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 What’s Next?  A subjective Computational Science View
⇒Achieving Predictive Simulations of Complex Multi-physics Systems (PDEs)

 What are multi-physics systems? (A multiple-time-scale perspective)
These systems are characterized by a myriad of complex, interacting, nonlinear
multiple time and length scale physical mechanisms.

These mechanisms can balance to produce:

• steady-state behavior,

• nearly balance to evolve a solution on a dynamical time scale that is long
relative to the component time scales,

• or can be dominated by one, or a few processes, that drive a short
dynamical time scale consistent with these dominating modes.

e.g. Fusion Reactors (Tokomak -ITER; Pulsed - NIF & Z-pinch); Fission
Reactors (GNEP);  Astrophysics; Combustion; Chemical Processing; Fuel
Cells; etc.

An Example – Fire simulations (Algorithm R&D Code)

 



Multiple-time-scale systems: E.g. Methanol Pool Fire 
LES-ksgs and Flamelet Combustion Model (w/ T. Smith – MPSalsa)

Full 3D Simulation  (note:  non-axisymmetric mode)2D axisymmetric Simulation

Physical time scales (sec.):
• Chemical kinetics: 10-12 to 10-5

• Momentum diffusion: 10-6

• Heat conduction: 10-6

• Convection: 10-3 to 10-1

• Buoyancy (puffing freq. = 2.8Hz): 10-1 to 100

• Meandering mode: 100



A Perspective:
Historically, linearization, semi-implicit, operator split methods and decoupled
solution strategies were devised out of necessity in a time when limitations in
computer memory and CPU power were acute.
The resulting numerical stability, accuracy and appropriate time step controls
are only heuristically understood, in most cases. Solution of these complex
systems can be fragile and exhibit non-intuitive instabilities or they can be
stable but very inaccurate.

 Numerical Solution of Multiple-time-scale Multiphysics Systems

We believe that with the recent significant increase in computing
resources and advances in numerical methods our earlier choices should
be critically evaluated.
We need to pursue new approaches that include robust, accurate,
scalable, efficient  and predictive simulation technologies for complex
multi-physics systems.



Transport/Reaction System: A very broad range of scientific and
engineering applications require the detailed computational analysis of
strongly coupled continuum transport and non-equilibrium reaction
physics with multiple time and length scales.
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Summary of PDE Residual Equations for Transport / Reaction
Systems; Strong Form Seek

PDE ResidualGoverning
Equation

Species
Mass
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Summary of the Computational Formulation
and Numerical Methods

• Time Integration: 1st and 2nd order fully-implicit; adaptive error control e.g. BDF2

• FE Spatial Discretization: Stabilized FE (Hughes et. al.,) 2D/3D linear and
quadratic unstructured FE.

• Parallel Formulation: Nodal based (Chaco/Zoltan), distributed fully summed
matrices with unstructured communication (Trilinos/AztecOO)

• Nonlinear Solver: Inexact Newton method; adaptive convergence criteria and
backtracking (Trilinos/NOX)

• Bifurcation, Stability Analysis and Optimization: Continuation/bifurcation library
(Trilinos/LOCA), eigensystem analysis (ARPACK, Trilinos/Anasazi), multi-
parameter optimization (Dakota, Moocho)

• Linear Solvers: Preconditioned DD and multi-level Krylov methods
(Trilinos/AztecOO/ML)

Solver Software:  software.sandia.gov/trilinos



Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Stability and Accuracy Properties

• Stable (stiff systems)

• High order methods

• Variable order techniques

• Local and global error control possible

• Can be stable and accurate run at the
dynamical time-scale of interest in
multiple-time-scale systems
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!t / T ~ 1 / 3

Operator Splitting Methods can Sometimes Destroy a Critical
Balance Present in the Coupled Physics. (Brusselator)

~1/100

~1/10

~1/500

!t / T ~ 1 / 3

10-110-210-3

Δt/Tmin

t = 80.0
FI

Multiple time scales:
Ropp, Shadid, JCP  2004, 2005
Ober, Shadid JCP 2004



Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Convergence properties

• Strongly coupled multi-physics often
requires a strongly coupled nonlinear
solver

