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@ Problem setting

9 Applications to linear and nonlinear elliptic SPDEs
© Stochastic Collocation FEM

@ Anisotropic sparse grid Stochastic Collocation FEM
© Error Analysis

@ N u mel’ica I exam ples Sandia is a multiprogram laboratory operated by

Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s
National Nuclear Security Administration under
contract DE-AC04-94-AL85000.

@ Concluding remarks
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Sandia
Stochastlc formulatlon of uncertainty ="

Consider an elliptic operator £, linear or nonlinear, on a domain
D c R?, which depends on some coefficients a(w, x) with 2 € D,
w € Qand (Q,F, P) a complete probability space. The forcing
f = f(w,x) and the solution u = u(w, x) are random functions.

La)(u) = f in D (1)

equipped with suitable boundary conditions.
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Consider an elliptic operator £, linear or nonlinear, on a domain
D c R?, which depends on some coefficients a(w, x) with 2 € D,
w € Qand (Q,F, P) a complete probability space. The forcing
f = f(w,x) and the solution u = u(w, x) are random functions.

Ll@)(w) = f in D (1)
equipped with suitable boundary conditions.

Aj. the solution to (1) has realizations in the Banach space
W (D), i.e. u(-,w) € W(D) almost surely

[u(-, )llwpy < CIFCw)llwe(p)
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Consider an elliptic operator £, linear or nonlinear, on a domain
D c R?, which depends on some coefficients a(w, x) with 2 € D,
w € Qand (Q,F, P) a complete probability space. The forcing
f = f(w,x) and the solution u = u(w, x) are random functions.

Ll@)(w) = f in D (1)
equipped with suitable boundary conditions.

Aj. the solution to (1) has realizations in the Banach space
W (D), i.e. u(-,w) € W(D) almost surely

[u(-, )llwpy < CIFCw)llwe(p)

Aj. the forcing term f € L%(2; W*(D)) is such that the solution
u is unique and bounded in L%(Q; W (D)).
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Linear and Nonlinear Elliptic SPDEs ADsparinent ofErrgy

al Laboratory

Example: The linear elliptic problem

-V - (a(w, ) Vu(w,-)) = flw,:) inQxD,
u(w, -) 0 on Q x 0D,

with a(w, -) uniformly bounded and coercive and f(w,-) square
integrable with respect to P, satisfies assumptions A; and As with
W(D) = Hy(D).

C. Webster, http://www.cs.sandia.gov/~webster | Anisotropic Sparse Collocation for SPDEs 5/34


http://www.cs.sandia.gov/~webster

Setting Linear/Nonlinear elliptic SPDEs SCFEM ASG-SCEEM Error-Analysis Numerical examples Conc

Examples

Linear and Nonlinear Elliptic SPDEs

Example: The linear elliptic problem

{ —V - (a(w, )Vu(w,")) = f(w,") inQx D,
u(w,) =0 on Q x 9D,

with a(w, ) uniformly bounded and coercive and f(w,-) square
integrable with respect to P, satisfies assumptions A; and As with
W(D) = Hy(D).

| A

Example: The nonlinear elliptic problem
Similarly, for k € NT,

{—V (a(w, ) Vu(w, ) + u(w, Y|u(w,)|* = flw,r) inQx D,
u(w,) =0 on Q x 0D,

satisfies assumptions A; and Ay with W (D) = H}(D) N L*+2(D)

v
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Nonlinear Coefficients

N terms Karhunen-Loéve expansion of z = log(a — amin):

N
log(an — amin) = bo(z) + Y VA by (2)Yn(w)

n=1

(A, bn (7)) eigenpairs of Ty, [, and the random variables Y,
satisfy E[Y,,] = 0, Cov[Y,,, Yiu] = dnm.-
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On finite dlmen5|ona| noise @” L

lahura(ones
Nonlinear Coefficients

N terms Karhunen-Loeve expansion of z =log(a

log(aN amzn = bO + Z yors b

n=1
@ (A, bn()) eigenpairs of Ty, and the random variables Y,

satisfy E[Y,,] =0, Cov[Y,,, Yin] = dnm.-

o I'), =Y,(22) and WLOG we assume Y, (w) to be bounded.
(ie. Ty = [-1,1]), TV = [I2_, T, where N ~ O(10).

