 25pl llllll‘ ml481plllll;
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Comparison of 1-level with 2-level geometric & algebraic
2D & 3D Thermal Convection Problem

proc |[fine grid 1 - level Method llu DD coarse unknowns 2-I.evel: ilu-superlu .
unknowns geometric algebraic
avg its per time geometric |algebraic Javg its per Jtime |[avg its per [time
Newt step (sec) Newt step |(sec) [Newtstep |(sec)
1 4356 41 23 100 96 29 18 28] 20
41 16,900 98 62 324 320 37 25 401 27
16] 66,564 251 275 1156 1088 40 34 501 39
64| 264,196 603 1,399 4356 4096 38 57 571 69
256] 1,052,676 1,478 8,085 II 16900 | 16384 371 151 63] 191
proc fine grid 1 - level Method llu DD coarse unknowns 2-Igvel: gs2-superlu .
unknowns geometric algebraic
avg its per time geometric |algebraic Javg its per Jtime |avg its per [time
Newt step (sec) Newt step |(sec) |Newt step |(sec)
4]  24.565 40[5] 123 135 120 36[5]| 101 304]| 71
32] 179,685 112[5] 282 625 480 44[4]| 107 50[4]] 109
256| 1.373.125 296[5] 863 3,645 2560 4715} 179 58[4]| 152
2048] 10,733,445 650[9] 2,915 24,565 47[4]| 546 59[4] | 681

Analysis: Sala; Math. Modeling and Numer. Anal., 2004

Sala, Shadid, Tuminaro; accepted in SIMAX
Numerical Exp:
Lin, Sala, Shadid, Tuminaro; accepted in IINME

* Coarse mesh: SuperLU direct solver
* Run on Sandia ASCI Red machine

&)
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Preliminary Scaling with Reactions:
Poly-Silicon CVD

Deposition of poly-Silicon
+ 3 species (8 unknowns per node)

Steady-state calculation restarted from steady-state solution
at lower pressure (one solution in continuation run)

Run on Cplant

proc fine coarser unknowns
unknowns no auxiliary matrix auxiliary matrix
2| 87,400 3560/296/24 17K/1240/120/16
16 636K] 22K/1816/224/72 120K/9096/880/136
128] 4.85M| 161K/12K/1440/368 967K/75K/6744/1296
1-level (ILU) 5-level (GS/ILU/ILU/ILU/KLU) damp 0.67
no auxiliary matrix auxiliary matrix
proc | unknowns| ave its/ time ave its/ time ave its/ time
Newt step (sec) Newt step (sec) Newt step (sec)
2| 87,400 47 [6] 768 67 [6] 659 45 [6] 690
16] 636K 88 [8] 1536] 102 [8] 1254 60 [8] 1202
128] 4.85M 202 [9] 576 182 [9] 3099| 86 [9] 2417"

Aspect Ratio Effect; Even with auxiliary matrix, still does not scale; more work necessary
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Drift-Diffusion Equations for Semiconductor Modeling

Electric

potential V- (¢E)=p-n+C E=-Vy : electric potential
n: electron density
p: hole density

C: doping profile
R: generation-

Jp = ,uppE — DpVp recombination term

Current op
conservation —V Jr= ot + R

“constitutive” relation

Stabilized FE method (Charon - Hennigan, Hoekstra, Lin, Shadid)
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Weak Scaling Study: 1-level and 3-level (with and without EMIN)
2x1.5 micron NPN BJT Steady-State Drift-Diffusion

Charon FEM semiconductor device modeling code

2D steady-state drift-diffusion bias 0.3V

3-level AMG preconditioner (ML library); EMIN2 with block scaling

-

Weak Scaling Study: 1-level, 3-level no EMIN, 3-level EMIN
2x1.5 micron NPN BJT Steady-State Drift-Diffusion (0.3V bias)
1200 T T

" | ——@—— 1-level DD ILU I 1024p

- |——@—— 3-level ML no EMIN |
[~ |[——— 3-level ML with EMIN
1000 === ———= === — — - _— - =