• Quadratic convergence near
solutions (backtracking, adaptive
convergence criteria)

• Often only require a few iterations to
converge, if close to solution,
independent of problem size
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Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Convergence
Properties

Characterization 
Complex Soln. Spaces

Parameter
Continuation

Bifurcation
Analysis

Stability
Analysis

Stability Accuracy Efficiency



Bifurcation Analysis of a Steady Reacting
H2, O2,, Ar, Opposed Flow Jet Reactor

O2, Ar

H2, Ar

70 steady state reacting flow solves
(10 species, 19 reactions)

Approx. Time scales (sec.):
• Chemical kinetics: 10-12 to 10-4

• Momentum diffusion: 10-6

• Heat conduction: 10-6

• Mass diffusion: 10-5 to 10-4

• Convection: 10-5 to 10-4

• Diffusion flame dynamics:       (steady)!

Streamlines

Temperature (Min. 300oK, Max 2727oK)

OH (Min. 0.0, Max 0.177)

(w/ Pawlowski, Salinger – MPSalsa)



Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Convergence
Properties

Characterization 
Complex Soln. Spaces

Parameter
Continuation

Bifurcation
Analysis

Stability
Analysis

Design
Optimization;

Inverse 
Problems;

Sensitivities 
& Error Est. for

Deterministic (UQ);

UQ Probabilistic
approaches:

• Sampling (e.g
quadrature, MC, etc.),

• Direct (e.g
Polynomial Chaos)



PDE Constrained Optimization of Poly-Silicon CVD Reactor
Unstructured FE Reacting Flow MPSalsa code

3D 2D 1D

di

f
1

2
--- di dave⁄ 1–( )

2

radii

!=

Objective Function:0D

Poly-Silicon Epitaxy
from Trichlorosilane
in Hydrogen Carrier;

3D (u,v,w,P,T)
3 chemical species
1.2M unknowns



PDE Constrained Optimization of Poly-Silicon CVD Reactor

Ω= P3

~Time

Black box

PDE Cons.

Vi=30cms
XTCS=2.4%

Vi= P1; XTCS=P4

Vi= P1; XTCS=P4
Vp= P3, XTCS=0%

Ti=300K Tw=1398K

Ω= P2

PDE Constrained 
Optimization:

Minimize:  f(x,p)
such that:   F(x,p)=0

Use Newton’s Method 
solve KKT system

W/Pawlowski, Salinger, van Bloemen Waanders, Bartlett, Lin - SNL

Initial
4-Param Bound
4-Param Free

5%

35%

0.5% ~ 7
(Red Storm: XT3)

102438M

6.2
(3GHz Cluster)

481.2

~ 6
(Red Storm: XT3)

1284.8M

Time (hrs.)ProcsUnks



Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Convergence
Properties

Characterization 
Complex Soln. Spaces

Design 
Optimization Stability Accuracy Efficiency

Very Large Problems -> Parallel Iterative Solution of Sub-problems

Krylov Methods - Robust, Scalable and Efficient Parallel Preconditioners
• Approximate Block Factorizations
• Physics-based Preconditioners
• Multi-level solvers for systems and scalar equations 



Parallel Scaled Efficiency of 1- level DD Preconditioners:
Steady Reacting H2, O2 Opposed Jet Reactor

O2, Ar

H2, Ar

(10 species, 19 reactions)



ML library: Multilevel Preconditioners

• Aggregation is used to produce a coarse operator
• Create graph where vertices are block

nonzeros in matrix Ak
• Edge between vertices i and j included if

block Bk(i,j) contains nonzeros
• Decompose graph into aggregates

(subgraphs) [Metis/ParMetis]
• Construction of simple restriction/interpolation

operators (e.g. piecewise constants on agg.)
• Construction of Ak-1 as Ak-1 = Rk-1 Ak Ik-1

Level 2 (36 nodes) Level 1 (9 nodes) Level 0 (3) nodes

2-level and N-level Aggressive Coarsening Graph-based Block AMG
(R. Tuminaro, M. Sala)

