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Motivation
Number of ensembles to reduce ‖E[u− uN ]‖L2(D) by 104

MC(≈ 2.1e+ 08) AFTP(63)

ISTP(49) ASTP(15)
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Stochastic formulation of uncertainty

Consider an elliptic operator L, linear or nonlinear, on a domain
D ⊂ Rd, which depends on some coefficients a(ω, x) with x ∈ D,
ω ∈ Ω and (Ω,F , P ) a complete probability space. The forcing
f = f(ω, x) and the solution u = u(ω, x) are random functions.

L(a)(u) = f in D (1)

equipped with suitable boundary conditions.

A1. the solution to (1) has realizations in the Banach space
W (D), i.e. u(·, ω) ∈W (D) almost surely

‖u(·, ω)‖W (D) ≤ C‖f(·, ω)‖W ∗(D)

A2. the forcing term f ∈ L2
P (Ω;W ∗(D)) is such that the solution

u is unique and bounded in L2
P (Ω;W (D)).
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Examples
Linear and Nonlinear Elliptic SPDEs

Example: The linear elliptic problem{
−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,

with a(ω, ·) uniformly bounded and coercive and f(ω, ·) square
integrable with respect to P , satisfies assumptions A1 and A2 with
W (D) = H1

0 (D).
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Examples
Linear and Nonlinear Elliptic SPDEs

Example: The linear elliptic problem{
−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,

with a(ω, ·) uniformly bounded and coercive and f(ω, ·) square
integrable with respect to P , satisfies assumptions A1 and A2 with
W (D) = H1

0 (D).

Example: The nonlinear elliptic problem
Similarly, for k ∈ N+,{
−∇ · (a(ω, ·)∇u(ω, ·)) + u(ω, ·)|u(ω, ·)|k = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,

satisfies assumptions A1 and A2 with W (D) = H1
0 (D) ∩ Lk+2(D)
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On finite dimensional noise
Nonlinear Coefficients

N terms Karhunen-Loève expansion of z = log(a− amin):

log(aN − amin) = b0(x) +
N∑
n=1

√
λn bn(x)Yn(ω)

(λn, bn(x)) eigenpairs of TCov[z] and the random variables Yn
satisfy E[Yn] = 0, Cov[Yn, Ym] = δnm.
Γn ≡ Yn(Ω) and WLOG we assume Yn(ω) to be bounded.
(i.e. Γn = [−1, 1]), ΓN =

∏N
n=1 Γn where N ∼ O(10).

[Y1, Y2, . . . , YN ] have a joint p.d.f. ρ : ΓN → R+, with
ρ ∈ L∞(ΓN ), i.e. for y ∈ ΓN

P
(
Z ∈ γ ⊂ ΓN

)
=
∫
γ
ρ(y) dy

GOAL: approximate a deterministic bounded functional E[J (uN )]
or

E[uN ](x) =
∫
ΓN

uN (y, x)ρ(y)dy, y ∈ ΓN , x ∈ D
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Regularity

Let Γ∗n =
∏N

j=1
j 6=n

Γj , and let y∗n denote an arbitrary element of Γ∗n.

Assumption: Regularity
For each yn ∈ Γn, there exists τn > 0 such that the function
uN (yn,y∗n, x) as a function of yn, uN : Γn → C0(Γ∗n;W (D))
admits an analytic extension u(z,y∗n, x), z ∈ C, in the region of
the complex plane

Σ(Γn; τn) ≡ {z ∈ C, dist(z,Γn) ≤ τn}.