- I I
[ | |
I |

800

600

400

200

Average Iterations per Newton Step

O 1 1 1 Ll 1 11 I L 1 L | I L 1 L L 1 11
10° 10° 10 10°
Total Number of Unknowns

Weak Scaling Study: 1-level, 3-level no EMIN, 3-level EMIN

2x1.5 micron NPN BJT Steady-State Drift-Difffusion (0.3V bias)
350 T T

f I
—@—— 1-level DD ILU 1024p
| ——@—— 3-level ML no EMIN |

|

300 —@— 3-levelMLwithEMIN|] ~— T~ — T
|
|

LB L
|

/O —— - —— = — - — — — — — —

200F — — — — — —

150 — — — — — —

100 — — — — — —

B0F - — - —— — = — —

Time per Newton Step (Preconditioner+Linear Solve) (sec)

Total Number of Unknowns

“Time”: construct preconditioner and perform linear solve @
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Currently: Low Mach number Single Fluid Resistive MHD Formulation

(Unstructured FE)

Conservation Law System

oU

Magnetic Flux

V. —
o ov 0 B=0
v | pvev-L1BeB-T+:L|B|T 0 —0E+ B2 E—eslivi
U=|s | F= pE‘ Tv+ExBrq =| oo z,o;—|>£+2lllB|| E—e+5\|v\|
B 2B-B@v—1(VB-VB) 0
E= —V>\B+T]J—i— (J><B VPe)
Hall
Vector Potential
p 1 pv 0 B=VxA.
U= pPYv F— [)Vi-fv—}ToB&_‘B—T-l- 250 IIBH _ ‘ 0 SA=V(1)[VA—VAT:|
Lot pEv—T-v+ExB+q 0% 40 o
A VO A+AR V——(VA VAT) S 1
A +{A><(va)—(}l—0Vn+v>(V A)—A(V-v)—-V(A-v)

In 2D we have: 24V (ﬂv_ﬂ ) +V (ﬂ)
or o Ho

VA-2(V-v)=0
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Initial Hydro-magnetic Rayleigh-
Bernard Stability Study

VY

4.035e+00
Hydromagnetic Rayleigh-Bernard 2017e+00
stability study (Rigid boundaries): pri o

Thermal Convection above with no
magnetic field (Q = 0) —
Ra_ = 1707.5 (Chandrashekhar) TEMP

2.000e+03

1.500e+03

Stable flow with magnetic field (non- 1000c+03

zero stable flow / magnetics): -0.000¢+00

Ra=2000,Q=4

_VECTOR POTENTIAL
2.000e+00
1.500e+00
1.000e+00

5.000e-01
0.000e+00

v/

7.832e+00
3.916e+00
0.000e+00

-3.916e+00

-7.832e+00

Sandia
National
Laboratories



Initial ML Results on Hydro-magnetic Rayleigh-Bernard Stability Study (Rigid Boundaries)

Thermal Convection with no
magnetic field
(@=0)

Ra, = 1707.5
(Chandrashekhar)

Flow with magnetic field
impulsively turned on:

Ra =2000,Q=4
(stable state is with flow
and magnetics)

Initial Serial Results for aggressive block coarsening AMG

1z
7.832e+00
3.916e+00
0.000e+00
-3.916e+00
-7.832¢+00

Mesh Total method Coarse Linear Its | Construc | Solve
unknowns problem t Time
unknowns Precond. | (sec)
(sec.)
200x80 81,405 1level | ===-- 283 4.0 110
200x80 81,405 2 level 1,625 202 4.7 69
Agg =50
200x80 81,405 2 level 8140 178 5.4 52
Agg =10
400x160 322,805 1level | —===--- 346 15.6 668
400x160 322,805 2 level 6,455 216 21.8 315
Agg =50
Preconditioners
1 Level solver: ILU fill = 2

2 Level solver: fine: ILU fill = 2, Coarse: direct sparse solve (KLU)

(w/ Pawlowski, Banks, Lin)
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Incompressible Fluid Mechanics: A Particular View of Block —— |
Preconditioning (Kay & Loglin; Wathen & Silvester; ElIman.) |

r 1 pT
ForN-S system. | B |[Y]_['] Block LU leads to (S=BF"B").
B 0 ||lp| |O i
F B I O0][F B'
B 0| |BF' Il|lo -=s
Observation: use as Right Preconditioner! - N
(all eigenvalues 1, Jordon blocks of dimension at most 2) F B'][F B' _ I 0
B 0[l0 =S BF™' 1
A heuristic motivation: BT and F contain derivatives. If they can be
commuted, then we can change the order of the operators:
_ -1 pT
F B S—[BFB] A=A,
= ~ n-1
0 -S z[BBTFp_l] Fp=—VAh+u "V,
S =AF,
p p