@ [Y1,Ys,...,Yy] have a joint p.d.f. p: 'V — R, with
pe LX) ie. foryecl

]P’(ZG’VCFN) Ap(y)dy

GOAL: approximate a deterministic bounded functional E[7 (uy)]
or

- amm)'

Elun)(@) = [ un(.2)p@)dy. yer zeD
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Let I'y = H%1 I';, and let y;, denote an arbitrary element of I'},.
Jj#n

Assumption: Regularity

For each y, € I';,, there exists 7,, > 0 such that the function
un (Yn, ¥5, ) as a function of y,, uy : Iy, — CO(T%; W (D))
admits an analytic extension u(z,y},x), z € C, in the region of
the complex plane

N(Tn; ) = {2z € C, dist(z,Ty) < 7}
Moreover, ¥z € X(I'y; 7p),

lun (2)llcorswpy) < A

with A a constant independent of n.
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Applications to linear elliptic SPDEs @ &

By the Lax-Milgram theorem 3! u € Hp = L%(Q; HY(D)) s.t.

/E[aVu'Vv}dx:/E[fv}dx Vve Hp
JD JD
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By the Lax-Milgram theorem 3! u € Hp = L%(Q; HY(D)) s.t.

/ E[laVu - Vv|dz = / E[fv]de Yve Hp
JD CP . D‘ 1/2
e < 5 ([ B )

mwn
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Applications to linear elliptic SPDEs @ &
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By the Lax-Milgram theorem 3! u € Hp = L%(Q; HY(D)) s.t.

/ E[laVu - Vv|dz = / E[fv]de Yve Hp
JD CP . D‘ 1/2
e < 5 ([ B )

mwn

“Deterministic” equivalent: a«—ay, f< fxn
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Applications to linear elliptic SPDEs @ &

By the Lax-Milgram theorem 3! w € Hp = L%(Q; H} (D)) s.t.

/E[aVu-Vv}dm:/ E[fv]de Yv e Hp
D D

[ aC—P </D E[f dl‘)l/2

min

“Deterministic” equivalent: find uy € H, = L2(I'N; Hj (D)) s.t.

/‘ p (anVun, Vv)r2py dy = / p (fN,0)r2py dy, Vv € Hp
N N
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Applications to linear elliptic SPDEs @ &

By the Lax-Milgram theorem 3! u € Hp = L%(2; Hi (D)) s.t.

/‘ E[aVu-VU}d.r:/ E[fv]de Yve Hp
JD . D 12
e < 2 ([ Bl de)

Amin

“Deterministic” equivalent: find uy € H, = L?)(FN;H&(D)) s.t.
/ p (anVun, Vv)r2py dy = / p (fN,v)r2py dy, Vv € Hp.
v vy

Consider uy : TV — H{ (D)

/D an () Vun (y) Vo dz = /D In(y)bds, Yo e HAD), pae. inTV.
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Well-posedness of u € Hp = L%(Q; HY (D) N LF2(D)) s.t.

1
F(u) = §/ E [a,|Vu|ﬂ dT—Fi/
JD

u|k+2} dm—/DE[f u] dx.
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Well-posedness of u € Hp = L%(Q; HY (D) N LF2(D)) s.t.

1
35(?1,):5/ E[a,|Vu|2} dT—Fi/ \U|k+2 dx— / E[fu]
JD

@ Coercivity Condition, i.e. there exists ¢,0 > 0 s.t.

F(u) > elul’ 6.

@ .7 is weakly lower semicontinuous on /p, i.e.

F(u) <liminf.Z (u;) whenever wuj — u weakly in Hp

k—o0

© Existence and Uniqueness of a minimizer, i.e. dlu € ﬁp s.t.

F(u) = min 7 (w)
weHp
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Applications to nonlinear SPDEs (contd) @ &

Theorem (Well-posedness)

w e Hp is a minimizer of .% (u) iff it is a weak solution, i.e.

/E[aVu-Vv] d:z:—l—/]E{u]u\kv} dx—/E[fv] dzr=0,VYv e Hp
D D D

and the following a priori estimates hold:

Il < 2 (I emy] T, < s (3B (1))

min mwn

4

C. Webster, http://www.cs.sandia.gov/~webster | Anisotropic Sparse Collocation for SPDEs 10/34


http://www.cs.sandia.gov/~webster

Linear/Nonlinear elliptic SPDEs SCFEM ASG-SCEEM Error-Analysis Numerical exampl

Applications to nonlinear SPDEs (contd) @)

Theorem (Well-posedness)

w e Hp is a minimizer of .% (u) iff it is a weak solution, i.e.