Moreover, ∀z ∈ Σ(Γn; τn),

‖uN (z)‖C0(Γ∗n;W (D)) ≤ λ

with λ a constant independent of n.
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Applications to linear elliptic SPDEs

By the Lax-Milgram theorem ∃! u ∈ HP = L2
P (Ω;H1

0 (D)) s.t.∫
D

E[a∇u · ∇v] dx =
∫
D

E[fv] dx ∀ v ∈ HP

‖u‖HP ≤
CP
amin

(∫
D

E[f2] dx
)1/2

“Deterministic” equivalent:
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Applications to linear elliptic SPDEs

By the Lax-Milgram theorem ∃! u ∈ HP = L2
P (Ω;H1

0 (D)) s.t.∫
D

E[a∇u · ∇v] dx =
∫
D

E[fv] dx ∀ v ∈ HP

‖u‖HP ≤
CP
amin

(∫
D

E[f2] dx
)1/2

“Deterministic” equivalent: a↔aN , f↔fN
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Applications to linear elliptic SPDEs

By the Lax-Milgram theorem ∃! u ∈ HP = L2
P (Ω;H1

0 (D)) s.t.∫
D

E[a∇u · ∇v] dx =
∫
D

E[fv] dx ∀ v ∈ HP

‖u‖HP ≤
CP
amin

(∫
D

E[f2] dx
)1/2

“Deterministic” equivalent: find uN ∈ Hρ = L2
ρ(ΓN ;H1

0 (D)) s.t.∫
ΓN

ρ (aN∇uN ,∇v)L2(D) dy =
∫
ΓN

ρ (fN , v)L2(D) dy, ∀ v ∈ Hρ.
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0 (D)) s.t.∫
ΓN

ρ (aN∇uN ,∇v)L2(D) dy =
∫
ΓN

ρ (fN , v)L2(D) dy, ∀ v ∈ Hρ.

Consider uN : ΓN → H1
0 (D)∫

D
aN (y)∇uN (y)·∇φdx =

∫
D
fN (y)φdx, ∀φ ∈ H1

0 (D), ρ-a.e. in ΓN .
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Applications to nonlinear SPDEs

Well-posedness of u ∈ H̃P ≡ L2
P (Ω;H1

0 (D) ∩ Lk+2(D)) s.t.

F (u) = 1
2

∫
D

E
[
a|∇u|2

]
dx+ 1

k + 2

∫
D

E
[
|u|k+2

]
dx−

∫
D

E [f u] dx.

1 Coercivity Condition, i.e. there exists ε, δ > 0 s.t.

F (u) ≥ ε ‖u‖2
H̃P
− δ.

2 F is weakly lower semicontinuous on H̃P , i.e.

F (u) ≤ lim inf
k→∞

F (uk) whenever uk ⇀ u weakly in H̃P

3 Existence and Uniqueness of a minimizer, i.e. ∃ !u ∈ H̃P s.t.
F (u) = min

w∈H̃P
F (w)

C. Webster, http://www.cs.sandia.gov/~webster | Anisotropic Sparse Collocation for SPDEs 9/34

http://www.cs.sandia.gov/~webster


Problem Setting Linear/Nonlinear elliptic SPDEs SCFEM ASG-SCFEM Error Analysis Numerical examples Conclusions

Applications to nonlinear SPDEs

Well-posedness of u ∈ H̃P ≡ L2
P (Ω;H1

0 (D) ∩ Lk+2(D)) s.t.

F (u) = 1
2

∫
D

E
[
a|∇u|2

]
dx+ 1

k + 2

∫
D

E
[
|u|k+2

]
dx−

∫
D

E [f u] dx.

1 Coercivity Condition, i.e. there exists ε, δ > 0 s.t.

F (u) ≥ ε ‖u‖2
H̃P
− δ.

2 F is weakly lower semicontinuous on H̃P , i.e.

F (u) ≤ lim inf
k→∞

F (uk) whenever uk ⇀ u weakly in H̃P

3 Existence and Uniqueness of a minimizer, i.e. ∃ !u ∈ H̃P s.t.
F (u) = min

w∈H̃P
F (w)

C. Webster, http://www.cs.sandia.gov/~webster | Anisotropic Sparse Collocation for SPDEs 9/34

http://www.cs.sandia.gov/~webster


Problem Setting Linear/Nonlinear elliptic SPDEs SCFEM ASG-SCFEM Error Analysis Numerical examples Conclusions

Applications to nonlinear SPDEs (contd)

Theorem (Well-posedness)

u ∈ H̃P is a minimizer of F (u) iff it is a weak solution, i.e.∫
D

E [a∇u · ∇v] dx+
∫
D

E
[
u |u|kv

]
dx−

∫
D

E [fv] dx = 0, ∀v ∈ H̃P

and the following a priori estimates hold:

‖u‖2HP ≤
4CP
a2
min

E
[
‖f‖2L2(D)

]
, ‖u‖2

H̃P
≤ 2
C(k)

(
CP
amin

E
[
‖f‖2L2(D)

])
Consider uN : ΓN → Lk+2(D) ∩H1

0 (D).∫
D
aN (y)∇uN (y)·∇φdx+

∫
D
uN (y) |uN (y)|kφdx =

∫
D
fN (y)φdx,

for all φ ∈ Lk+2(D) ∩H1
0 (D), ρ-a.e. in ΓN .
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Region of Analyticity

Assume aN is a log-truncated Karhunen-Loève expansion and fN
deterministic then the analyticity region Σ(Γn; τn):

τn = 1
δ
√
λn‖bn‖L∞(D)

δ = 4 (linear), δ = 12 (nonlinear, k = 1)

√
λn‖bn‖L∞(D) → 0 as n→∞

anisotropic behavior with respect to the “direction” n
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Stochastic Collocation FEM

decouples computations as Monte Carlo does,
treats efficiently the case of non independent random variables
introducing an auxiliary density
ρ̂(y) =

∏N
n=1 ρ̂n(yn), ∀y ∈ ΓN , and s.t.

∥∥∥ρρ̂∥∥∥L∞(ΓN )
<∞,

deals with unbounded random variables in the input data,
essentially preserves the convergence speed to the stochastic
Galerkin FEM.
effectively handle problems that depend on random input data
described by a moderately large number of random variables
with the use of sparse collocation tensor product techniques
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L(aN )(uN ) = fN in D. (2)

Approximating spaces: Let Th be a triangulation of D and

p = (p1, . . . , pN ) a multi-index.
Wh(D) ⊂W (D) contains continuous piecewise polynomials
defined in Th.
Pp(ΓN ) ⊂ L2

ρ(ΓN ) is the span of tensor product polynomials
with deg ≤ p.

Stochastic collocation ⇐⇒uNh (yk) := πhuN (yk) ∈Wh(D),
yk ∈ ΓN

Example: The linear SPDE
Let the semi-discrete approximation uNh : ΓN →Wh(D) ⊂ H1

0 (D),
satisfy, for a.e y ∈ ΓN ,∫

D
aN (y)∇uNh (y) · ∇φh dx =

∫
D
fN (y)φh dx, ∀φh ∈Wh(D).
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∑
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The anisotropic sparse grid SCFEM
An anisotropic (dimension weighted) Smolyak method I

Let i ∈ N+ and for u ∈ C0(Γ1;W (D)) define U 0 = 0,

U i(u)(y) =
mi∑
j=1

u(yij) · lij(y) and ∆i = U i −U i−1

lij ∈ Ppi(Γ1) are Lagrange polynomials of degree pi = mi − 1.
Basic idea: Consider the general class of simplices i ·α ≤ q where

α = (α1, α2, . . . , αN ) ∈ RN
+ with α := min

1≤n≤N
αn

is a N -dimensional weight vector for each stochastic direction.
For w ∈ N, the anisotropic Smolyak algorithm is given by:

Aα(w,N) =
∑

i∈Xα(w,N)

(
∆i1 ⊗ · · · ⊗∆iN

)

Xα(w,N) =
{

i ∈ NN
+ , i ≥ 1 :

N∑
n=1

(in − 1)αn ≤ wα
}
.
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The anisotropic sparse grid SCFEM
Anisotropic Smolyak for non-nested abscissas

Equivalently, for w ∈ N and α ∈ RN
+ :

Aα(w,N) =
∑

i∈Yα(w,N)
cα(i)

(
U i1 ⊗ · · · ⊗U iN

)

with
cα(i) :=

∑
j∈{0,1}N

i+j∈Xα(w,N)

(−1)|j|

and
Yα(w,N) := Xα(w,N) \Xα

(
w − |α|

α
,N

)
.