Solve simplified component systems with parallel aggregation (AMG in
ML); Convection/diffusion and “pressure Poisson”

Fu =rhs
A,p =rhs
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Incompressible Fluid Mechanics: A Comparison of ABF —— |
Preconditioning: Fp, DD ILU with MPSalsa |

Mesh Independence

10°

-
Ou

Log of the residual

-
ou
S

i
Ou
&

-
ou
S

N
Ou
&

Residual Plot for the 2D Lid Driven Cavity - 64 x 64 Grid with Re# 100

— Fp
— ILUT
— SIMPLE

20 30 40 50 60 70 80 90
Number of Iterations

Re Mesh DD Fp Proc
10 64 x 64 79.4 19.4 1
128 x 128 | 220.6 21.2 4
256 x 256 | 1018.6 23.0 16
100 | 64 x 64 86.5 34.2 1
128 x 128 | 300.3 35.9 4
256 x 256 | 1603.9 41.3 16
500 | 64 x 64 89.7 102.2 1
128 x 128 | 334.9 99.5 4
256 x 256 | 5433.1 101.3 16

The values in each column represent the
average number of outer linear iterations per

Newton Step.

CPU Time Comparison
4000 -
3500
m
o 3000
< 2500 o)
£ 2000 .Dl'D
=
E 1500
Q1000
500 .
0 T I T I
< © © <t © © < © ©
© N W0 © N W0 © N W0
X — X «— X «—
< X x < x x < X X
© 0 O © O O © o O
AN ©O AN ©O N 0O
— N - N - N
Re 10 Re 100 Re 500
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MPSalsa Steady Problem Results

2D Flow over a Diamond Obstruction

Re # Unknowns DD C-D Nprocs
10 64K 110.8 (186.6) 20.5 (138.8) 1
256K 284.6 (1657.4) 22.5 (266.2) 4
1M 1329.0 (7825.5) 22.9 (501.0) 16
aM NC (NC) 29.4 (1841.7) 64
25 64K 101.7 (198.8) 32.9 (248.0) 1
256K 273.8 (1583.1) 35.9 (480.6) 4
1M 1104.8 (7631.5) 38.3 (956.9) 16
aM NC (NC) 48.0 (4189.8) 64
40 64K 70.4 (267.2) 54.6 (565.8) 1
256K 203.9 (1420.7) 70.1 (1280.9) 4
1M 997.1 (8188.2) 65.4 (2011.7) 16
aM NC (NC) 79.8 (9387.9) 64
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Transient and Pseudo-transient Solvers:

3D Lid Driven Cavity, N = 64 & Re = 500

* MAC FD scheme used in examples, no upwinding

100 Procs of ASCI — Red Tflop

CEL Time Oseen Sa:tc.ile Ap F _
(secs.) | Steps Solves (press.) (conv. / diff.)
0.1 83.0 2 2 20 2
0.5 85.6 2 2 20 2
1 79.3 2 2 20 2
10 110.0 2 2 20 2
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Multi-level Methods for Coupled Systems of
Equations (ML package in Trilinos)

Low Mach No. Flow / Transport and Compressible Euler / Navier-Stokes
Transport / Reaction - MPSalsa (Nodal FE) - Premo (Vertex based FV)

Drift Diffusion and Radiation Damage models
with Charged Species in Semiconductors
- Charon (Nodal FE)

———J—
__

Electric Potential
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Conclusions

* Newton-Krylov methods can provide a very effective, robust and
flexible solution technology for analysis and characterization of
complex nonlinear solution spaces. For steady state, time dependent
and optimization type solutions.

- High parallel efficiencies for fully-implicit fully coupled Newton-
Krylov iterative solvers for a wide range of problems are possible.

- Parallel multilevel aggressive coarsening block AMG
preconditioners for systems have shown promising results for
algorithmic scalability and CPU time performance of transport
solutions.