• Nonsmoothed aggregation
• Domain decomposition smoothers

(sub-domain GS and ILU)
• Coarse grid solver can use fewer

processors than for fine mesh
solve (direct/approximate/iterative)

Visualization of effect of partition of matrix graph on mesh

Aggregation based Multigrid:
• Vanek, Mandel, Brezina, 1996
• Vanek, Brezina, Mandel, 2001

Aggregation used in DD:
• Paglieri, Scheinine, Formaggia, Quateroni, 1997
• Jenkins, Kelley, Miller, Kees, 2000
• Toselli, Lasser, 2000
• Sala, Formaggia, 2001



Multilevel Preconditioner Scaling Study:
3D Thermal Buoyancy Driven Convection



• Coarse mesh: SuperLU direct solver
• Run on Sandia ASCI Red machine

Comparison of 1-level with 2-level geometric & algebraic
2D & 3D Thermal Convection Problem

proc fine grid 1 - level Method Ilu DD

unknowns

avg its per time geometric algebraic avg its per time avg its per time

Newt step (sec) Newt step (sec) Newt step (sec)

1 4356 41 23 100 96 29 18 28 20

4 16,900 98 62 324 320 37 25 40 27

16 66,564 251 275 1156 1088 40 34 50 39

64 264,196 603 1,399 4356 4096 38 57 57 69

256 1,052,676 1,478 8,085 16900 16384 37 151 63 191

algebraic
coarse unknowns

2-level: ilu-superlu

geometric

proc fine grid 1 - level Method Ilu DD

unknowns

avg its per time geometric algebraic avg its per time avg its per time

Newt step (sec) Newt step (sec) Newt step (sec)

4 24.565 40[5] 123 135 120 36[5] 101 30[4] 71

32 179,685 112[5] 282 625 480 44[4] 107 50[4] 109

256 1.373.125 296[5] 863 3,645 2560 47[5] 179 58[4] 152

2048 10,733,445 650[5] 2,915 24,565  47[4] 546   

algebraic
coarse unknowns

2-level: gs2-superlu

geometric

59[4] 681

Analysis: Sala; Math. Modeling and Numer. Anal., 2004
               Sala, Shadid, Tuminaro; accepted in SIMAX 
Numerical Exp: 

Lin, Sala, Shadid, Tuminaro; accepted in IJNME



proc fine

unknowns no auxiliary matrix auxiliary matrix

2 87,400 3560/296/24 17K/1240/120/16

16 636K 22K/1816/224/72 120K/9096/880/136

128 4.85M 161K/12K/1440/368 967K/75K/6744/1296

coarser unknowns

♦ Aspect Ratio Effect; Even with auxiliary matrix, still does not scale; more work necessary

proc unknowns ave its/ time ave its/ time ave its/ time

Newt step (sec) Newt step (sec) Newt step (sec)

2 87,400 47 [6] 768 67 [6] 659 45 [6] 690

16 636K 88 [8] 1536 102 [8] 1254 60 [8] 1202

128 4.85M 202 [9] 5765 182 [9] 3099 86 [9] 2417

1-level (ILU) 5-level (GS/ILU/ILU/ILU/KLU) damp 0.67

no auxiliary matrix auxiliary matrix

♦ Deposition of poly-Silicon
+ 3 species (8 unknowns per node)

♦ Steady-state calculation restarted from steady-state solution
at lower pressure (one solution in continuation run)

♦ Run on Cplant

Preliminary Scaling with Reactions:
 Poly-Silicon CVD



“constitutive” relation

Current
conservation

Electric 
potential ♦ ψ: electric potential

♦ n: electron density
♦ p: hole density
♦ C: doping profile
♦ R: generation-

recombination term

Drift-Diffusion Equations for Semiconductor  Modeling

Stabilized FE method (Charon - Hennigan, Hoekstra, Lin, Shadid) 



Weak Scaling Study: 1-level and 3-level (with and without EMIN)
 2x1.5 micron NPN BJT Steady-State Drift-Diffusion

♦ Charon FEM semiconductor device modeling code
♦ 2D steady-state drift-diffusion bias 0.3V
♦ 3-level AMG preconditioner (ML library); EMIN2 with block scaling