To compute Aα(w,N)(u) sample the “sparse grid”

Hα(w,N) =
⋃

i∈Yα(w,N)

(
ϑi1 × · · · × ϑiN

)
.
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Generated anisotropic sparse grids
Clenshaw-Curtis abscissas, N = 2

N = 2 anisotropic sparse grid: Aα(w, 2)

α2/α1 = 1 α2/α1 = 1.5 α2/α1 = 2

w = 0
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Generated anisotropic sparse grids
Clenshaw-Curtis abscissas, N = 2

N = 2 anisotropic sparse grid: Aα(w, 2)

α2/α1 = 1 α2/α1 = 1.5 α2/α1 = 2

w = 1
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Generated anisotropic sparse grids
Clenshaw-Curtis abscissas, N = 2

N = 2 anisotropic sparse grid: Aα(w, 2)

α2/α1 = 1 α2/α1 = 1.5 α2/α1 = 2

w = 2
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Generated anisotropic sparse grids
Clenshaw-Curtis abscissas, N = 2

N = 2 anisotropic sparse grid: Aα(w, 2)

α2/α1 = 1 α2/α1 = 1.5 α2/α1 = 2

w = 3
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Generated anisotropic sparse grids
Clenshaw-Curtis abscissas, N = 2

N = 2 anisotropic sparse grid: Aα(w, 2)

α2/α1 = 1 α2/α1 = 1.5 α2/α1 = 2

w = 4
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Generated anisotropic sparse grids
Clenshaw-Curtis abscissas, N = 2

N = 2 anisotropic sparse grid: Aα(w, 2)

α2/α1 = 1 α2/α1 = 1.5 α2/α1 = 2

w = 5
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Generated anisotropic sparse grids
Clenshaw-Curtis abscissas, N = 2

N = 2 anisotropic sparse grid: Aα(w, 2)

α2/α1 = 1 α2/α1 = 1.5 α2/α1 = 2

w = 6
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Generated anisotropic sparse grids
Clenshaw-Curtis abscissas, N = 2

N = 2 anisotropic sparse grid: Aα(w, 2)

α2/α1 = 1 α2/α1 = 1.5 α2/α1 = 2

w = 7
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Generated C-C anisotropic sparse grids
Correspondng indices (i1, i2) ∈ Xα(7, 2)
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Constructing general simplices
A priori, A posteriori α-weights

The rationale behind our anisotropic sparse grid approach is based
on an examination of the total error

ε = ‖uN − INp uN‖L2
ρ(ΓN ;W (D)),

produced by anisotropic full tensor product polynomial
interpolation on Gaussian abscissas.

When ε ≈ ε1 + · · ·+ εN is divided equally among the random
variables ⇒ isotropic Smolyak algorithm
When ε ≈ ε1 + · · ·+ εN is dominated by certain directions ⇒
anisotropic Smolyak algorithm

Basic Idea: for n = 1, 2, . . . , N link αn-weights with the rate of
exponential convergence in the corresponding stochastic direction.

A priori or A posteriori
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Case N = 1:
Lemma: Best approximation error
Given a function v ∈ C0(Γ1;W (D)) which admits an analytic
extension in the region of the complex plane
Σ(Γ1; τ) = {z ∈ C, dist(z,Γ1) ≤ τ} for some τ > 0, there holds

Emi ≡ min
w∈Vmi

‖v − w‖C0(Γ1;W (D)) ≤ C%−mi ,

1 < % = 2τ
|Γ1|

+
√

1 + 4τ2

|Γ1|2
and C is a constant dependent on τ .