/E[aVu-Vv] d:z:—l—/]E{u]u\kv} dx—/E[fv] dzr=0,VYv e Hp
D D D

and the following a priori estimates hold:

Il < 2B (1) I, < g (3B [I£1am))

min mzn

4

Consider uy : TN — LE2(D) N HY(D).
[ an)Vun () Vodet [ un(y) luw(w)Pode = | fwods.
D JD D

for all ¢ € L*2(D) N HY(D), p-a.e. inTV.

C. Webster, http://www.cs.sandia.gov/~webster | Anisotropic Sparse Collocation for SPDEs 10/34


http://www.cs.sandia.gov/~webster

Linear/Nonlinear elliptic SPDEs
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Region of Analyticity (Df=m

Assume ay is a log-truncated Karhunen-Loeve expansion and fx
deterministic then the analyticity region X(T',; 7,,):
1

Tn = ¢
OV)‘ngnHLW(D)
9 =4 (linear), 6 = 12 (nonlinear, k = 1)

Vv )\ngnHLOO(D) —0asn— o0

anisotropic behavior with respect to the “direction” n
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@ decouples computations as Monte Carlo does,

@ treats efficiently the case of non independent random variables
introducing an auxiliary density

py) = Hﬁle Pn(yn), Yy € 'V, and s.t.

@ deals with unbounded random variables in the input data,

< 00,

o
PllLeem)

@ essentially preserves the convergence speed to the stochastic
Galerkin FEM.

o effectively handle problems that depend on random input data
described by a moderately large number of random variables
with the use of sparse collocation tensor product techniques
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E(G,N)(UN) = fN in D. (2)

Approximating spaces: Let 7}, be a triangulation of D and

p = (p1,...,pN) a multi-index.
e Wy(D) C W(D) contains continuous piecewise polynomials
defined in 7},.
o Pp(I'Y) C Lz(FN) is the span of tensor product polynomials
with deg < p.
Stochajx\?tic collocation < u} (y;) := mun(yr) € Wi(D),
yr €

Example: The linear SPDE

Let the semi-discrete approximation u? : 'V — W,,(D) C H}(D),
satisfy, for a.e y € 'V,




L(an)(un) = fn in D. (2)

Approximating spaces: Let 7}, be a triangulation of D and

p = (p1,...,pN) a multi-index.
e Wy(D) C W(D) contains continuous piecewise polynomials
defined in 7p,.

o Pp(I'Y) C L%(FN) is the span of tensor product polynomials
with deg < p.



L(an)(un) = fn in D. (2)

Approximating spaces: Let 7}, be a triangulation of D and

p = (p1,...,pN) a multi-index.
e Wy(D) C W(D) contains continuous piecewise polynomials
defined in 7.
o Pp(I'Y) C Lf,(FN) is the span of tensor product polynomials
with deg < p.
Stochaja\?tic collocation < u}Y (y;) := mun(yr) € Wi(D),
yr €T



[:(GN)(UN) = fN inD. (2)

Approximating spaces: Let 7}, be a triangulation of D and

p = (p1,...,pN) a multi-index.
e Wy (D) C W(D) contains continuous piecewise polynomials
defined in 7.
o Pp(I'Y) C LZ(FN) is the span of tensor product polynomials
with deg < p.
Stochzja\?tic collocation < u}Y (y;) := mun(yr) € Wi(D),
yr €T

Example: The linear SPDE

Let the semi-discrete approximation u® : 'V — W},(D) c H}(D),
satisfy, for a.e y € 'V,




Approximating spaces: Let 7}, be a triangulation of D and
p = (p1,...,pN) a multi-index.
e Wy(D) C W(D) contains continuous piecewise polynomials

defined in 7},.
o Pp(I'N) C LZ(I'N) is the span of tensor product polynomials
with deg < p.
Stochastic collocation < u} (v;.) == mpun (i) € Wi(D),
yr € TN

Example: The linear SPDE

Let the semi-discrete approximation u® : 'V — W},(D) C H}(D),
satisfy, for a.e y € TV,

/DaN(y)VUh() V¢hd90—/ INW)pndz, Von € Wi(D).