♦ “Time”: construct preconditioner and perform linear solve



Currently: Low Mach number Single Fluid Resistive MHD Formulation
(Unstructured FE)

 

Conservation Law System

Magnetic Flux

Vector Potential

In 2D we have:



Hydromagnetic Rayleigh-Bernard
stability study (Rigid boundaries):

Thermal Convection above with no
magnetic field (Q = 0)
Racr = 1707.5 (Chandrashekhar)

Stable flow with magnetic field (non-
zero stable flow / magnetics):

    Ra = 2000, Q = 4

Initial Hydro-magnetic Rayleigh-
Bernard Stability Study



Thermal Convection with no
magnetic field
(Q = 0)

Racr = 1707.5
(Chandrashekhar)

Flow with magnetic field
impulsively turned on:

    Ra = 2000, Q = 4
    (stable state is with flow
and magnetics)

Initial ML Results on Hydro-magnetic Rayleigh-Bernard Stability Study (Rigid Boundaries)
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52178814081,405200x80

3152166,455322,805400x160

668346-------322,805400x160

110283-----81,405200x80

Solve
Time
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Linear ItsCoarse
problem
unknowns

Total
unknowns

Mesh

Initial Serial Results for aggressive block coarsening AMG

Preconditioners

1 Level solver:          ILU fill = 2
2 Level solver: fine: ILU fill = 2, Coarse: direct sparse solve (KLU)

(w/ Pawlowski, Banks, Lin)



Incompressible Fluid Mechanics: A Particular View of Block
Preconditioning (Kay & Loglin; Wathen & Silvester; Elman.)

♦ For N-S system.                                       Block LU leads to

Observation: use as Right Preconditioner!
 (all eigenvalues 1, Jordon blocks of dimension at most 2)

♦ A heuristic motivation:  BT and F contain derivatives. If they can be
commuted, then we can change the order of the operators:

♦ Solve simplified component systems with parallel aggregation (AMG in
ML); Convection/diffusion and “pressure Poisson”
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Incompressible Fluid Mechanics: A Comparison of ABF
Preconditioning: Fp, DD ILU with MPSalsa

CPU Time Comparison
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Mesh Independence

119.479.464 x 6410
421.2220.6128 x 128
1623.01018.6256 x 256
134.286.564 x 64100
435.9300.3128 x 128
1641.31603.9256 x 256
1102.289.764 x 64500
499.5334.9128 x 128
16101.35433.1256 x 256

ProcFpDDMeshRe

Re 10        Re 100         Re 500

The values in each column represent the
average number of outer linear iterations per

Newton Step.



MPSalsa Steady Problem Results
2D Flow over a Diamond Obstruction

154.6 (565.8)70.4 (267.2)64K40
470.1 (1280.9)203.9 (1420.7)256K

1665.4 (2011.7)997.1 (8188.2)1M
6479.8 (9387.9)NC (NC)4M

132.9 (248.0)101.7 (198.8)64K25
435.9 (480.6)273.8 (1583.1)256K

1638.3 (956.9)1104.8 (7631.5)1M
6448.0 (4189.8)NC (NC)4M

120.5 (138.8)110.8 (186.6)64K10
422.5 (266.2)284.6 (1657.4)256K

1622.9 (501.0)1329.0 (7825.5)1M
6429.4 (1841.7)NC (NC)4M

NprocsC-DDDUnknownsRe #
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110.0
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Time
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2023
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1855
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(press.)

Saddle
Pt.

Solves
Oseen
Steps

Transient and Pseudo-transient  Solvers:
3D  Lid Driven Cavity, N = 64 & Re = 500

• MAC FD scheme used in examples, no upwinding 

100 Procs of ASCI – Red Tflop



 Multi-level Methods for Coupled Systems of
Equations (ML package in Trilinos)

Low Mach No.  Flow / Transport and
Transport / Reaction - MPSalsa  (Nodal FE)

Magnetic Diffusion Solver - Alegra
(Edge based FE)

Drift Diffusion and Radiation Damage models
with Charged Species in Semiconductors
- Charon  (Nodal FE)

Compressible Euler / Navier-Stokes
- Premo (Vertex based FV)