Case N > 1: the size of the analyticity region will depend, in
general, on the direction n and it will be denoted by τn:

Assume: %n ≥ eg(n), g(n) > 0 and Define: αn = g(n)

Notation: α = g = min
1≤n≤N

{g(n)} and G (N) =
∑N
n=1 g(n).
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A priori or A posteriori

A priori knowledge: (Linear SPDE)
First estimate the size of the analyticity region τn
For n = 1, 2, . . . , N define the weight α = g ∈ RN

+ as follows:

g(n) = log
(

2τn
|Γn|

+
√

1 + 4τn2

|Γn|2

)

A posteriori information: (Nonlinear SPDE)
From the previous Lemma we expect an error decay of the
form:

εn ≈ dn%n−pn , for all n = 1, 2, . . . , N,

pn is the number of collocation points in the direction n.
To compute the weight vector g = α ∈ RN

+ , g ≈ log(%):

log10(εn) ≈ log10(dn)−pn log10(%n) ≈ log10(dn)−pn log10(e)g(n).
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A posteriori selection: N = 11

{
−∇ · (a(ω, ·)∇u(ω, ·)) + (u(ω, ·))2 = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D

Figure: A linear least square approximation to fit log10(‖E[εn]‖L2(D))
versus pn. For n = 1, 2, . . . , N = 11 we plot: on the left, the highly
anisotropic case Lc = 1/2 and on the right, the isotropic case Lc = 1/64.
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Error analysis
Analysis of the interpolation error

Our aim is to give a priori estimates for the total error:

ε = u− uNh,p = u−Aα(w,N)πhuN

Aα(w,N) is the anisotropic Smolyak sparse interpolant
πh is the finite element projection operator
uNh,p is the fully discrete approximation∥∥∥E[u− uNh,p]

∥∥∥
W (D)

≤ E
[∥∥∥u− uNh,p∥∥∥

W (D)

]
≤
∥∥∥u− uNh,p∥∥∥

L2
P (Ω;W (D))

.

‖u−Aα(w,N)πhuN‖ ≤ ‖u− uN‖ + ‖uN − πhuN‖
+ ‖πhuN −Aα(w,N)πhuN‖

‖πhuN −Aα(w,N)πhuN‖L2
ρ,N
∼ ‖uN −Aα(w,N)uN‖L2

ρ,N
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Clenshaw-Curtis interpolation estimates
Convergence wrt the level w

Theorem [NTW,07]
For functions u ∈ L2

ρ(ΓN ;W (D)) satisfying the Regularity
Assumption, the anisotropic Smolyak method with the choice
αn = g(n) of the weights satisfies:

‖(IN −Aα(w,N)) (u)‖L2
ρ(ΓN ;W (D)) ≤ Ĉ(g, N)ew−λ(w,N)

λ(w,N) :=


w
g log(2)e

2
, if 0 ≤ w ≤ G (N)

g log(2) ,

G (N)
2

2w
g

G (N) , otherwise

,

and the function Ĉ(g, N) does not depend on w.
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Theorem [NTW,07]
Let η = η(w,N) = #Hα(w,N), then for u ∈ L2

ρ(ΓN ;W (D))
satisfying the assumptions of the previous Theorem, the
anisotropic Smolyak method with the choice αn = g(n) of the
weights satisfies:

• Algebraic convergence
(

0 ≤ w ≤ G (N)
g log(2)

)
, s.t. g ≥ 1/(e log(2))

‖(IN −Aα(w,N)) (u)‖ρ,N ≤ Ĉ(g, N)η−µ1 ,

with µ1 =
g log(2)e− 1

log(2) +
∑N
n=1 g/g(n)

and constant Ĉ(g, N) independent of η.



Theorem [NTW,07]
Let η = η(w,N) = #Hα(w,N), then for u ∈ L2

ρ(ΓN ;W (D))
satisfying the assumptions of the previous Theorem, the
anisotropic Smolyak method with the choice αn = g(n) of the
weights satisfies:

• Sub-exponential convergence
(
w > G (N)

g log(2)

)

‖(IN −Aα(w,N)) (u)‖ρ,N ≤ Ĉ(g, N)(2η)1/ log(2)e−
G (N)

2 ηµ2
,

with µ2 =
g log(2)

G (N)
(
log(2) +

∑N
n=1 g/g(n)

)
and constant Ĉ(g, N) independent of η.
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Numerical examples
The problems we consider are:{
−∇ · (aN (ω, ·)∇uN (ω, ·)) = fN (ω, ·) in Ω×D

uN (ω, ·) = 0 on Ω× ∂D{
−∇ · (aN (ω, ·)∇uN (ω, ·)) + (uN (ω, ·))2 = fN (ω, ·) in Ω×D

uN (ω, ·) = 0 on Ω× ∂D

with D =
{
x = (x, z) ∈ R2 : 0 ≤ x, z ≤ 1

}
and a deterministic

load fN (ω, x, z) = cos(x) sin(z)

log(aN (ω, x)− 0.5) = 1 + Y1(ω)
(√

πL

2

)1/2

+
N∑
n=2

βn ϕn(x)Yn(ω).