Fully discrete approximation uy , € CO(T'N;W),(D)) is given by

uh,p U? ’ Zu l/ka
k
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The anisotropic sparse grid SCFEM (Df=m

An anisotropic (dimension weighted) Smolyak method |

Let i € Ny and for u € CO(I''; W(D)) define ° = 0,

m;
Y ()y) = Y uly)) Ly) and A= -2
j=1
° lé € P, (I'!) are Lagrange polynomials of degree p; = m; — 1.
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The anisotropic sparse grid SCFEM (Df=m

An anisotropic (dimension weighted) Smolyak method |

Let i € Ny and for u € CO(I''; W(D)) define ° = 0,

m;
U (u)(y) = Zu(y;) Ui(y) and A'=%" - i1
j=1
o lé‘ S Ppi(rl) are Lagrange polynomials of degree p; = m; — 1.

e of Ener
National Laboratory

Basic idea: Consider the general class of simplices i - o < ¢ where

N . .
o= (o1,09,...,ay) € R with o := min «
( s X2, ) N) + 189 1<n<N n

is a IN-dimensional weight vector for each stochastic direction.
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The anisotropic sparse grid SCFEM (Df=m
An anisotropic (dimension weighted) Smolyak method | A Dl o B
Let i € Ny and for u € CO(I''; W(D)) define ° = 0,
m;
w'(u)(y) =) uly;) - li(y) and A'=2"—U"
j=1

° lé € Ppi(l"l) are Lagrange polynomials of degree p; = m; — 1.
Basic idea: Consider the general class of simplices i - o < ¢ where

N . .
o= (o1,09,...,ay) € R with o := min «
( s X2, ) N) + 189 1<n<N n

is a IN-dimensional weight vector for each stochastic direction.
For w € N, the anisotropic Smolyak algorithm is given by:

Da(w,N)= 3 (Ah@- @A)

i€eXq(w,N)
N
Xa(w,N) = {i eNYi>1: Z(in — Day, < wg} .
n=1
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. 7 R . Sandia
The anisotropic sparse grid SCFEM (Df=m

Anisotropic Smolyak for non-nested abscissas

Equivalently, for w € N and o € Rf:

Ma(va) = Z Ca(i) (‘OZ//L'1 ®...®@/i1\r)

i€Yq (w,N)
with
cali):i= > (=DM
je{o,1} vV
i+jeXq (w,N)
and

Vo (w, N) = Xog(w, N) \ Xoo (w - @ N> .

To compute o (w, N)(u) sample the “sparse grid”

Halw,N) = | (wlx---xﬁm).
i€Yg (w,N)
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Generated anisotropic sparse grids (Df=m

Clenshaw-Curtis abscissas, N = 2  Depertentar Enercy

National Laboratory

N = 2 anisotropic sparse grid: /g (w,2)

()Q/Oqzl ag/a1:1.5 ()/,2/041:2

w =20
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. . 4 7 3 Sandia
Generated anisotropic sparse grids (Df=m

Clenshaw-Curtis abscissas, N = 2  Depertentar Enercy

National Laboratory

N = 2 anisotropic sparse grid: /g (w,2)

()Q/Oqzl ag/a1:1.5 ()/,2/041:2

w=1
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Generated anisotropic sparse grids (Df=m

Clenshaw-Curtis abscissas, N = 2 o1 Eerey

aboratory

N = 2 anisotropic sparse grid: /g (w,2)

()Q/Oqzl ag/a1:1.5 ()/,2/041:2
w =2

C. Webster, http://www.cs.sandia.gov/~webster | Anisotropic Sparse Collocation for SPDEs 16/34


http://www.cs.sandia.gov/~webster

blem Setting Linear/Nonlinear elliptic SPDEs SCFEM ASG-SCEEM Error-Analysis Numerical examples Co

. . 4 Sandia
Generated anisotropic sparse grids (Df=m

Clenshaw-Curtis abscissas, N = 2 ent ol Enrgy

N = 2 anisotropic sparse grid: /g (w,2)

()Q/Oqzl ag/a1:1.5 ()/,2/041:2

w=3
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. . 4 Sandia
Generated anisotropic sparse grids (Df=m

Clenshaw-Curtis abscissas, N = 2 FRaentl Eeroy

I Laboratory

Laa-in . ¥ . T La - - . . [ . - . -
& H I
.
b} B B 0 0} [ F H r H
.
& . -
L B L L
Lomam sl e ia e a i Lomasin i e e s e a i e Lomam s mioa ia e a i
i
- . -
L H L L
- . . . - . - . .
.
- . -
Lo inoiow I3 T ) [ e - pE— & [ ot . Lo -

()Q/Oqzl ag/a1:1.5

w =4
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. . 4 Sandia
Generated anisotropic sparse grids (Df=m

Clenshaw-Curtis abscissas, N = 2 FRaentl Eeroy

I Laboratory

AR 1 ! :
:
:
:
;
:
B H A
- . i . - -
S R R RER RRr St R e Fodoa w Lo - - - Ny loaw - SR S - T - -

()Q/()q =1.5

Q
Do
~
2
I
—

w=2>5
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. . 4 Séqdia
Generated anisotropic sparse grids (Df=m

