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Motivation

• Li/(CFx)n batteries have the largest theoretical specific energy 
and capacity of any of the ambient temperature Li-primary 
chemistries.
– 2260 Wh kg-1 assuming one-step reaction CFx + xLi C + xLiF

• Problem: The actual (practical) energy is 

only 10-35% of theoretical due to voltage drop. 
– Theoretical ~ 4.5 V, observed OCV < 3.2 V.

• Our LDRD program is focused on this question:
– Can we detect any ternary compounds that control cell voltage?

• Can we monitor the Li/(CFx)n reaction via XRD?

Focus of this 
presentation



Past in-situ electrochemical experiments have 
employed our “coffee bag” type cell assembly
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Houston, we have a problem…

(CFx)n cathode
material has very 
broad peaks that
occur at low angles
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Bringing X-ray beam in from backside (through
Li anode) enabled detection of (CFx)n cathode.
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We performed in-situ data collection on the inverted cell with 
each XRD scan ~ 1 hr.  The dataset appears very convoluted.
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Contour plot of raw XRD dataset illustrates the
difficulty of obtaining kinetic reaction information.

New problemNew problem:
LiF product peaks 
overlap with Al peaks.
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Automated Spectral Image Analysis 

employs MVA to generate elemental maps 

from massive EDAX datasets.
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‘The  Benefits of an Integrated Full Pattern PXRD Analysis Approach’
T. Degen (PANalytical), DXC 2006, Abstract D099, pp 120.

There have been a few reports demonstrating the
application of Principal Component Analysis to XRD data.

‘Principal Component Analysis of X-ray Diffraction Patterns to Yield 
Morphological Classification of Brucite Particles’
C. Matos, et al, Anal. Chem. 79 2091-2095 (2007).

‘Enhancing the Signal-to-Noise Ratio of X-ray Diffraction Profiles by 
Smoothed Principal Component Analysis’
Z. P. Chen, et al, Anal. Chem. 77 6563-6570 (2005).

‘Determination of Ammonium Nitrate in Dynamite without Separation by 
Multivariate Analysis Using X-ray Diffractometer’
T. Mitsui & M. Satoh, J. Chem. Software*, 4, #1 (1997).

*Online Journal for the Society for Computer Chemistry, Japan (SCCJ)

Multivariate Analysis (MVA)

PCA
Principal 
Component
Analysis



Principal Component Analysis (PCA) is the most 
common form of Multivariate Analysis (MVA).

We assume that the 
entire dataset can be
represented by linear
combinations of all the
diffracting species 

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Two-Theta (deg)

x103

50

100

150

In
te
n
si
ty
(C
o
u
n
ts
)

[Au_nano.raw] PowderCell 2.2
[AlPt.raw] PowderCell 2.2
[lab6.raw] PowderCell 2.2

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Two-Theta (deg)

x103

10

20

30

40

50

60

In
te
n
si
ty
(C
o
u
n
ts
)

[Au_nano.raw] PowderCell 2.2

Nano-Au

AlPt

LaB6superimposed 
XRD patterns

Large
Dataset

1st Cmpt

2nd Cmpt

3rd Cmpt
noise 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Two-Theta (deg)

x10
3

5.0

10.0

15.0

20.0

In
te
n
si
ty
(C
o
u
n
ts
)

[lab6.raw] PowderCell 2.2

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Two-Theta (deg)

x10
3

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

In
te
n
si
ty
(C
o
u
n
ts
)

[Au_nano.raw] PowderCell 2.2

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Two-Theta (deg)

x10
3

10

20

30

40

50

60
In
te
n
si
ty
(C
o
u
n
ts
)

[AlPt.raw] PowderCell 2.2

Cmpt-1

Cmpt-3

Cmpt-2

Each derived component is
mathematically constrained*
to be orthogonal to others

*Note: This constraint is physically meaningless.

Oftentimes one has to modify PCA to improve
the physical assignment of components.



The preliminary PCA analysis shows sensitivity 
to intensity from the electrochemical reaction.
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We improved our analysis by using Multivariate 
Curve Resolution with Alternating Least Squares (MCR-ALS)

MCR-ALS employs physically plausible constraints to 
improve assessment & interpretation of the components.

Cmpt 1 - Cell artifact Cmpt 2 - displacement

Cmpt 1 + Cmpt 2 = “Inert” component (I-Cmpt)

Assumption: Intensity constant but free to shift in 2θ.
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Cmpt 3 [(CFx)n] [LiF] Cmpt 4 – “intermediate”?

The remaining two components yield ‘dynamic’
information about electrochemical reaction.

Assume: same time dependence Assume: non-negative



The weak forth component (Cmpt 4) implies that 
there is an additional species present during discharge.

The following researchers have speculated about an 
intermediate intercalation compound (e.g. CF(x-y)-Li

+)
existing in CFx type electrochemical cells.

Guerin, K., Dubois, M., & Hamwi, A. (2006).  J. Phys. Chem. Solids, 67, 1173-1177. 

Hagiwara, R., Nakajima, T., & Watanabe, N., (1988).  J. Electrochem. Soc., 135, 2128-2133.

Touhara, H., Fujimoto, H., Watanabe, N., & Tressaud, A. (1984). Solid State Ionics, 14, 163-170.

Whittingham, M. S. (1975).  J. Electrochem. Soc., 122, 526-527. 

We shall discuss the 4th component as CF(x-y)-Li
+
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We can now reconstruct the dataset with exclusion
of the I-Cmpt to view the electrochemical behavior.

Log scale contours: red = high intensity, blue = low intensity
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Conclusions

•We have successfully applied Multivariate Analysis 
(MVA) to in-situ XRD data for the extraction of 
electrochemical reaction information.

•During cell discharge, (CFx)n decomposition directly 
correlates to the formation of LiF (i.e. Cmpt-3).

•We observed a weak component (Cmpt-4) which 
obtains maximum concentration at the midpoint of 
cell discharge.

•We have tentatively identified Cmpt-4 as an 
intermediate intercalation phase.

– possible composition CF(x-y)-Li
+

•MVA holds promise for future analysis of 
large XRD datasets.
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