Conclusions
• Newton-Krylov methods can provide a very effective, robust and
flexible solution technology for analysis and characterization of
complex nonlinear solution spaces. For steady state, time dependent
and optimization type solutions.
• High parallel efficiencies for fully-implicit fully coupled Newton-
Krylov iterative solvers for a wide range of problems are possible.
• Parallel multilevel aggressive coarsening block AMG
preconditioners for systems have shown promising results for
algorithmic scalability and CPU time performance of transport
solutions.
(Issues: Strong convection, reaction and FE aspect ratios for
multilevel methods)
• Cray XT3 very capable parallel computing platform. Very good
scaling results on CFD type of simulations.
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Trilinos: Full Vertical Solver Coverage
(Part of DOE: TOPS SciDAC Effort)

Bifurcation Analysis LOCA

DAEs/ODEs:
Transient Problems 

Rhythmos

Nonlinear Problems NOX

Eigen Problems:
Linear Equations:

 Linear Problems                     
AztecOO

Belos
Ifpack, ML, etc...

Anasazi

Vector Problems:
Matrix/Graph Equations:

Distributed Linear Algebra Epetra

Tpetra

Optimization

MOOCHO
Unconstrained:
Constrained:



THE END OF TALK



Phase II: tentative prolongator

♦ For the Laplace equation, the simplest prolongator is:

♦ The basis functions for the coarse space reads
!
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Φi’s have high energy (1/h for
linear functions): need to
smooth them to improve the
preconditioner
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1D: starting grid and ϕj 1D: aggregates and φi



Algebraic: Smoothed Aggregation

+ Easily implemented on unstructured grids, 2D/3D
+ Simple representation of restriction/prologator operators
+ (Almost) black-box (for matrices arising from FE

discretization of PDE equations)

Aggregation is performed in 4 steps:
I. Generation of the aggregates;
II. Construction of simple restrictions/prolongators
III. Improvement of restrictions/prolongators using (simple) smoothing
IV. Construction Ak-1 as

Ak-1 = Rk Ak Pk,   AL = A



Phase I: Construction of the Aggregates

♦ For each level k, create a graph Gk:
+ # vertices (Gk) = nk / num PDE eqns
+ An edge between vertices i and j is added iff ak(i,j) ≠ 0
+ May ignore `weak’ matrix coupling, e.g.

ak(i,j) « max |ak(i,i), ak(j,j)|
♦ Decompose Gk into subgraphs (called aggregates). Each

aggregate is composed by a set of contiguous vertices.



Definition of the Aggregates (3)

♦ Using only few levels is very close to two-level domain
decomposition (DD) preconditioners

♦ Aggregation has been used in DD literature:
+ Shallow water equations for 2D (Paglieri, Scheinine,

Formaggia, Quarteroni,1997);
+ 3D potential flows (Formaggia, Scheinine, Quarteroni,1994);
+ Groundwater flows (Jenkins, Kelley, Miller, Kees,2000);
+ Discontinuous Galerkin for advection diffusion (Toselli,Lasser,

2000);
+ Compressible Euler Equations (S.,Formaggia,2001);
+ …

♦ Abstract Schwarz theory can be used to estimate theoretical
properties for (additive) preconditioners.



Two-level Schwarz preconditioners

♦ If the coarse space is defined using a coarse grid (Dryja and Widlund, 1989,
Smith Bjorstad and Gropp, 1996):

♦ If the coarse space is defined using aggregation, with one aggregate per
domain (Lasser and Toselli, 1999):

♦ If more than 1 aggregate per domain, and H0 is aggregate diameter (M.S., PhD
Thesis, 2003):
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Conclusions (contd.)

• Issues with our formulation:
• Some difficulties with un-stabilized oscillations for steady state
simulations.(pressure/velocity coupling – pursue consistency
restoring methods for low order FE , large gradients – non
monotonicity preserving method). Pavel’s talk to follow.
• Experience with some counter intuitive behavior of consistent
stabilized method for small time step sizes.

• Loss of stabilization for small time step sizes
• Loss of second order convergence in time for small time
steps
 Current work by Harari, SNL