Clenshaw-Curtis abscissas, N = 2  Depertentar Enercy

lational Laboratory

N = 2 anisotropic sparse grid: /g (w,2)

[ quensigasiasaioegesioessagios Laseio aia ie g oiaie aces [asaio abaie b aiaio ase
| H 1 B H i} H
i . H
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. . 3 Sandia
Generated C-C anisotropic sparse grids (Df=m

Correspondng indices (i1,i2) € Xa(7,2)
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inear/Nonlinear elliptic SP CFEM ASG-SCEEM Error Anal

: ! : i @gan.dial
Constructing general simplices e

A priori, A posteriori ai-weights

The rationale behind our anisotropic sparse grid approach is based
on an examination of the total error

N
€= ”uN - Z.p uNHL%(FN;W(D))v

produced by anisotropic full tensor product polynomial
interpolation on Gaussian abscissas.
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’roblem Setting Linear/Nonlinear s SCFEM

. . . ‘V Sandia
Constructing general simplices () =

Laboratories
A priori, A posteriori ai-weights

The rationale behind our anisotropic sparse grid approach is based
on an examination of the total error

N
€= ”uN - Z.p uNHL%(FN;W(D))v
produced by anisotropic full tensor product polynomial
interpolation on Gaussian abscissas.

@ When € = g1 + -+ - + en is divided equally among the random
variables = isotropic Smolyak algorithm

@ When € &~ &1 + -+ en is dominated by certain directions =
anisotropic Smolyak algorithm

Basic Idea: for n =1,2...., N link a,-weights with the rate of
exponential convergence in the corresponding stochastic direction.

A priori or A posteriori
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Case N = 1:

Lemma: Best approximation error

Given a function v € C°(I'Y; W (D)) which admits an analytic
extension in the region of the complex plane
N(Y7)={z€C, dist(z,T'!) < 7} for some 7 > 0, there holds

Em, = min [lv—wlgoryw(py < Co™™,

m;

2 472
1<p= ’F—Z’ +4/1+ ]FlP and C is a constant dependent on 7.




Case N = 1:

Lemma: Best approximation error

Given a function v € C°(I'Y; W (D)) which admits an analytic
extension in the region of the complex plane
N(Y7)={z€C, dist(z,T'!) < 7} for some 7 > 0, there holds

Em, = min [lv—wlgoryw(py < Co™™,

m;

2 472
1<p= ’F—Z’ +4/1+ ]FlP and C is a constant dependent on 7.

Case N > 1: the size of the analyticity region will depend, in
general, on the direction n and it will be denoted by 7,:

Assume: o, > /" ¢(n) > 0 and Define: a, = g(n)

Notation: o = g = 1imn {g(n)} and 9(N) =N, g(n).



roblem Setting Linear/Nonlinear elliptic SP SCFEM ASG-SCEEM Error-Analysis N

A priori or A posteriori (Df=m

ent of Energy
al Laboratory

A priori knowledge: (Linear SPDE)
o First estimate the size of the analyticity region 7,
@ Forn=1,2,..., N define the weight « = g € Rf as follows:

2T

‘Fn|

g(n) =log
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oblem Setting Linear/Nonlinear elliptic SPDEs SCFEM ASG-SCEEM Error-Analysis Numerical examples Conclus

A priori or A posteriori (Df=m

A Depar
National Laboratory

A priori knowledge: (Linear SPDE)
o First estimate the size of the analyticity region 7,
@ Forn=1,2,..., N define the weight « = g € Rf as follows:

27n 47,2
1(n) =1 1 -
g(n) = log (Fn| +4/1+ |Fn2>

A posteriori information: (Nonlinear SPDE)
@ From the previous Lemma we expect an error decay of the
form:
En ~ dpop P, foralln=1,2,..., N,

Pr, is the number of collocation points in the direction n.
@ To compute the weight vector g = a € RY, g ~ log(0):

logy(en) ~ log1o(dn)—pnlogig(on) ~ logio(d,)—pnlogig(e)g(n).
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Linear/Nonlinear elliptic SPDEs SCFEM ASG-SCEEM Error-Analysis Numerical examples Co

. . , Sandia
A posteriori selection: N = @{“:.:Lﬂz?énes

—V - (a(w, ) Vu(w, ) + (u(w,-)?* = flw,-) inQxD,
0 on ) x 9D

1<N<I11&L.=1/2 1<N<I11&L.=1/64

log,o(L? error)