βn :=
(√
πL
)1/2 exp

(
−
(
bn2 cπL

)2
8

)
, if n > 1

ϕn(x) :=
{

sin
(
bn2 cπx

)
, if n even,

cos
(
bn2 cπx

)
, if n odd .
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Calculating the weighting parameters

E[Yn] = 0 and E[YnYm] = δnm for n,m ∈ N+, and are taken
uniform in the interval [−

√
3,
√

3].
To resolve the noise Wh(D) ≡ span of continuous piecewise
quadratic functions over a uniform triangulation of D with
maximum mesh size h = 1/3N . (Smallest Period T = 4/N)
i.e. for N = 11 we have 4225 FE unknowns.

%n = 2τn
|Γn|

+
√

1 + 4τn2

|Γn|2
≥ eg(n)

Where the weight vector g becomes:

g(n) =


log

(
1 +

√
1

24
√
πL

)
, for n = 1

log
(

1 +
√

1
48
√
πL

exp
(
bn2 c

2π2L2

8

))
, for n > 1
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g(1) g(2, 3) g(4, 5) g(6, 7) g(8, 9) g(10, 11)
L = 1/2 0.20 0.19 0.42 1.24 3.1 5.8
L = 1/64 0.79 0.62 0.62 0.62 0.62 0.62

Table: The N = 11 values of the function g(n) constructed from a priori
information. The components of α = g are used as the input information
for the anisotropic Smolyak algorithm with correlation lengths L = 1/2
and L = 1/64.

To study the convergence of the anisotropic algorithm we consider
a fixed dimension N = 5, 11 and estimate the error:

‖E[ε]‖L2(D) ≈ ‖E[Aα(w,N)πhuN −Aα̂(w + 1, N)πhuN ]‖L2(D)

w = 0, 1, . . . , w and Aα̂(w + 1, N)πhuN is an enriched
solution that is an approximation to the exact solution.
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Anisotropic Smoyak rate of convergence
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Anisotropic Smoyak convergence
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Convergence Comparisons I
N = 11 random variables
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Convergence Comparisons II
N = 11 random variables

L AS AF IS MC
1/2 50 252 2512 5.0e+ 09
1/4 158 1259 3981 2.0e+ 09
1/16 199 1958 501 1.6e+ 09
1/64 316 199530 360 1.3e+ 09

Table: For ΓN , with N = 11, we compare the number of deterministic
solutions required by the Anisotropic Smolyak (AS) using
Clenshaw-Curtis abscissas, Anisotropic Full Tensor product method (AF)
using Gaussian abscissas, Isotropic Smolyak (IS) using Clenshaw-Curtis
abscissas and the Monte Carlo (MC) method using random abscissas, to
reduce the original error by a factor of 104.
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Convergence Comparisons: Nonlinear SPDE
N = 17 random variables
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Concluding remarks

Extended [Nobile-Tempone-Webster, 2006] using an
anisotropic sparse grid stochastic collocation method for
solving linear and nonlinear elliptic SPDEs whose coefficients
and forcing terms depend on a moderately large number of
random variables.
Sparse grid Stochastic Collocation FEM yields:
- uncoupled deterministic problems (fully parallelizable)
- reduces considerably the curse of dimensionality.
- for the problems under study the displayed convergence is
faster than standard collocation techniques built upon full
tensor product spaces, the isotropic sparse grid methods and
Monte Carlo.
The analysis reveals that if u has an analytic extension w.r.t.
the noise =⇒ (sub)-exponential or algebraic convergence of
the “probability error” w.r.t. the total number of collocation
points
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