(Issues: Strong convection, reaction and FE aspect ratios for
multilevel methods)

- Cray XT3 very capable parallel computing platform. Very good
scaling results on CFD type of simulations.
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Trilinos: Full Vertical Solver Coverage
(Part of DOE: TOPS SciDAC Effort)

D ——

ptimization
Unconstrained:

Find » € R" that minimizes g(u)

Constrained: | Find z e R"™ and ueR"* that MOOCHO
' minimizes g(xz,u) s.t. f(xz,u) =0
Given nonlinear operator F(z,u) € R*T™ — R"
Bifurcation Analysis | OF
/ For F(x,u) =0 find space uweU 98— singular LOCA
x
— .
Transient Problems Solve f(gg(t),x(t),t) =0
/
DAEs/ODEs: t€[0,7],2(0) = zg,z(0) = =g Rhythmos
for xz(t) e R",t € [0,T]
e ——
Nonlinear Problems | Given nonlinear operator F(x,u) € R?T™ — R
| " NOX
Solve F(z)=0 zeR
‘near Problems Given Linear Ops (Matrices) A, B ¢ R"™*" AZE::::SO
Linear Equations: | Solve Azx=1+b for xeR" Ifpack, ML, etc...
Distributed Linear Alge\bﬁ Epetra
Matrix/Graph Equations:] Compute y = Ax; A = A(G); A € RM*" G € F"*"
Vector Problems: Compute y=ax+ Bw,a = {(z,y);z,y € X" Tpetra
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Phase ll: tentative prolongator

For the Laplace equation, the simplest prolongator is:

PG. ) 1 1if i€aggregate j
1, J])= :
b 0 otherwise

The basis functions for the coarse space reads

®,()= 39, 1

Jjeagg;

1D: starting grid and cbj 1D: aggregates and o

P. =
/\<\ | | 1 [ [HA) t

! ! ! ! ! ! Q‘ U Q; U

VRN Y ov ¥ i

&, have high energy (1/h for

linear functions): need to 3
smooth them to improve the _
preconditioner —t— @ e
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Algebraic: Smoothed Aggregation

Easily implemented on unstructured grids, 2D/3D
Simple representation of restriction/prologator operators

(Almost) black-box (for matrices arising from FE
discretization of PDE equations)

Aggregation is performed in 4 steps:
|.  Generation of the aggregates;
[I.  Construction of simple restrictions/prolongators
lll.  Improvement of restrictions/prolongators using (simple) smoothing
V. Construction A,_, as
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Phase |: Construction of the Aggregates

For each level k, create a graph G,:
+ # vertices (G,) = n, / num PDE eqgns
+ An edge between vertices i and j is added iff a,(i,j) = O
+ May ignore "weak’ matrix coupling, e.g.
a(i.j) « max [ay(i.i), a,.))
Decompose G, into subgraphs (called aggregates). Each
aggregate is composed by a set of contiguous vertices.

Oo—0O0—C0O—C0O—C0O—0
O—O0O—CO—C0O—0O—0
O—O0—0 0 00O
O—O0O—0 o
O—O0—0——0—
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Definition of the Aggregates (3)

Using only few levels is very close to two-level domain
decomposition (DD) preconditioners

Aggregation has been used in DD literature:

+ Shallow water equations for 2D (Paglieri, Scheinine,
Formaggia, Quarteroni,1997);

+ 3D potential flows (Formaggia, Scheinine, Quarteroni,1994);
+ Groundwater flows (Jenkins, Kelley, Miller, Kees,2000);

+ Discontinuous Galerkin for advection diffusion (Toselli,Lasser,
2000);

+ Compressible Euler Equations (S.,Formaggia,2001);
+ ...

Abstract Schwarz theory can be used to estimate theoretical
properties for (additive) preconditioners.
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Two-level Schwarz preconditioners

If the coarse space is defined using a coarse grid (Dryja and Widlund, 1989,
Smith Bjorstad and Gropp, 1996):

(Pl a)<C 1+%

If the coarse space is defined using aggregation, with one aggregate per
domain (Lasser and Toselli, 1999):

a1+

If more than 1 aggregate per domain, and H, is aggregate diameter (M.S., PhD
Thesis, 2003):

k(P 4)s c3(1 " %)(1 ; ﬂ)
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Conclusions (contd.)

 Issues with our formulation:

- Some difficulties with un-stabilized oscillations for steady state
simulations.(pressure/velocity coupling — pursue consistency
restoring methods for low order FE , large gradients — non
monotonicity preserving method). Pavel’s talk to follow.

- Experience with some counter intuitive behavior of consistent
stabilized method for small time step sizes.

* Loss of stabilization for small time step sizes

* Loss of second order convergence in time for small time
steps

Current work by Harari, SNL
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