#épointsé # poiArlts
Figure: A linear least square approximation to fit log, (|| Elen]||2(p))
versus p,. Forn=1,2,..., N = 11 we plot: on the left, the highly
anisotropic case L. = 1/2 and on the right, the isotropic case L. = 1/64.
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inear/Nonlinear e C S C A FEM Error Analysis N

. Sandia
Error analysis (Df=m

Analysis of the interpolation error

Our aim is to give a priori estimates for the total error:

e=u—uf

p = U— Ya(w, N)mpuy

@ o (w, N) is the anisotropic Smolyak sparse interpolant

@ 7, is the finite element projection operator

N

ouhp

is the fully discrete approximation
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inear/Nonlinear e C S C A FEM Error Analysis N

. Sandia
Error analysis (Df=m

Analysis of the interpolation error

Our aim is to give a priori estimates for the total error:

e=u—uf

p = U— Ya(w, N)mpuy

@ o (w, N) is the anisotropic Smolyak sparse interpolant

@ 7, is the finite element projection operator

N

ouhp

is the fully discrete approximation

Bl — b, ) <E M“ - “ﬁprwJ S ER Y PP
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inear/Nonlinear e C S C A FEM Error Analysis N

. Sandia
Error analysis (Df=m

Analysis of the interpolation error

Our aim is to give a priori estimates for the total error:

e=u—uf

p = U— Ya(w, N)mpuy

@ o (w, N) is the anisotropic Smolyak sparse interpolant

@ 7, is the finite element projection operator

N

ouhp

is the fully discrete approximation

Bl — b, ) <E M“ - “ﬁprwJ S ER Y PP

|lu — P (w, N)mpupn||
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inear/Nonlinear e C S C A FEM Error Analysis N

. Sandia
Error analysis (Df=m

Analysis of the interpolation error

Our aim is to give a priori estimates for the total error:

e=u—uf

p = U— Ya(w, N)mpuy

@ o (w, N) is the anisotropic Smolyak sparse interpolant

@ 7, is the finite element projection operator

N

ouhp

is the fully discrete approximation

Bl — b, ) <E M“ - “ﬁprwJ S ER Y PP

|lu — do(w, N)mpun]|] < ||lu—un||
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inear/Nonlinear e C S C A FEM Error Analysis N

. Sandia
Error analysis (Df=m

Analysis of the interpolation error

Our aim is to give a priori estimates for the total error:

e=u—uf

p = U— Ya(w, N)mpuy

@ o (w, N) is the anisotropic Smolyak sparse interpolant

@ 7, is the finite element projection operator

N

ouhp

is the fully discrete approximation

Bl — b, ) <E M“ - “ﬁprwJ S ER Y PP

|lu — do(w, N)mpun|] < ||lu—un|| + |[un — Trun]|
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roblem Setting Linear/Nonlinear s SC ASG-SCEEM Error-Analysis Numerical exam

Error analysis (Df=m

Analysis of the interpolation error

Our aim is to give a priori estimates for the total error:

e=u—uf

p = U— Ya(w, N)mpuy

@ o (w, N) is the anisotropic Smolyak sparse interpolant

@ 7, is the finite element projection operator

N
h,p

Bl — b, ) <E M“ - “ﬁprwJ S ER Y PP

@ u; _ is the fully discrete approximation

|lu — do(w, N)mpun|] < ||lu—un|| + |[un — Trun]|

+ lmpun — Do (w, N)mpun ||
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roblem Setting Linear/Nonlinear s SC ASG-SCEEM Error-Analysis Numerical exam

Error analysis (Df=m

Analysis of the interpolation error

Our aim is to give a priori estimates for the total error:

e=u—uf

p = U— Ya(w, N)mpuy

@ o (w, N) is the anisotropic Smolyak sparse interpolant

@ 7, is the finite element projection operator

N
h,p

Bl — b, ) <E M“ - “ﬁprwJ S ER Y PP

@ u; _ is the fully discrete approximation

|lu — do(w, N)mpun|] < ||lu—un|| + |[un — Trun]|

+ lmpun — Do (w, N)mpun ||

‘ Imhun = Ha(w, N)mpunllpz -~ [lun — Sa(w, N)un|z
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>etting Linear/Nonlinear elliptic SPDEs SCFEM ASG-SCEEM Error-Analysis Numerical examples Conc

Clenshaw-Curtis interpolation estimates (Df=m

Convergence wrt the level w

Theorem [NTW,07]

For functions u € L%(FN; W (D)) satisfying the Regularity
Assumption, the anisotropic Smolyak method with the choice
ayn, = g(n) of the weights satisfies:

(I = o, N)) Wl emw oy < Cle Ne =)

G(N)
2 I If 0 S w S gjllog(g)v
AMw, N) := :
N -
g(Z)TU”(N) , otherwise

and the function C(g, N) does not depend on w.
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Theorem [NTW,07]

Let n = n(w, N) = #5#4(w, N), then for u € L%(FN; W (D))
satisfying the assumptions of the previous Theorem, the
anisotropic Smolyak method with the choice «,, = g(n) of the
weights satisfies:

e Algebraic convergence (O <w< {igég)), st. g >1/(elog(2))

5S)

A

IUn = Pa(w, N)) (u)l , xy < Clg, N)n~*,

N glog(2)e — 1
log(2) + 01 g/9(n)

with 41

and constant C(g, N) independent of 1.




Theorem [NTW,07]

Let n = n(w, N) = #5#4(w, N), then for u € L%(I‘N; W (D))
satisfying the assumptions of the previous Theorem, the
anisotropic Smolyak method with the choice a,, = g(n) of the
weights satisfies:

_ GN)
e Sub-exponential convergence (w > glog(2)>

g(QN)nuz

(I = e, N)) @),y < Cle, N)(2n)/ 5D

glog(2)
9(N) (log(2) + XA, 9/9(n))

with Yo =

and constant C(g, N) independent of 1.




c SPDEs SCFEM ASG-SCEEM Error-Analysis Numerical examples Cor

N u merlcal ENIES (Df=m

The problems we consider are:

{ —V - (ay(w, )Vuy(w,) = fy(w,”) inQxD
uy(w,-) =0 on Q x 9D

{ —V - (an (w, ) Vun (w, ) + (uy(w, N? = fy(w,) inQxD
uy(w,-) =0 on Q x 0D

with D = {x = (2,2) € R? : 0 < 2,2z < 1} and a deterministic
load fn(w,x,z) = cos(x)sin(z)
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EEM Error-Analysis Numerical examples Cor

i ‘ Sandia
Numerlcal examples @{“ahura(énes

The problems we consider are:

{ —V - (ay(w, )Vuy(w,) = fy(w,”) inQxD
uy(w,-) =0 on Q x 9D

{ —V - (an (w, ) Vun (w, ) + (uy(w, N? = fy(w,) inQxD
uy(w,-) =0 on Q x 0D

with D = {x = (2,2) € R? : 0 < 2,2z < 1} and a deterministic
load fn(w,x,z) = cos(x)sin(z)

f L X
log(an(w,z) —0.5) =14+ Y (w + Z B on(x) Yy (w).
n=2
% 7TL )
, ifn>1

)
By = (V/mL) 1/2 exp
o) { sin (|5 |mx), if n even,

cos ([ 5]mx), ifn odd
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roblem Setting Linear/Nonlinear s SC ASG-SCEEM Error-Anal

sis Numerical examples Conclu

Sandia
CaIcuIatlng the weighting parameters (Df=m

e E[Y,] =0 and E[Y,)Y,,] = 6pm for n,m € Ny, and are taken
uniform in the interval [—/3,/3].

@ To resolve the noise W (D) = span of continuous piecewise
quadratic functions over a uniform triangulation of D with
maximum mesh size h = 1/3N. (Smallest Period 7' = 4/N)
i.e. for N =11 we have 4225 FE unknowns.
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tting Linear/Nonlinear elliptic SPDEs SC I ASG-SCEEM Error-Analysis Numerical examples Concl

‘S;ndla
Calculating the welghtmg parameters @{“:.]L?E(é..es

e E[Y,] =0 and E[Y,)Y,,] = 6pm for n,m € Ny, and are taken
uniform in the interval [—/3,/3].

@ To resolve the noise W (D) = span of continuous piecewise
quadratic functions over a uniform triangulation of D with
maximum mesh size h = 1/3N. (Smallest Period 7' = 4/N)
i.e. for N =11 we have 4225 FE unknowns.

