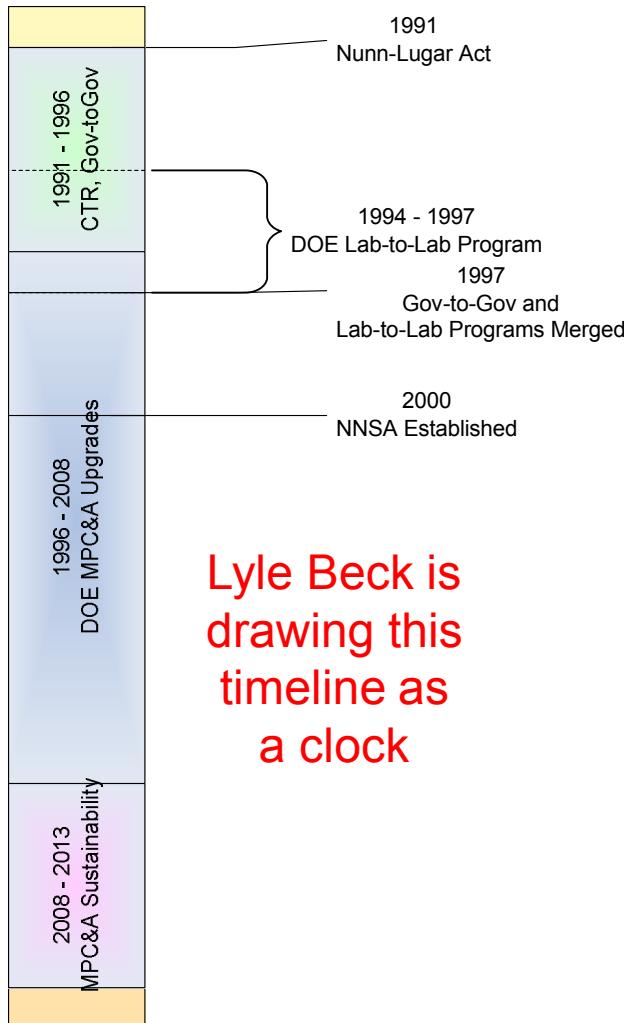

Material Protection, Control and Accounting Lessons Learned Applied to US and RF Nuclear Security Cooperation in 2015

Dori Ellis
Sandia National Laboratories
November 2007



Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

MPC&A Program

1990

- **RF Partners: ROSATOM and RF MOD**
- **Objectives:**
 - **Secure: Install physical security and accountancy upgrades appropriate for:**
 - Material attractiveness
 - Threat of theft
 - **Reduce: Consolidate material**
 - Fewer buildings
 - Fewer sites
 - Convert HEU to LEU
 - **Sustain: Encourage development of Russian capabilities and commitments to operate and maintain the security improvements**

Kola Technical Center

- **Technical Support Center Functions**
 - Training
 - Maintenance and Testing
 - Lifecycle Support
 - Spare Parts Inventory
- **Joint design and planning for transition**
- **Training**
 - “Train the trainer”
 - Courses for maintenance, operations and management of MPC&A systems within the Kola region
 - Russian trainers involved in course development from the beginning
- **Equipment Maintenance and Testing**
 - Equipped with equipment used at sites it supports
 - Mobile maintenance vehicles purchased
 - Distribution center for replacement equipment

Implementation Lessons Learned

- **Training is best institutionalized by involving qualified training developers from the beginning**
- **Train the operational staff to increase the level of on-site field maintenance, especially for remote sites**
- **Match the technology used to the indigenous capability to maintain it**
- **Match the project to the needs – joint requirements and needs analysis**
- **Efficiencies of scale related to training and spare equipment provision can be realized through the use of regional centers with a "depot" level focus**
- **Russian institutes are interested in Western methodologies for gathering and analyzing data on the installed technical systems**

Organizational Lessons Learned

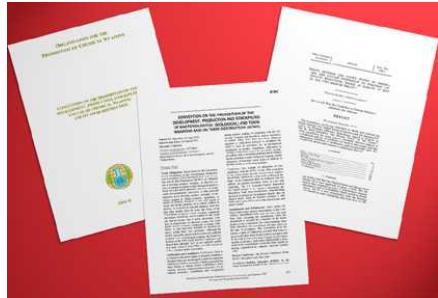
- Commitment at the highest levels within each of the partner organizations and governments has a significant benefit
- Strong relationships contribute to success; as a result it is important to minimize changeover in personnel
- Focus on the most important projects/problems for the maturity level of the collaboration
- Establish a clear legal framework for the cooperation
- Insulate the program from political issues to the extent possible
- Establish efficient organizational structures and delegate programmatic decision-making authority as low as possible

A New US-RF Nuclear Cooperation Framework: Potential Objectives

- **Global leadership in nuclear safety and security (RF and US using their collective expertise to push for more effective nuclear security)**
- **Enhanced sustainable worldwide security of global nuclear material stockpiles, including material consolidation, inventory reduction to necessary levels, and robust material controls**
- **Commitment to safe, secure, and proliferation resistant growth of nuclear energy**
- **Investment in science and technology development to enable affordable and sustainable nuclear safety and security**
- **Measures to combat terrorism including security of nuclear sources**

Image: US-Russian Flags, crossed

Potential Areas of Cooperation



- **Joint implementation projects based on high security experience and technical expertise (for example expedited denuclearization of a clandestine nuclear program)**
- **Joint technology development projects (sensors, assessment, access delay, simulation and modeling, measurement methods, etc.)**
- **Joint technology performance testing projects (tests of systems against capabilities of evolving threats including cyber and other highly technical attack methods)**
- **Observation and evaluation of large scale security exercises**
- **Joint training and technical exchanges both bilateral (RF-US) and trilateral (RF-US-IAEA)**
- **Hyper awareness of threat changes (sharing of information on adversary capabilities, tactics, and targets)**

Suggestions for Implementing a New Partnership Framework

- Establish a Framework Agreement for the Elements of the Partnership, as Appropriate
- Create Charter, Organizational Structure, and Project Implementation Plan for Activities under the New Partnership
- Address visa issues
- Identify funding source and scope
- Jointly develop and select a number of pilot projects, for example:
 - Joint technical exchanges with other weapons states hosted by the US/RF in nuclear weapons safety and security.
 - Small joint implementation project to secure nuclear material in a third country.

Conclusion

- The time is right for the formation of a new partnership for global nuclear security with the RF and US
- The goals for this new partnership should include:
 - Worldwide nuclear safety and security leadership
 - Commitment to the safe, secure, and proliferation resistant growth of nuclear energy
 - Measures to combat terrorism including the security of nuclear sources
 - Science and technology collaboration to enable joint goals
- Starting the process today will ensure a strong, fully implemented global nuclear security partnership between the RF and US in 2015 and beyond