2 47,2
Tn+ 1+Tn

- _ > g(n)
T, T2 = ¢

On =

Where the weight vector g becomes:

log<1+ ﬁ) forn =

n2,272
log (14—«/481\/ﬂexp (W)), forn >1

g(n) =
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Setting ) c SPDEs SCFEM ASG-SCEEM Error-Analysis Numerical examples Conclusions

Sandia
National
Laboratories

| [ 9(0) [ 9(2,3) [ 9(4,5) [ 9(6,7) [ 9(8,9) | 9(10,11) |
L= 1/2 0.20 0.19 0.42 1.24 3.1 5.8
L= 1/64 0.79 0.62 0.62 0.62 0.62 0.62

Table: The N = 11 values of the function g(n) constructed from a priori
information. The components of o = g are used as the input information
for the anisotropic Smolyak algorithm with correlation lengths L = 1/2
and L =1/64.
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tting Linear/Nonlinear elliptic SPDEs SCFEM ASG-SCEEM Error.Analysis Numerical examples Conclusions

Sandia
National
Laboratories

| [ 9(0) [ 9(2,3) [ 9(4,5) [ 9(6,7) [ 9(8,9) | 9(10,11) |
L= 1/2 0.20 0.19 0.42 1.24 3.1 5.8
L= 1/64 0.79 0.62 0.62 0.62 0.62 0.62

Table: The N = 11 values of the function g(n) constructed from a priori
information. The components of o = g are used as the input information
for the anisotropic Smolyak algorithm with correlation lengths L = 1/2
and L =1/64.

To study the convergence of the anisotropic algorithm we consider
a fixed dimension N = 5,11 and estimate the error:

IE[elllL2(p) ~ |E[Za(w, N)mpun — g (w + 1, N)mpun]||L2(p)

e w=0,1,...,w and @ (w + 1, N)m,uy is an enriched
solution that is an approximation to the exact solution.
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N=511&L=1/2

Numerical examples

Anisotropic Smoyak rate of convergence

N=511&L=1/4
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Linear/Nonlinear elliptic SPD

Anisotropic Smoyak conver

Error Analysis Numerical examples

@ National
Laboratories

artment of Energy
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National Laboratory
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Convergence Comparisons | (Df=m
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Linear/Nonlinear elliptic SPD SC >5G-SC Error Analysis Numerical examples

Convergence Comparisons | (Df=m

N = 11 random variables e o nay

National Laboratory
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SCEEM Error-Analysis Numerical examples Cor

Convergence Com parisons || (Df=m

N = 11 random variables

| L [[AS| AF | IS | MC |
1/2 | 50 | 252 [ 2512 [ 5.0e+ 09
1/4 || 158 | 1259 | 3981 | 2.0¢ + 09
1/16 || 199 | 1958 | 501 | 1.6e+ 09
1/64 || 316 | 199530 | 360 | 1.3e+ 09

Table: For 'V, with N = 11, we compare the number of deterministic
solutions required by the Anisotropic Smolyak (AS) using
Clenshaw-Curtis abscissas, Anisotropic Full Tensor product method (AF)
using Gaussian abscissas, Isotropic Smolyak (IS) using Clenshaw-Curtis
abscissas and the Monte Carlo (MC) method using random abscissas, to
reduce the original error by a factor of 10%.
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Linear/Nonlinear elliptic SPDEs SC 5-SC Error-Analy Numerical examples

. Y San
Convergence Comparisons: Nonlinear SPDE (Df=m
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- -G -Anisotropic Smolyak with Gaussian abscissas (N = 17)

- - -Anisotropic Smolyak with Clenshaw-Curtis abscissas (N = 17)
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e Extended [Nobile-Tempone-Webster, 2006] using an
anisotropic sparse grid stochastic collocation method for
solving linear and nonlinear elliptic SPDEs whose coefficients
and forcing terms depend on a moderately large number of
random variables.
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anisotropic sparse grid stochastic collocation method for
solving linear and nonlinear elliptic SPDEs whose coefficients
and forcing terms depend on a moderately large number of
random variables.

@ Sparse grid Stochastic Collocation FEM yields:

- uncoupled deterministic problems (fully parallelizable)

- reduces considerably the curse of dimensionality.

- for the problems under study the displayed convergence is
faster than standard collocation techniques built upon full
tensor product spaces, the isotropic sparse grid methods and
Monte Carlo.
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e Extended [Nobile-Tempone-Webster, 2006] using an
anisotropic sparse grid stochastic collocation method for
solving linear and nonlinear elliptic SPDEs whose coefficients
and forcing terms depend on a moderately large number of
random variables.

@ Sparse grid Stochastic Collocation FEM yields:

- uncoupled deterministic problems (fully parallelizable)

- reduces considerably the curse of dimensionality.

- for the problems under study the displayed convergence is
faster than standard collocation techniques built upon full
tensor product spaces, the isotropic sparse grid methods and
Monte Carlo.

@ The analysis reveals that if u has an analytic extension w.r.t.
the noise = (sub)-exponential or algebraic convergence of
the “probability error” w.r.t. the total number of collocation
points
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